
CPS 220 – Theory of Computation 
Review - Regular Languages 
 
RL - a simple class of languages that can be represented in two ways: 
 

1 Machine description: Finite Automata are machines with a finite number of states 
and no extra memory, recognizing exactly the Regular Languages. Finite 
Automata can be Deterministic or Nondeterministic, and these two kinds are 
equivalent in the sense that they recognize the same languages, but it is interesting 
to note that Nondeterministic Finite Automata can provide much more concise (in 
the extreme case, exponentially shorter!) descriptions of the same language as 
Deterministic ones. 

 
2 Syntactic description: Regular Expressions are a class of expressions built out of a 

given alphabet Σ ∪ { ε }, and with operations Union, Concatenation, and Star.  
 
Some important properties of Regular Languages are: 

1. If a language L is finite, then it is regular. 
2. If a language L is regular, then the complement of L (Σ* - L ) is also regular. This 

closure under complementation is a very important and “rare” property. 
3. If L is regular, then LR, the language of the strings of L reversed, is regular. 
4. If L1 and L2 are regular, then L1 ∪ L2, L1L2, and L1 ∩ L2 are regular. The closure 

under intersection follows from closure under complementation, because: 
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[Note: stay tuned for project 1 - dealing with regular expressions] 
 
In order to prove that a language is not regular, a very useful tool is the Pumping Lemma  



New Topic: Now we will start on a new topic, and we will describe a more powerful 
model of computation: the Context-Free Languages (CFL). This category of languages 
again has two ways to be described: 
 

1 Machine description: CFLs can be recognized by Pushdown Automata (PDA). 
Those are basically Nondeterministic Finite Automata with an additional memory 
device, the stack. The stack is an unlimited size, First-In First-Out (FIFO) 
memory. One important thing to keep in mind is that the PDAs need 
nondeterminism in order to recognize the CFLs. So when the stack comes to play, 
the equivalence of the deterministic and nondeterministic machines breaks. 

 
2 Syntactic description: CFLs can be recognized by a syntactic way of producing 

strings according to a finite set of rules, the Context-Free Grammars. 
 
Context Free Grammars and Languages are commonly used in syntactic parsers, such as 
those seen in compilers or in the XML language. 
 
 

Some nonregular languages

Regular Languages

Languages generated by CFGs  
 



1. Context-Free Grammars - "more powerful method for describing languages" 
 
Let’s start with an example: 
 
A → 0 A 1 
A → B 
B → ε 
 
Start: A; Σ = {0, 1} 
 
Definitions: substitution rules, variable, terminal, start variable, derivation 
 
This is a Context-free Grammar (CFG). 
 
Here is an example of using it to produce (or derive) a string: 
 
A →  0 A 1 
    →  0 0 A 1 1 
    →  0 0 0 A 1 1 1 
    . 
    . 
    . 
    →  0n A 1n  
    →  0n B 1n 
    →  0n 1n 
 
L(G) = all strings which can be generated   (language of the grammar) 
 
L(G) is not a regular language. Why? FA does not have enough memory - however a new 
model 
 (PDA) has stack memory. 
 
Definition: A context-free grammar (CFG) is a 4-tuple (V, T, P, S) such that: 
 

1. V is a finite set of variables, or nonterminals. 
2. Σ is the alphabet, here also called the set of terminals. 
3. R is a set of derivation rules, or productions. Each rule is of the form: Variable → 

String of variables & terminals. 
4. S is a designated start symbol.  (S ∈ V) 



2. Derivations 
 
Definition: A Derivation. 
 

1 We say that string u yields string v, denoted u ⇒ v, if u turns to v after one 
application of a derivation rule. 

 example:  0 A 1 ⇒ 0 0 A 1 1 
 
2 If u turns to v after many rule applications then we say that u ⇒* v. 

 example:  0 A 1  ⇒* 0 0 0 0 0 0 A 1 1 1 1 1 1 
 

3 The sequence u ⇒ v1 ⇒ v2 ⇒ … ⇒ vk ⇒ v is called a derivation of v from u.  
 
 
Definition: The language of a grammar G, L(G) = { w ∈ Σ* | S ⇒* w } 
 
Definition: A Context-free language (CFL) is a language generated by a CFG. 
 
