Background; Languages

Models of Computation Lecture #1 Chapters 1 and 2

Background

- 1900, David Hilbert
- Wanted to know that every true result was provable and wanted an algorithm to reveal the proof

Hilbert

Background

- So the new question:
- What statements are provable?
 And how can we prove them?
- Many mathematicians joined this study...

Background

- 1931, Kurt Gödel
- There is no algorithm to provide proofs of all true statements in mathematics
 - Either there are true statements that can't be proved (or worse!)

http://25 marks humble com/humble half-96731/39/fam1 400 ing

Background

- Alonzo Church
 - Defined formal notion of "algorithm"
 - Answered Hilbert's question with a "no" on decidability

Background

- Stephen Kleene
 - Worked in the domain of computability and pioneered some concepts in mathematical logic

Background

- Emil Post
 - Developed Post's Machine model of computation independently of Turing

Background

- Alan Turing
 - Most celebrated mathematician in the computer theory domain

Background

- Alan Turing
 - Most celebrated mathematician in the computer theory domain

Background

- Noam Chomsky
 - Mathematical models for describing languages
 - Only one of these pioneers who is still living
 - Professor at MIT
 - political lightning rod

Formal Language

- Letters, words, "sentences"
- Rules of grammar

Formal Languages

- Letters of the "alphabet"
 - Se
 - Σ = { a b c d # }, for example
 - Special symbol, the empty string: Λ Λ is not considered part of the alphabet set

Formal Languages

• Words

Dictionary (for finite languages)

- Set
- $\Gamma = \{ \text{ bad cad aa\#dd c } \}, \text{ for example } \}$

Note that we call groups of 0 or more letters *strings* or *words* in the language

• Special symbol, the empty word: Λ Λ would appear in the dictionary if it was a valid word in the language under discussion; otherwise, it is not included

Formal Languages

- Languages can be infinite Dictionary won't work here
 - ex: English-sentences vs. English words
- · Grammar (rules) instead
 - All words that are allowable from the alphabet, can define an infinite (or, of course, finite) LANGUAGE
 - · Note that meaning is not implied; form only

Formal Language Oddities

- Language can be empty, containing NO words
 - Symbol for empty language: ϕ

Formal Language Oddities

- · Words don't have to make sense
 - not useful, but syntactically valid, English snippet

whirl monkey tan cannon kite

Formal Language Oddities

- Words don't have to make sense
 - not useful, but syntactically valid, Java snippet

```
while ( i > 0 ) { i = 1; }
```

Defining a Language

For Validation – or – Construction

```
\Sigma = \{ a \}
L_1 = \{ a aa aaa aaaa ... \}
```

For Validation – or – Construction

```
\Sigma = \{ a \}
L_1 = \{ a \text{ aa aaa aaaa ... } \}
= \{ a^n \text{ for } n = 1 \ 2 \ 3 \ 4 \ ... \}
```

Defining a Language

For Validation - or - Construction

```
\Sigma = \{a\}
L_1 = \{a \text{ aa aaa aaaa ...}\}
= \{a^n \text{ for } n = 1 \ 2 \ 3 \ 4 \ ...\}
= \{\text{ any grouping or one or more a's}\}
```

Defining a Language

For Validation – or – Construction

```
\Sigma = \{a\}
L_1 = \{a \text{ aa aaa aaaa ...}\}
= \{a^n \text{ for } n = 1 2 3 4 ...\}
= \{\text{ any grouping or one or more a's }\}
```

Notice that Λ is not in this language

Working with strings

Concatenation

Words placed side-by-side $aaa \subset L_1$ $aa \subset L_1$ Define $x \leftarrow aaa; y \leftarrow aa$ Concatenating: xy gives aaaaa (note: in this case, $xy \subset L_1$)

Working with strings

Question:

Are concatenated strings from the same language always elements of the language?

Working with strings

Question:

Are concatenated strings from the same language always elements of the language?

