
CPS122 Lecture: From Python to Java

last revised January 7, 2013
Objectives:

1. To introduce the notion of a compiled language
2. To introduce the notions of data type and a statically typed language
3. To introduce a few of the key syntactic differences between Python and Java
4. To explain the fundamental distinction between primitive types and reference

types, and to introduce the Java primitive types

 Materials:

1. Projectable showing difference between static and dynamic typing
2. Python interpreter and Dr. Java for demos
3. Projectable showing different syntax for control structures
4. Table of operator precedence from Bruce book

I. Introduction

A. As you may recall, in our course introduction we noted that this class
will use Java as a programming language, rather than Python, for
three reasons, all related to the size of the problem we are seeing to
solve. Do you recall what those reasons where?

ASK

1. Java is designed for an approach to software development known
as object orientation. (Python has support for object-orientation,
but not as fully.)

2. Java is a compiled language.

3. Java is a statically-typed language.

1

B. We talked a bit about Object-Orientation in the first lecture, and will
say a lot more about it throughout the course! In this lecture, we will
explain the latter two, and also say a bit more about Java syntax.

II. Compilation versus Interpretation

A. Computer hardware (a CPU chip) is capable of interpreting programs
written in binary machine language - 1's and 0's,

1. However, writing programs in machine language has lots of
disadvantages:

a) It is tedious.

b) It is error-prone.

c) Correcting such programs when errors are found is extremely
difficult.

d) Modifying such programs is extremely difficult.

e) Perhaps most important of all, the machine language of each
family of CPU chips is unique to that family. Thus, a program
written for one family of chips (e.g. the Intel 80x86 used on
many current systems) is totally useless for some other family.

2. For this reason, very early in the history of computer science,
various higher-level programming languages were developed.
Though still not as natural as English, they are a whole lot simpler
to use than binary machine language. Python is one such
language; Java is another; and there are hundreds more.

In addition to being much easier to use, higher level languages
have the advantage of being designed to be cross-platform - i.e. the
same program should be capable of being used on multiple
families of CPU.

2

B. With the use of higher-level languages, a new problem arises. The
CPU can only interpret its binary machine language - so how does it
execute a program written in a higher-level language?

Two approaches to solving this problem have been widely used.

1. Software interpretation. A special program called an interpreter is
written for a particular chip, in the binary machine language of that
chip. This program reads the higher-level language program one
step at a time and interprets and carries out that step.

2. Compilation. A special program, called a compiler, is used to
translate the higher-level language program into the binary
machine language of the target system

3. The key difference between the approaches is how often a given
higher-level language statement is “understood”. With an
interpreter, it is “understood” each time it is executed. With a
compiler, it is “understood” once, and then translated, as a separate
step before it is executed.

Example:

Say to a student who knows German: “Heben sie die hand, bitte”
(“Raise your hand, please”)

Ask the same student to translate into English, hand the translation
to another student to interpret.

4. Often, one approach or the other is the preferred approach for a
given higher-level language. For example, Python is designed to
be implemented using software interpretation, and Java - like most
higher-level languages - is designed to be implemented using
compilation. [There are a few languages that can actually be
implemented either way.]

3

C. A key visible distinction between the two implementation models is
that with a compiled implementation there is a distinct compilation
step that occurs between writing a program and running it, whereas
with an interpreted implementation it is possible to enter a single
statement and have it executed immediately.

1. Of course, the interpreted approach is more convenient to use.

2. However, though the compiled approach requires extra effort, it
has a number of advantages.

a) A compiled program can perform the same task much faster
than an interpreted program, because the step of
“understanding” the source program is done just once, at
compile time, and because it is possible to perform some
“optimizations” during translation that make the program run
more quickly.

(1)This is not much of an issue in many cases, given the speed
of modern computers. But it can be an issue with compute-
intensive applications, such as certain kinds of media
operations (e.g. movie, sound or picture editing) or scientific
“number-crunching”.

(2)Some interpreted implementations mitigate the problem by
storing the program internally in a partially-translated form
to avoid doing all the work of “understanding” the source
each time a statement is executed, and may even save the
translated form to facilitate subsequent loading. (For
example, Python does this with its .pyc files). But this still
doesn’t yield the kind of efficiency possible with a compiled
implementation.

b) A more significant issue is software reliability. A compiler can
be designed to catch many kinds of errors (but by no means all)

4

when a program is compiled, rather than having them show up
when the program is running.