Practice Problem: 
Let Σ={0,1} and let 
L(G)={w|w contains an equal number of occurrences of the substrings 01 and 10}. 
 
Solution: G=({S},{0,1},R,S) 
 
Set of rules - R 
S → Α|Β  
A → 1NZN1A|ε 
B → 0ZNZ0B|ε 
Z → 0Ζ|ε 
N → 1Ν|ε 
Z → ε 
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3. Parse Trees. 
 
A derivation can be depicted in a parse tree. 
 
Example: Σ = { 0, 1, # }; V = { A } 
 
A → 0 A 1  |  # 
 
What would the parse tree look like for 000#111? 
 

 
Reading the leaves of the tree from left to right gives the produced string. 
 
 
The language makes even more sense like this: 
A → 0 A 1  |  ε 
 
 
Example: A grammar of arithmetic expressions with parentheses. 



 
E → E + T   |  T 
T → T × F   |  F 
F → ( E )  |  a 
 
Variables (nonterminals): { E, T, F } 
Symbols (terminals): a + × ( ) 
 
Parse tree for strings a + a  × a  and  (a + a)  × a   

 
 
What would the parse tree look like for result: ( a + a ) × ( a + a )? 
 
Note: This language “remembers” to close the right number of parentheses opened. A FA 
cannot do that because it has only a finite amount of “memory” hardwired in its states. 
 
 
Example: L = { 0n 1k 2n | k ≥ 0, n ≥ 0 } 
 
A grammar for L: 
 
A → 0 A 2    |   B 
B → 1 B   |   ε 
 
 
Example: L = { w wR | w ∈ Σ* } 
 
A grammar for L:   A → 0 A 1   |   1 A 0   |   ε 
 
Designing CFL 
 
1. Divide and conquer 



For example to get grammar: { 0n 1n |  n ≥ 0 }∪{ 0n 1n |  n ≥ 0 } 
 

 
!|101 11 SSG "

 

!|012 22 SSG "
 

 
add this starting substitution rule 

 21 | SSS !
 

 
2. If the language is regular - create a DFA and then convert to CFG as follows: 
 
a. Make a variable Ri for each state qi of the DFA.  
b. Add the rule Ri →aRj to the CFG if there is a DFA transistion (with a)  from state Ri 
to Rj.  
c. Add the rule Ri → ε  if qi is an accept state.   
d. Make R0 the start variable - where q0 is the start state of DFA. 
 
example: 
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let's start with: 

0

1 0

1  
 
R1 --> 0R2|1R1|ε 
R2 --> 1R1|0R2 
 

1
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0  
R3 --> 1R4|0R3|ε 
R4 --> 0R3|1R4 



 

0
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R0 --> R1|R3|ε 
 
 
Test out the resulting grammar. 
 
c. use this substitution rule   R-->uRv 
 
Example: 000111   S-->0S1|ε 
 
===============================================================
== 
Ambiguous grammar - grammar generates the same string in multiple ways (has several 
different parse trees) 
 
E → E+E   |   E x E   |   (Ε)  | a 
 
 

 
Two different parse tree for same string a+a x a 
 
E-->ExE-->E+ExE-->a+ExE-->a+axE-->a+axa 
E-->E+E-->a+E-->a+ExE-->a+axE-->a+axa 
 
 
 
Generated ambiguously - 2 different parse trees, not 2 different derivations (same 
derivated string) 
 
Leftmost derivation - leftmost variable is the one replaced 
<<some CFL can be generated only my ambiguous grammars (inherently ambiguous)>> 
 
 



===============================================================
== 



The Chomsky Normal Form  
 
The Chomsky Normal Form (CNF) allows only the following two kinds of productions: 
 
A → BC,   where B,C are nonterminals, and 
A → a,      where a is a terminal. 
 
