Finite Automata with Output

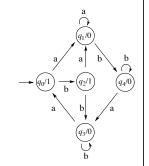
Models of Computation Lecture #11 Chapter 8

Extending capabilities

Machines that can produce output
note that an FA can represent output via a
state, but we now mean explicit output
Two related models
Moore machine
Mealy machine

Moore machine

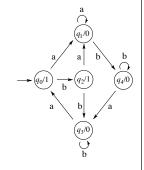
- a finite set of states q_0, q_1, q_2, \dots where q_0 is the start state
- an input alphabet with letters in Σ
- an output alphabet with characters in $\boldsymbol{\Gamma}$
- a transition table with a transition for each input letter for each state
- an output table that shows what character to print as each state is entered


Moore machine

Compared to FA

- Start state indicated by an arrow not a -
- There is no final state
- · Doesn't define a language explicitly
- In the state, include an indication of the letter to be printed on entering the state
- By definition the start state character is printed at the beginning because we "enter" that state to begin a run

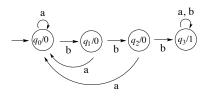
Moore machine, example


- $\Sigma = \{ a b \}$
- Γ = { 0 1 }
- states: **q**₀, **q**₁, **q**₂, **q**₃, **q**₄

Moore machine, example

Input string: abbaabba

Output printed: 100001101

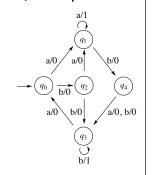


Moore machine, "Acceptor"

- 1. Design a machine which prints a special character only when entering a final state.
- 2. Run the machine.
- 3. If the output ends with the special character then the input was "accepted" by the machine.

Moore machine, "Acceptor"

Example: accept any input with a bbb substring. When run on an input, if the output ends in 1 then the string is accepted.

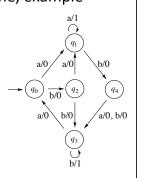


Alternate model: Mealy machine

- a finite set of states $q_{0},\ q_{1},\ q_{2},$... where q_{0} is the start state
- an input alphabet with letters in $\boldsymbol{\Sigma}$
- an output alphabet with characters in $\boldsymbol{\Gamma}$
- a transition table with a transition for each input letter for each state, with output character to be printed when traveling the edge

Mealy machine, example

- $\Sigma = \{ a b \}$
- Γ = { 0 1 }
- states: **q**₀, **q**₁, **q**₂, **q**₃, **q**₄


0/1, 1/0

Mealy machine, example

Input string: aaaabbbbaabb

Output printed: 011100110000

What does it do? How man times did we loop? Count the 1's.

Design problem 1

Design a Mealy machine to transform an input in binary into it's 1's complement

(very simple machine!)

Design problem 2

Design a Mealy machine to increment a binary number when input least significant digit first.

For example:

 $0000 \rightarrow 1000$

 $1011 \rightarrow 0111$

1111 → 0000 (overflow)

Design problem 2 Increment Little end in For example: $0000 \rightarrow 1000$ $1011 \rightarrow 0111$ $1111 \rightarrow 0000 \text{ (overflow)}$

Which model is more powerful?

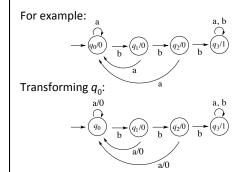
Theorem:

Moore = Mealy

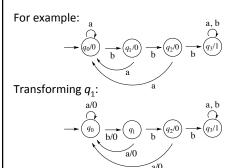
ignoring initial character from Moore machine

Proof:

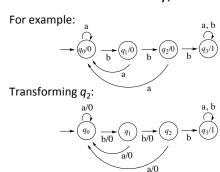
Part 1. Show for every Moore, there is a Mealy that is equivalent

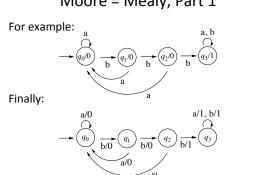

Part 2. Show for every Mealy, there is a Moore that is equivalent

Moore = Mealy, Part 1


Constructive algorithm, Moore → Mealy

- 1. Consider any specific state in a Moore machine
- 2. State contains a print instruction
- Append the print character to each incoming edge and delete the print character from the state.
- 4. Repeat for all states.


Moore = Mealy, Part 1


Moore = Mealy, Part 1

Moore = Mealy, Part 1

Moore = Mealy, Part 1

Moore = Mealy, Part 2

Constructive algorithm, Mealy → Moore

- 1. Consider any specific state in a Moore machine
- 2. Create "twin" states if incoming edges have different output symbols
- 3. Append the print character to each state now that incoming edges always have the same printing instruction; delete the print character from the edge.
- 4. Repeat for all states.

Moore = Mealy, Part 2

Examples.

Incoming edges all print same character

Moore = Mealy, Part 2

Examples.

Incoming edges with a loop? No different.

$$b/0$$

$$q_2$$

$$b/1$$

$$b/0$$

$$\begin{array}{c}
a \\
\hline
q_2/0
\end{array}$$
b/1

Moore = Mealy, Part 2

Examples.

Incoming edges with different print characters lead to twin states.

$$b/1$$

$$q_2$$

$$b/1$$

$$b/0$$

Moore = Mealy, Part 2

Examples.

Incoming edges with different print characters lead to twin states.

$$b/1$$

$$q_2$$

$$b/1$$

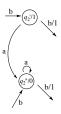
$$b/0$$

Moore = Mealy, Part 2

Examples.

But, what to do with the "a" transition from q_2' ?

$$\begin{array}{c}
a/0 \\
\downarrow \\
a/0
\end{array}$$

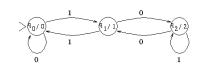

$$\begin{array}{c}
b/1 \\
b/0
\end{array}$$

Moore = Mealy, Part 2

Examples.

Send it to q_2 " since that's how you print the 0.

$$\begin{array}{c}
a/0 & a/0 \\
b/1 & q_2 \\
b/0 & b/1
\end{array}$$



Mo(o)re Examples

- modulo 3 calculator
- MUL 2 calculator

Mo(o)re Examples

• modulo 3 calculator

http://pearl.ics.hawail.edu/~sugfrara/course/ics241/notes/11-08ri20.html

Mo(o)re Examples

• MUL 2 calculator

Vending Machine — Meal(y) time • 20 cent vending machine