(1)We will see lots of examples of this as we learn Java.

(2)There will be times when you will be tempted to think of
detection of errors by the compiler as a nuisance, but
remember this is much less of a nuisance than having
something go wrong when the program is running!

c) Compiled implementations also have significant security
advantages.

D. Having said all this, for demonstration purposes we will make use
from time to time of a program known as Dr. Java. This has an
interaction window which allows you to enter a Java statement and
have it executed immediately - just like in an interpreted language.
But what is really happening is that Dr. Java is compiling a mini-
program containing the statement “behind the scenes”.

E. The IDE we will use in lab - NetBeans - performs the compilation
step automatically when you try to run a program that has been
modified since it was last compiled - so you will not necessarily be
conscious of compilation being done.

III.Static versus Dynamic Typing

A. Before we discuss the issue of static versus dynamic typing, we need
to first introduce the notion of a data type. Both Python and Java (and
indeed almost all programming languages) have this concept.

1. A data type defines a set of possible values and a set of possible
operations. For example, most programming languages (including
Python and Java) have the notion of the data type integer (called
int in both languages).

5

a) The possible values of an int are the mathematical integers
(actually a finite subset in Java).

b) The possible operations on an int are the standard arithmetic
operations such as +, -, *, / etc.

2. Most programming languages (including Python and Java) are
strongly-typed languages - which basically means that one cannot
apply an operation to a data item for which it is not appropriate.

Example: DEMO in Python

4 - 3 is OK
"four" - "three" is not - the type of the values is string, not integer

3. In fact, sometimes the same symbol may specify a different
operation depending on the types of the items it is applied to

Example: DEMO in Python

4+3 - here “+” is arithmetic addition
"four" + "three" - here “+” is string concatenation

B. To illustrate the difference between static and dynamic typing,
consider the following task: calculate the two roots of a quadratic
equation using the quadratic formula you learned in high school:

If an equation is of the form Ax2 + Bx + C = 0, then its roots are
	

 	

 x = -B +/- sqrt(B2 - 4AC)

PROJECT TypeDeclarations projectable

(Note: these are just excerpts from complete programs, written so as
to use a similar style insofar as possible. For simplicity we assume we
will only use them for cases having two real roots.).

What differences do you see?

ASK - Be sure they see the explicit declarations of the variables

6

1. In the Java program, the variables a, b, c, x1, and x2 are explicitly
declared to be of a data type known as double (double-precision
real numbers) before they are actually used.

2. In the Python program, these variables are first introduced when
they are used.

3. The difference arises because Java is statically typed, which means
three things:

a) A variable must be explicitly declared to be of some type before
it can be used.

b) A variable must only be used in a way that is appropriate for its
type.

c) The type of a variable cannot be changed once it is declared to
be of a certain type.

DEMO with Dr. Java:

int x
String x

4. In contrast, Python is dynamically typed.

a) Variables are not explicitly declared. Rather the type of a
variable is based on the value it currently holds.

b) Though a variable can only be used in a way that is appropriate
for its current type, the type of a variable can be changed by
giving it a different value.

DEMO

a = "four"
a - 1
a = 4
a - 1

7

5. Although declaring a variable and giving it a value are
conceptually two different things, Java does allow these two
operations to be combined into a single statement.

Example:	

	

 int x;
	

 	

 x = 3;

is equivalent to	

int x = 3;

C. At first glance, it may appear that static typing is a nuisance.
However, it has several very significant advantages

1. It provides some protection against typographical errors.

Example: suppose you used a variable named something in a
program, and at one point misspelled it as sonething in an
assignment statement

sonething = 4

The Python interpreter would allow this, by treating it as the
definition of a new variable - which could result a hard-to-find
error when the variable something turns out to have the wrong
value elsewhere in the program.

In contrast, the Java compiler would flag this as an unknown
symbol.

2. It provides protection against inadvertent misuse of a variable.
The compiler can (and does) check each use of a variable to be
sure that the use is consistent with its declared type.

Example: if the variable a were declared as a string, the Java
compiler would flag a - 1 as an error

DEMO with Dr. Java

String a
a - 1

8

3. It facilitates production of more efficient code. With a dynamically
typed language, each time a variable is used its current type must
be checked to determine whether the operation is appropriate and,
if so, what it means. With a statically typed language, all this is
checked at compile time.

