
CPS331 Lecture: Genetic Algorithms
last revised 3/25/10 

Objectives:

1. To explain the basic ideas of GA/GP: evolution of a population; fitness, 
crossover, mutation

Materials: 
1. Genetic NIM learner demo
2. Projectable of wall-follower robot problem and a solution
3. Projectable of Nilsson figures 4.2 .. 4.9
4. Mitchell pp. 17-18 and 19-21 to read
5. Projectable of payoff matrix - p. 18
6. Floreano §1.12.1 to read
7. Projectable of bottom two sections of Floreano figure 1.16

I. Introduction

A. Genetic algorithms represent an attempt to imitate the architecture of 
intelligence present in nature - in this case, the “intelligence” exhibited by 
a species (not individuals) as it evolves to better fit its niche in the 
ecosystem.   That is, genetic algorithms draw their inspiration from 
biological evolution. 
Some key concepts of biological evolution.

1. The notion of a population, which is a collection of inter-breeding 
individuals.  

2. Diversity within a population.  Though the individuals in a population 
are similar, they are not identical.  Some are more “fit“ than others.  

3. Selection.  Evolution does not operate to improve individuals; rather, it 
operates to improve populations by increasing the proportion of 
individuals exhibiting more fit characteristics over time.  This happens 
because more fit individuals are more likely to reproduce, either 
because of being better able to survive, or because of other 
characteristics that increase their likelihood of reproduction (e.g. the 
fancy plumage of male birds in breeding season).

4. Heredity.  An individual’s physical characteristic are encoded in its 
DNA in the form of genes.  (Humans, for example, have 20,000-
25,000 genes).  An individual’s genes are copied from the genes of its 
parents. though in the case of sexual reproduction, half the genes of an 
offspring come from its father and half from its mother.  
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Because more fit individuals are more likely to reproduce, the 
proportion of their genes in the population tends to increase over time. 

5. Mutation.  Occasionally, a gene will be slightly altered by random 
processes as it is transmitted from parent to child,  Such mutations are 
often harmful, resulting in a child that is less fit than its parents; but 
sometimes a mutation is beneficial, makes the child more fit, and is 
passed on from that child to its offspring.

Mutation plays an important role in biological evolution, because 
without it evolution can only rearrange existing genes, but cannot 
discover new ones.

B. For a problem to be a good candidate for using a genetic algorithm or 
genetic programming, several things need to be true.

1. The problem can't be “all or nothing” - that is, it must be meaningful 
to talk about “solutions” which are less than perfect, just as there can 
be diversity of fitness among individuals in a biological population.

a) This does not preclude the possibility of there being a perfect 
solution - but it is to say that a solution that is less than perfect must 
still be a viable solution.

b) Moreover, given a set of proposed solutions, there must be some 
straightforward way to evaluate their relative fitness, so that it is 
meaningful to talk about “better” solutions.

2. It must be possible to break a solution up into “genes” - each of which 
represents part of the solution - which are, at least to some extent, 
independent of each other.

a) Frequently, genetic algorithms combine two “parent” individuals to 
produce an “offspring” individual by using crossover .  Crossover 
consists of taking some genes from one “parent” and the remaining 
genes from the other “parent”.  (In fact, often the crossover of two 
parents is used to produce two offspring, with the second offspring 
having the reverse pairing of genes.)

b) Frequently, genetic algorithms do mutation by randomly selecting a 
gene of an offspring and changing is value to some other random - 
though legal - value.
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3. Some examples of problems which lend themselves to this approach.

a) The checkers program example discussed by Fogel. 

(1) Checkers can be played by individuals at a wide variety of skill 
levels.

(2) The obvious measure of fitness is how well the program plays 
against players of various ability levels.

(3) A major factor in how well a game player program performs is 
its static evaluation function.  This, in turn, can be decomposed 
into genes representing the weight assigned to various features 
being considered, or - as Fogel did - weights assigned to various 
connections in a neural network that does the static evaluation.  
(We will discuss neural networks in the next lecture.) 

b) Control problems (like teaching a robot to walk).

Several years ago, we had a speaker here who discussed work he 
was doing on using genetic programming to evolve a program to 
enable a hexapod robot to walk (actually a quite non-trivial task if 
the terrain is uneven)

(1) A perfect solution would keep the system behaving in the 
desired way endlessly, but a solution that keeps it behaving the 
desired way for a long time is still useful.  (Even we sometimes 
fall down while walking!). 

(2) Solutions can be compared based on how long they keep the 
system  behaving in the desired way before failing.

(3) The problem can be decomposed into “genes” representing the 
relationship between various percepts and actions.

c) Optimization problems like travelling salesman, as discussed by 
Fogel

(1) For large problems, we generally have to accept a good solution,  
even if it is not possible to find a provably optimal one.  (Indeed, 
what we think to be a good solution may turn out to be the best 
possible, even if we can’t prove that it is!)

