1/20/15

Background; Languages

Models of Computation
Lecture #1
Chapters 1 and 2

Background

* 1900, David Hilbert

* Wanted to know that every true
result was provable and wanted
an algorithm to reveal the proof

Background

* So the new question:

* What statements are provable?
And how can we prove them?

* Many mathematicians joined this study...

Background

¢ 1931, Kurt Godel

* Thereis no
algorithm to
provide proofs of
all true statements
in mathematics
— Either there are

true statements
that can’t be
proved (or worse!)

Background

* Alonzo Church
— Defined formal notion of .
“algorithm”
— Answered Hilbert’s
question with a “no” on
decidability

Background

¢ Stephen Kleene
— Worked in the domain of
computability and
pioneered some concepts
in mathematical logic

Background

* Emil Post
— Developed Post’s Machine
model of computation
independently of Turing

1/20/15

Background

* Alan Turing
— Most celebrated
mathematician in the
computer theory domain

Background

* Alan Turing
— Most celebrated
mathematician in the
computer theory domain

Background

* Noam Chomsky
— Mathematical models for
describing languages
— Only one of these pioneers
who is still living
* Professor at MIT
* political lightning rod

Formal Language

* Letters, words, “sentences”
¢ Rules of grammar

Formal Languages

* Letters of the “alphabet”
* Set
«Z={abcd#}, for example
* Special symbol, the empty string: A
Ais not considered part of the alphabet set

1/20/15

Formal Languages

* Words
Dictionary (for finite languages)

* Set
* I'={ bad cad aa#dd c }, for example

Note that we call groups of 0 or more letters strings or
words in the language
* Special symbol, the empty word: A

A would appear in the dictionary if it was a valid word in the
language under discussion; otherwise, it is not included

Formal Languages

* Languages can be infinite
Dictionary won’t work here
— ex: English-sentences vs. English words

* Grammar (rules) instead
 All words that are allowable from the alphabet, can
define an infinite (or, of course, finite) LANGUAGE

* Note that meaning is not implied; form only

Formal Language Oddities

* Language can be empty, containing NO words

— Symbol for empty language: ¢

Formal Language Oddities

* Words don’t have to make sense
— not useful, but syntactically valid, English snippet

whirl monkey tan cannon kite

Formal Language Oddities

* Words don’t have to make sense
— not useful, but syntactically valid, Java snippet

while (i>0)
{

i=1;
1

Defining a Language

For Validation — or — Construction

z ={a}
L, ={aaaaaaaaaa..}

Defining a Language
For Validation — or — Construction
> ={a}

L, ={aaaaaaaaaa..}
={a"forn=1234..}

1/20/15

Defining a Language

For Validation — or — Construction

> ={a}
L, ={aaaaaaaaaa..}
{a"forn=1234..}

={any grouping or one or more a’s }

Defining a Language

For Validation — or — Construction
= ={a}
L, ={aaaaaaaaaa..}

={a"forn=1234..}
={any grouping or one or more a’s }

Notice that A is not in this language

Working with strings

Concatenation

Words placed side-by-side

aaa ClL,

aaCl,

Define x <= aaa; y <— aa
Concatenating: xy gives aaaaa
(note: in this case, xy C L;)

Working with strings

Question:

Are concatenated strings from the same
language always elements of the language?

Working with strings

Question:

Are concatenated strings from the same
language always elements of the language?

No. Proof by demonstration:

L, ={aaaaaaaaa...}
= { aodd }

1/20/15

Defining a Language

Example
={xyo0}
Ly =
{x y xx xy x0 yx yy y0 xxx xxy xx0 xyx xyy xy0 xOx xOy x00 ... }

L, ={any finite string of alphabet letters that does not start
with 0}

Questions:
1. What is the smallest non-empty string not in L;?
2.1fr,s CLy thenisrs C L;?

Defining a Language

* Functions that operate on strings
length(string)
reverse(string)

Defining a Language
* Functions that operate on strings

length(string)
reverse(string)

* length(A) ?

Defining a Language
* Define a PALINDROME over a given alphabet

>={ab}
PALINDROME =
{A a b aabbaaaabababbbb..}

Defining a Language
* Define a PALINDROME over a given alphabet

Z={ab}
PALINDROME =
{A a b aa bb aaaababab bbb ...}
{ A and all strings x such that
X = reverse(x) }

Defining a Language
* “Kleene closure” over an alphabet

z={a}
>*={Aaaaaaaaaaa..}

Defining a Language
* “Kleene closure” over an alphabet

z={a}
>*={Aaaaaaaaaaa..}

Question:
=={012}
=7

1/20/15

Defining a Language
* Kleene closure over a set of words, S

S={catdog}
S'=?

Defining a Language
* Kleene closure over a set of words, S
S={catdog}

S =
{ A cat dog catdog catcat dogdog dogcat ... }

Defining a Language
* Kleene closure over a set of words, S
S={catdog}
S*=
{ A cat dog catdog catcat dogdog dogcat ... }

Note that even though the words chosen made
sense in English, the words in the closure aren’t
necessarily grammatically valid in English.

Defining a Language

Other examples

S={aab}
s'=?

Defining a Language
Other examples

S={aab}
s'=?

S* = { A plus all strings of a’s and b’s where a’s
are in even clumps }

Note that this is not a proof. Why not?

Defining a Language

Other examples

S={aab}
s'=?

1/20/15

Defining a Language
Other examples

S={aab}
s'=?

S* = { A plus all strings of a’s and b’s that begin
with an a and have no double b’s }

Again, intuitive but not a proof

Proving inclusion

IsawordinS*?

* Yes, if and only if it is factorable into elements of
the base set S

Proving inclusion

IsawordinS"?

* Yes, if and only if it is factorable into elements of
the base set S

Example: S ={a bb abba}
Is bbabbabb in S*?

Proving inclusion
IsawordinS"?

* Yes, if and only if it is factorable into elements of
the base set S

Example: S={a bb abba}
Is bbabbabb in S*?

Yes: (bb)(abba)(bb)

Proving inclusion

IsawordinS"?

* Yes, if and only if it is factorable into elements of
the base set S

Example: S ={a bb abba}
Is bbabbabb in S*?

Yes: (bb)(abba)(bb)
Or: (bb)(a)(bb)(a)(bb) -- not a unique factoring

Proof by Construction

S={aaaaa}
Prove, forn>1, a"is found in S*

1/20/15

Proof by Construction

S={aaaaa}
Prove, forn>1, a"is found in S*

Proof:
n =2; an element of S, (aa)
n = 3; an element of S, (aaa)
n>3; a" = (a?)(a"?) = (aa)a"?

Positive Closure

. S+
* excludes the null string

Closure of a closure
(s
e

Theorem: S =§*
To prove, show S™ C S* and S*C S*

Closure of a closure
Part1.S"C S**

Each element of S* would have to be in S™* since

ok

S™"is the set made of all possible combinations
of S™ including each individual element of S*

Closure of a closure

Part2.5™C S*

Each element of S* is composed of factors of S*
Each element of S* is composed of factors of S

Implying

Each element of S™ is composed of factors of S

Therefore
Every element in S™ is also in S*

Homework for Friday

2.1-25,2.14,2.19

1/20/15