D. Java has 8 builtin types known as primitive types that have a special
status in the language. and are represented in an efficient way in
memory. (If you are familiar with the C programming language, these
are similar to the primitive types of C.)

1. Four different types of integers - distinguished by the number of
bits of memory used to store each, and by the resultant range of
possible values.

a) byte - one byte (8 bits) - range of values -128 .. 127

b) short - two bytes (16 bits) - range of values -32768 .. 32767

c) int - four bytes (32 bits) - range of values -2,147,483,648 ..
2,147,483,647

d) long - eight bytes (64 bits) - -9,223,372,036,854,775,808 ..
-9,223,372,036,854,775,807

e) Unless there is a good reason for doing otherwise, int is
typically the one that is used

2. Two different types of real numbers - distinguished by the number
of bits of memory used to store each, and by the resultant precision
and range of possible values

a) float: 4 bytes (32 bits). Precision equivalent to about 7 decimal
digits, with range of values on the order of ± 1038

9

b) double: 8 bytes (64 bits): Precision equivalent to almost 16
decimal digits, with range of values on the order of ± 10308

c) Unless there is a good reason for doing otherwise, double is
typically the one that is used

d) In contrast, in Python there is just one real type - called float,
but using the same amount of memory as a Java double.

3. A boolean type whose possible values are true and false. (Note: in
Java the boolean constants are true and false - all lower case,
whereas in Python they are True and False. Also, in Python the
booleans are equivalent to the integers 1 and 0, which is not the
case in Java - boolean is not an integer type).

4. A character type (char) that holds the code for a single character.
(Not present in Python)

5. For reasons we will see shortly, primitive types are also called
value types.

E. Java also makes it possible to define new data types by defining
classes (which we will talk about in the next lecture), arrays,
interfaces (both of which we will not discuss until much later in the
course.) The code for defining such a new type is, itself, written in
Java. Collectively, these types are called reference types.

Illustration of the meaning of “reference”

BlueJ Bank Example demo - create a Customer and a BankAccount,
then inspect BankAccount and double click owner reference to bring
up Customer object.

The situation that holds here looks something like this:

10

:Customer:BankAccount

owner

1. A large number of reference types are defined as part of the
standard Java libraries. We will make use of a number of these
throughout the course.

2. One such type is that used for character strings (String). It is not a
primitive type because Strings can vary widely in the amount of
storage required. It does, however, have a “privileged” status
when compared to other reference types.

3. The process of creating a Java program centers around creating
new classes, each of which, in effect defines a new data type.

4. An object of a reference type must always be explicitly created by
using the reserved word new (We will see examples of this later)

5. Actually, Python supports something similar, but most Python
programs do not make use of this facility.

IV.Key Syntactic Differences between Java and Python

A. As you probably noted in the excerpts I projected earlier, there are
quite a number of syntactic differences between Java and Python.
Most of these will come to the surface as we encounter them, but there
are a few worth mentioning now.

B. Delimiting individual statements

1. In Python, a statement runs until the end of a line, though it is
possible to extend statements over multiple lines by ending each

11

line except the last with a '\' . It is not possible to have two
statements appear on the same line

2. In Java, statements are terminated by a semicolon. A statement can
be spread over multiple lines, and multiple statements can appear
on one line.

DEMO with Dr. Java

int
a
=
3;
int b = 4; int c = a + b; System.out.println(c);

C. Comments

1. In Python, a comment is started by a “#” and extends to the end of
the line

2. In Java, there are two ways of marking comments

a) If a “//” occurs, everything following it - to the end of the line -
is a comment. (So “//” in Java behaves just like “#” in Python)

b) If a “/*” occurs, everything following it - to the next occurrence
of “*/” is considered a comment. This may be a part of a line,
or may extend over several lines

DEMO with Dr. Java

/* Short comment */ int d = 3; /* Long
comment
extending
over
multiple
lines */
System.out.println(d);

12

D. Strings

1. In Python, character strings can be written using either of the two
types of quotation mark ("" and '), as long as the string is
terminated the same way it began.

2. In Java, character strings are always written using double quote
marks ("").

3. In Java, single quote marks are used for character literals (values of
type char).

E. Boolean operators

1. In Python, compound boolean expressions can be constructed
using the boolean operators and, or, and not.

2. As we've already noted, Java uses the symbols &&, || and ! for this
purpose, and also has the boolean operator ^ .

F. Comparison operators

1. In Python, the comparison operator (>, <, >=, <=) can be
applied to objects of any type, and have the expected result when
used with numbers and strings.