(2) But solutions can be compared on the basis of total cost.
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(3) The problem can be decomposed into “genes” representing the 
relative order of visiting cities.

C. Genetic algorithms/programming are an approach to problem solving in 
which a population of potential solutions is evolved to produce 
increasingly better solutions to the problem.  

1. Genetic algorithms/programming, though inspired by biological 
evolution, differ from it in one important respect - the existence of a 
goal (other than simple survival) by which fitness can be measured. 
When evolution has been successful, the most fit individual in the 
population is taken as being the solution to the problem

2. There are two related concepts: genetic algorithms and genetic 
programming.

a) Sometimes, the goal is to find a solution to a problem, with fitness 
being determined by measuring some quality of the solution (e.g. 
travelling salesman)

b) At other times, the goal is to to evolve a computer program that 
effectively solves a given problem, in which case, the approach is  
called genetic programming, and fitness is measured by measuring 
the quality of the resultant solution  (e.g. checkers playing or 
controlling a hexapod robot). 
We will look at examples of both approaches.

D. A genetic algorithm can be thought of as a form of reinforcement 
learning, best suited to problems where a solution is not known ahead of 
time and cannot be found by more traditional means. 

1. The examples we will use are not really a good example of a place 
where Genetic Algorithms/Programming is useful, since the tasks can 
be programmed directly in a straight-forward way.  

2. But they are good examples for understanding the process itself.  

E. This field is fairly new. Some indication of how new it is can be seen by 
what I have discovered when I first looked for books on it..

1. In 1999, there was no subject heading for “Genetic Algorithms” or  
“Genetic  Programming” in the online card catalog from NOBLE.
(Of course, there is now for both)
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2. In 1999, we had one book on the subject - An Introduction to Genetic
Algorithms  by Melanie Mitchell.  However, it was housed in the 
Genetics section under Biology in the library! (Based on the LC 
classification in the book itself - indicating that the LC classification 
system itself had not caught up with this new field.).
(Today., the LC classification system has caught up)

II. Structure of a Genetic Algorithm

A. A GA proceeds by evolving a population of individuals, each of which 
represents a different possible solution to the problem at hand.  (In the  
case of GP, each individual represents a possible program.)

1. Possible solutions to a given problem are encoded as a sequence of   
“genes”, each of which may be (depending on the problem)  a value 
from a discrete set of possible values, or a real number.

2. The initial population is constructed by choosing values for each gene 
at random. It is therefore unlikely that any individual in the population 
constitutes a good solution to the problem.

3. Over time, the population evolves to consist of increasingly fit 
individuals, until an individual representing a satisfactory solution is 
found.

B. We will use a very simple variant of the game of NIM as an example.  

1. This is not a good example of a problem where a genetic approach is 
really useful (since we know an algorithm for it), but it does provide a 
simple illustration of how genetic programming can be applied.

2. (Explain the one-pile variant of the game, then play a few demo games)

3. (Explain, then justify, the “Nim Algorithm” for this case)

4. We can represent a strategy for playing this variant of NIM as a vector 
of moves corresponding to each possible state of the pile - each of 
which we will consider to be a gene.  
For example, with a pile size limited to 10 and moves limited to taking 
3 items, there would be 10 genes, each a number in the range 1 .. 3 
(except that the first gene would have to be 1, and the second would 
have to be either 1 or 2 to comply with the rules of the game.)
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a) In this case, one possible solution might be
1 1 3 2 2 2 1 3 1 3
This says “if the pile contains 1 item, take 1; if it contains 2, take 1; 
if it contains 3, take 3; if it contains 4 take 2 ...”

b)  Obviously, the above is far from a perfect solution.  However, it is 
still meaningful to call it a solution.
Note that it will win in some cases - even if playing against an 
algorithmic player - e.g. game starts out with 8 items; opponent 
takes 2 (there is no algorithmically correct choide) leaving 6; 
program takes 2 leaving 4; opponent takes 1 leaving 3; program 
takes 3 and wins.

c) It is, of course, easily possible to create a random population of 
solutions by randomly choosing values in the range 1 .. maximum 
move for each gene.  (Except that gene 1 must be a 1, gene 2 must 
be a 1 or a 2 ...)

C. A fitness function measures the extent to which each individual in the 
population represents a good solution to the problem.  Initially, given 
random individuals, the fitness function for each individual will be  small; 
but there will be some that are better than others, and the GA will attempt 
to evolve their good points into the next generation of possible solutions.

