Memory-Memory Architectures

Three address architecture: op destination source1 source2

\[Z = X + Y \]

ADD \(Z, X, Y \)

\[Z = (X + Y) / (Q - Z) \]

ADD \(T1, X, Y \)
SUB \(T2, Q, Z \)
DIV \(Z, T1, T2 \)

Two address architecture: op destination source
(destination serves as both the second source and the destination)

\[Z = X + Y \]

MOV \(Z, X \)
ADD \(Z, Y \)

\[Z = (X + Y) / (Q - Z) \]

MOV \(T1, Q \)
SUB \(T1, Z \)
MOV \(Z, X \)
MOV \(Z, X \)
ADD \(Z, Y \)
DIV \(Z, T1 \)
Memory-Register Architectures

Multiple register machine: op source register (or op register source)
(The designated register serves as both one source and the destination; on some machines (e.g. Intel 80x86), the memory location may also serve as the destination.) (Multiple register machines generally allow a register to be used instead of the memory operand, as well)

\[Z = X + Y \]

LOAD R1, X
ADD R1, Y
STORE Z, R1

\[Z = (X + Y) / (Q - Z) \]

LOAD R1, X
ADD R1, Y
LOAD R2, Q
SUB R2, Z
DIV R1, R2
STORE Z, R1
Single accumulator machine: op source
(AC serves as both a source and destination)

\[Z = X + Y \]

LOAD X
ADD Y
STORE Z

\[Z = \frac{(X + Y)}{(Q - Z)} \]

LOAD Q
SUB Z
STORE T1
LOAD X
ADD Y
DIV T1
STORE Z
Load-store architecture:

\[Z = X + Y \]

LOAD R1, X
LOAD R2, Y
ADD R1, R2, R1
STORE Z, R1

\[Z = (X + Y) / (Q - Z) \]

LOAD R1, X
LOAD R2, Y
ADD R1, R2, R1
LOAD R2, Q
LOAD R3, Z
SUB R2, R2, R3
DIV R1, R1, R2
STORE Z, R1
Stack architecture:

\[Z = X + Y \]

PUSH X
PUSH Y
ADD
POP Z

\[Z = (X + Y) / (Q - Z) \]

PUSH X
PUSH Y
ADD
PUSH Q
PUSH Z
SUB
DIV
POP Z