2. In Java, these operators can only be applied to primitive types.

3. In Python, the equality comparison operators (== and !=) always
test their operands for the same value.

4. In Java, when these operators are applied to primitive types, they
test for same value; but when applied to reference types, they test
for same object.

13

G. Names

1. In Python, there is no single, well-established convention for how
names are assigned to user-defined entities.

2. In Java, there are well-established conventions for naming.
Though these are no enforced by the compiler, they do constitute
well-accepted good practice.

3. The handout introduces these - but we will speak of them in detail
later.

H. Conditional and Looping Statements

1. Both Python have the notion of a conditional statement introduced
by the word “if”, and looping statements introduced by “while” or
“for”, but the syntax is quite different.

PROJECT comparison of syntax for control structures

a) Python: keyword expression :

b) Java: keyword (expression)

2. Delimiting the scope of conditional/looping statements

a) In Python, the scope of a conditional/looping statement is
delimited by indentation

Example:
if x == 0:
	 print x is 0

b) In Java, the scope of a conditional/looping statement is
delimited by braces. The Java equivalent would be

14

if (x == 0)
{
	 System.out.println("x is 0");
}

(1)Actually, if the scope of a conditional/looping statement is
just a single statement, the braces are not needed

Example: the above could be written
if (x == 0)
	 System.out.println("x is 0");

(2) It is considered good practice to indent statements in a manner
similar to the manner used in Python for readability, but the
compiler pays attention to the braces - not indentation - so the
following is equivalent, though stylistically poor:

if (x == 0)
System.out.println("x is 0");

(Indentation conventions for reasons of style preceded
Python; Python just adopted them and gave them syntactic
significance)

I. Function Definitions

1. Python

a) The first line of a Python function definition begins with def
and ends with a colon.

b) The body is delimited by indentation - just the way the scope of
a control structure is.

c) Formal parameters are listed in parentheses after the function
name - or an empty pair of parentheses is used if there are no
parameters.

15

2. Java

a) Because Java is statically typed, a function definition always
begins with a type specifier indicating what kind of value the
function - or void if the function does not return any value.

b) The body is delimited by braces - similar to the way the scope
of a control structure is delimited - but in this case the braces
are always required, even if the body is just one line.
Indentation, though not syntactically meaningful, is good style.

c) As in Python, formal parameters are listed in parentheses after
the function name - or an empty pair of parentheses is used if
there are no parameters. However, again because Java is
statically typed, each parameter name is preceded by a type
specifier.

J. Function calls in Python and Java have similar syntax, except that a
function call in Java always specifies the object or class to which it is
applied. (We'll see examples of this later.)

(Actually, Python also uses something similar when one is using its
object-oriented features.)

V. More About Primitive Types in Java

A. Earlier, we noted that Java data types fall into two categories:
primitive (value) types and reference types. There are some important
differences between primitive and reference types.

1. The names of primitive types are all lower-case. By convention,
the names of reference types begin with an upper-case letter.

2. Primitive types are also known as value types, because an entity of
a primitive type stores a value, rather than referring to a value
stored elsewhere. Therefore, in Java (though not all OO
languages), primitive types are not objects.

16

a) The operator new is not used to create them. (Reference types
are always created this way.)

b) Methods cannot be applied to them. You will never see
something like:
int i;
i.something();

3. Java provides standard ways of writing literals of the primitive
types. Examples (for the types we will use):

a) boolean - false, true

b) int	 - 1

c) double - 1.0 (the decimal point distinguishes from int), or
scientific notation can be used - e.g. 6.02E23

d) char - 'A'

e) For convenience, and because they are widely used, Java also
provides a mechanism for writing literals of one (but only one)
of the reference types - String
"This is a String"

4. Java provides various operators that can be applied only to entities
of primitive type: Examples:

a) For boolean - boolean operators such as &&, ||, !, ^

(Give truth table for each)

b) For the numeric types (int, double) - the familiar arithmetic
operators +, -, *, /, % [Similar to Python]

(1)As in Python, the operator / has a somewhat different
meaning depending on its operand types.

17

(a) When used with two ints, it means integer division.
Any remainder is discarded.