Two more details: 
1. The start symbol, S, cannot be at the rhs of any production. 
2. We permit the special rule S → ε. 
 
This is a very useful form when designing algorithms on CFGs, and it is very simple to 
study mathematically. 
 
Algorithm for converting a CFG into Chomsky Normal Form: 
 

1. Create a new start symbol, S0, and add the rule S0 → S. Add the rule S0 → ε if ε 
could be produced by the grammar. 

2. Remove ε-productions, except the possible one from S0. 
 

To do so, whenever R → u0 A1 u1 A2 … uk-1 Ak uk is a rule, and A yields ε (in any 
number of steps!), add the 2k - 1 rules: 
 
   R→ u0 u1 …. uk 
   R → u0 A1 u1 u2 … uk 
    …    
   R → u0 A1 u1…. uk-2 Ak-1uk-1 uk 
Example: 
 
   A → BaBaD 
   B → b   |   ε 
   C → c   |   ε 
 
These rules become: 
 
   A → aa | Baa | aBa | aaD | BaaD | BaBa | aBaD | BaBaD 
   B → b 
   C → c 

 
 

3. Remove unit productions. Those are productions of the form A → B where A and 
B are nonterminals. 

 
To do so, find all nonterminal pairs X, Y such that X → B1 → … → Bk → Y is a 
series of unit productions. For every such pair (X, Y), and for every production 



Y→u other than the unit productions, add the production X→u to the grammar. 
 
 Example: 
 
   S → AB  |  A 
   A → C   |  a  |  aa 
   B → b 
   C → cc 
  
 Becomes: 
   S → AB  |  a  |  aa  |  cc 
   A → a  |  aa  |  cc 
   B → b 
   C → cc 
 
 Notice now that C is useless – we can remove it and its productions, if we wish.  
 
4. Arrange all remaining productions A → u with |u| ≥ 2, to contain only 

nonterminals. 
 

Example: 
  A → cdAce 
Generate new nonterminals C, D, and E, and change the above rule to: 
  A → CDACE 
  C → c 
  D → d 
  E → e 

 
5. Now each production is of the form A → a, where a is a terminal, or A→ B1…Bk, 

where each Bi is a nonterminal. If k > 2, change the production to: 
 

A → B1C2 
C2→B2C3 

   … 
   Ck-1→Bk-1Bk 

 
 



Example:  
Grammar G: 
S → 0 S 1    |    A    | ε  
A → 1 A      |    ε 

1. New start symbol S0 
 
New grammar: 
 S0 → S    |    ε 

   S → 0 S 1    |    A    | ε  
A → 1 A      |    ε 

 
2. Eliminate ε productions (except from S0):    

 
New grammar:  
 S0 → S    |    ε  

S → 0 S 1    |    0 1    |    A 
A → 1 A      |    1 

  Notice, now the new grammar does not produce ε (G did!) 
 
2.  Eliminate unit productions. We have to eliminate S → A 
   

New grammar: 
 S0 → 0 S 1    |    0 1    |    1 A |    1    |    ε  

   S → 0 S 1    |    0 1    |    1 A |    1 
    A → 1 A      |    1 
 
3.   Arrange all remaining productions X → u where |u|≥2 to contain only 

nonterminals. 
 
The grammar becomes: 

   S0 → C S D   |   C D    |     D A    |    1    |    ε 
S → C S D   |   C D    |     D A    |    1 

   A → C A      |    1 
   C → 0 
   D → 1 
  
4.   Finally, arrange all X → u to have |u| ≤ 2, by adding new nonterminals if needed.  
 

New grammar: 
   S0 → C S’    |     C D    |    D A    |    1 
   S → C S’    |     C D    |    D A    |    1 
   S’ → S D 
   A → C A    |     1 

C → 0 
   D → 1 



 