No. Proof by demonstration:

```
L_2 = \{ a aaa aaaaa ... \}
= \{ a^{odd} \}
```

Example

 $L_3 = \{$ any finite string of alphabet letters that does not start with 0 }

1. What is the smallest non-empty string *not* in L_3 ? 2. If $r, s \subset L_3$, then is $rs \subset L_3$?

Defining a Language

· Functions that operate on strings length(string) reverse(string)

Defining a Language

- Functions that operate on strings length(string) reverse(string)
- length(Λ)?

Defining a Language

• Define a PALINDROME over a given alphabet

```
\Sigma = \{ a b \}
PALINDROME =
    \{\Lambda \text{ a b aa bb aaa aba bab bbb ... }\}
```

Defining a Language

• Define a PALINDROME over a given alphabet

```
\Sigma = \{ a b \}
PALINDROME =
   \{\Lambda \text{ a b aa bb aaa aba bab bbb ... }\}
   { \Lambda and all strings x such that
              x = reverse(x) }
```

Defining a Language

• "Kleene closure" over an alphabet

```
\Sigma = \{a\}
\boldsymbol{\Sigma}^* = { \boldsymbol{\Lambda} a aa aaa aaaa ... }
```

• "Kleene closure" over an alphabet

```
\Sigma = \{ \text{ a } \} \Sigma^* = \{ \text{ } \Lambda \text{ a aa aaa aaaa ... } \}
```

Question:

$$\Sigma = \{ 0 1 2 \}$$

$$\Sigma^* = ?$$

Defining a Language

• Kleene closure over a set of words, S

```
S = \{ cat dog \}
S^* = \{ \Lambda cat dog catdog catcat dogdog dogcat ... \}
```

Defining a Language

• Kleene closure over a set of words, S

Defining a Language

• Kleene closure over a set of words, S

Note that even though the words chosen made sense in English, the words in the closure aren't necessarily grammatically valid in English.

Defining a Language

Other examples

Defining a Language

Other examples

 $\label{eq:Sample} \begin{aligned} & \textbf{S}^* = \{ \; \Lambda \; \text{plus all strings of a's and b's where a's} \\ & \text{are in even clumps} \; \} \end{aligned}$

Note that this is *not* a proof. Why not?

Other examples

S = { a ab} S* = ?

Defining a Language

Other examples

 $S = \{ a ab \}$

S* = ?

 $S^* = \{ \Lambda \text{ plus all strings of a's and b's that begin with an a and have no double b's } \}$

Again, intuitive but not a proof

Proving inclusion

Is a word in S*?

 Yes, if and only if it is factorable into elements of the base set S

Proving inclusion

Is a word in S*?

 Yes, if and only if it is factorable into elements of the base set S

Example: S = { a bb abba }
Is bbabbabb in S*?

Proving inclusion

Is a word in S*?

• Yes, if and only if it is factorable into elements of the base set S

Example: S = { a bb abba } Is bbabbabb in S*?

Yes: (bb)(abba)(bb)

Proving inclusion

Is a word in S*?

• Yes, if and only if it is factorable into elements of the base set S

Example: S = { a bb abba } Is bbabbabb in S*?

Yes: (bb)(abba)(bb)

Or: (bb)(a)(bb) -- not a unique factoring

Proof by Construction

 $S = \{ aa aaa \}$ Prove, for n > 1, a^n is found in S^*

Proof by Construction

 $S = \{ aa aaa \}$ Prove, for n > 1, a^n is found in S^*

Proof:

n = 2; an element of S, (aa) n = 3; an element of S, (aaa) n > 3; $a^n = (a^2)(a^{n-2}) = (aa)a^{n-2}$

Positive Closure

- S+
- · excludes the null string

Closure of a closure

(S*)* = S**

Theorem: S** = S*

To prove, show $S^{**} \subset S^*$ and $S^* \subset S^{**}$

Closure of a closure

Part 1. $S^* \subset S^{**}$

Each element of S* would have to be in S** since S** is the set made of all possible combinations of S* including each individual element of S*

Closure of a closure

Part 2. $S^{**} \subset S^*$

Each element of S** is composed of factors of S*
Each element of S* is composed of factors of S
Implying

Each element of S** is composed of factors of S Therefore

Every element in S** is also in S*

Homework for Friday

2.1 - 2.5, 2.14, 2.19