DEMONSTRATE with Dr. Java: 2/5, 5/2

(b)When used with two doubles, or a double and an int,
it means real division.

DEMONSTRATE with Dr. Java: 2.0/5.0, 5.0/2.0

(2)The operator % stands for "remainder upon division by" and
is primarily used with integer types, though it can be used
with reals as well

DEMONSTRATE with Dr. Java: 5 % 2, 5.0 % 2.0

c) For the numeric types plus char - relational operators such as
>, <, >=, <=

5. The equality comparison operators (== and !=) can be applied to
both kinds of types, but they mean something different for
reference types than they do for value types.

a) When applied to two entities of value type, they ask “do these
two represent the same value?”

b) When applied to two entities of reference type, they ask “do
these two refer to the same object?”

Of course, the answer to the first question will always be yes
when the answer to the second question is yes. But the reverse
is not true. It is possible to have two different objects that - in
some sense - represent the same value. [Example: two
different bank accounts with the same balance].

18

DEMONSTRATE with Dr. Java 1 == 1, "hello" ==
"hello"

c) Rules of precedence are used to resolved ambiguities in
expressions that contain several operators - e.g. 1 + 2 * 3 is
interpreted as 1 + (2 * 3), rather than as (1 + 2) * 3.

(1)Unary operators take precedence over binary operators

(2)Multiplicative binary operators (*, /, %) take precedence
over other binary operators.

(3)The additive binary operators (+, -) are the lowest
precedence operators of the ones we have looked at so far.

(4)Ties between operators at the same level are broken left to
right for the operators we have considered so far. (There are
some that break ties the other way!)

Example: Order of evaluation of operators in

- a + b % c / d - e * - f - g

(Work out with class)

- a + b % c / d - e * - f - g

1 6 3 4 7 5 2 8

equivalent to

(((- a) + ((b % c) / d)) - (e * (-
f))) - g

d) As noted in the above example, parentheses can be used to
explicitly specify precedence - either because

19

(1)An order other than the normal one is needed

Example: (a + b) * (c + d)

or

(2)There is a desire to make the order clearer to the reader

(3) In the case of boolean expressions, a more complete set of
precedence rules takes into account the comparison
operators as well.

PROJECT: Table of operator precedence

B. Just as variables have a type, so expressions have a type.

1. The type of an expression is determined by the types of its
operands and operators. The following rules deal with the data
types we will use - there are some additional rules that apply to the
numeric types we will not discuss.

a) For the arithmetic operators, the type of the result of operation
is determined by the types of its operands according to a rule
that is sometimes called the rule of numeric contagion.

(1)For unary operators, the type of the result is the same as the
type of the operand.

(2)For binary operators:

(a)If either operand is of type double, the other is converted
to double (if necessary) and the result is of type double.

(b)Otherwise, the result is of type int.

b) For the relational and equality comparison operators

20

(1) If the two expressions being compared are numbers, they are
converted according to the rules of numeric contagion and
then compared.

(2)A char can only be compared to a char.

(3) booleans and reference types can only be compared for
equality

The result of any comparison, of course, is always boolean.

c) Note that the rules are applied step by step during the evaluation of
the expression.

Example: What is the value of the following expression

(4 / 5) * 2.0

ASK

Answer: 0.0 ! (DEMO with Dr. Java)

The division 4 / 5 is done in type int, because both operands are
ints. The quotient is 0 and the remainder of 4 is discarded. The int
0 is then converted to double 0.0 and multiplied to still yield 0!

2. A related requirement is that the type of an expression that is
assigned to a variable be assignment compatible with the variable.

(1)A variable of type double may be assigned the result of any
numeric computation. If the result is an integer, it is
promoted.

(2)A variable of any other type may only be assigned an
expression whose value is of the same type.

3. There are times when it is necessary to perform an operation where
the needed type conversion is not automatically performed. In this
case, one must use an explicit type cast.

21

Example: The following statement is erroneous, because the
expression is of type double and the variable is of type int:

double d;
int i = 3 * d;

To make this work correctly, we need to use a type cast, as follows:

int i = (int) (3 * d);

Note: Java requires an explicit cast, because a computation like
this might - in principle - result in the loss of information:

The explicit use of a cast means “I know this could result in the
loss of information, but in this case I know this won’t happen, or
I’m prepared to accept it.”

22