1. That is, the critic in the learning system evaluates the overall fitness of 
each individual.

2. For the NIM Example, solutions can be compared by having each play  
against the pool of others and measuring fitness as percentage of wins.  
For the initial, random population, we would expect the average fitness 
of an individual to be 50%.  However, it is likely that some individuals 
will be more fit than this, while others will be less.  

a) For the example we will use for demonstration, it turns out that, 
with an initial population of 500, the most fit individual will have a 
fitness of over 90%, while the least fit will be under 10%.  (Of 
course, since fitness is measured relative to other individuals in the 
population, even an individual that scores very high may not really 
be very good!)

b) Note that the critic does not attempt to evaluate fitness in terms of 
the correctness of individual moves, but in terms of overall 
performance.  (To make the problem interesting, we have to assume 
we don’t actually know what the correct move is!)
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c) DEMO: genetic NIM - show initial random population., noting 
fitness evaluation for each.

D. Evolution of the population consists of a series of generations. 

1. In each generation, the individuals in the population are tested and  the 
most fit are allowed to reproduce.  

2. Typically, reproduction is done by crossing two fit individuals, in  the 
hope that their offspring will inherit the good features of each  and thus 
be even more fit (though, of course, some inherit bad features from 
each parent and end up less fit.)  

3. A small amount of random mutation is also often allowed

4. Each generation may consist of a completely new  collection of 
individuals created by crossover and/or mutation from the individuals 
in the previous generation - i.e. individuals “live” for only  one 
generation.  However, it is also possible to allow a subset of the most fit 
individuals in one generation to survive unchanged to the next.

E. Crossing is handled as follows:

1. If each individual has the same number of genes arranged in some kind 
of sequence - we can pick a crossover point in the sequence at random, 
generating two offspring  - e.g.
Individual A:               A1 A2 A3 A4 A5 A6 A7 A8
Individual B:               B1 B2 B3 B4 B5 B6 B7 B8
Offspring if we cross between genes 2 and 3: 
A1 A2 B3 B4 B5 B6 B7 B8
B1 B2 A3 A4 A5 A6 A7 A8
(We may choose to keep both offspring, or just one.)

2. NIM Example
a) Suppose we want to cross the solutions

1 1 3 2 2 2 1 3 1 3   and  1 2 3 3 2 1 1 2 3 2
just after the fifth gene
The “children” of this cross are 
1 1 3 2 2 1 1 2 3 2  and  1 2 3 3 2 2 1 3 1 3

b) Given that we know the NIM algorithm, comparing the expected 
fitness of the “children” to that of the parents is instructive
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(1) In the case of each of the parents, half of the genes for which we 
know an algorithmically corrrect value are correct
1 1 3 2 2 2 1 3 1 3 1 2 3 3 2 1 1 2 3 2
R W R - W R W - R W R R R - W W W - W R
4/(4+4) = 0.5 4/(4+4) = 0.5

(2) In the case of the children, one is better and one is worse. 
1 1 3 2 2 1 1 2 3 2 1 2 3 3 2 2 1 3 1 3
R W R - W W W - W R R R R - W R W - R W
3/(3+5) = 0.375 5/(5+3) = 0.625

(3) Of course, in a real problem we wouldn’t be able to make this 
sort of comparison!

F. Mutation is done by randomly altering an individual gene.  This may result 
in a solution that is less fit, more fit, or having the same fitness as the 
original.

1. Mutation is often important, because it may be that no individual in the 
initial population contains the “correct” value of some gene, or 
perhaps the “correct” value of a gene is lost early due to 
incompatibility with some other genes that are selected away later.

2.  Of course, mutation can also be harmful, causing a “correct” value 
that was discovered by selection to be lost.

3. Mutation is usually done with a fairly small probability - e.g. (say) 1% 
of the individuals in the new generation may undergo  mutation.

4. NIM Example: 

a) Suppose we mutate 1 1 3 2 2 2 1 3 1 3 at the third gene.  Any 
change we make will produce a less fit individual, since that gene 
was “right”

b) OTOH, if we mutate this individual at the fifth gene, a change to 1 
will likely produce a more fit individual, while a change to 3 will 
likely produce no fitness change.
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G. Everything is done randomly, often with probabilities determined by 
fitness:

1. We have already noted that the initial population is generated 
randomly.

2. Some implementations may allow some individuals to survive 
unchanged to the next generation.  In this case, the individuals that 
survive can be selected randomly, with probability based on fitness - i.e. 
the more fit individuals have a higher probability of survival.  (In  some 
implementations, the most fit individuals may be guaranteed the right 
to survive unconditionally).

3. The individuals that reproduce may be selected randomly, with a 
probability based on fitness - i.e. the more fit individuals are given a 
higher probability of selection and the less fit ones a lower probability.  
(In some implementations, the most fit  individuals may be guaranteed 
an opportunity to reproduce.)

4. The crossover point used when crossing parents is chosen randomly.

5. Whether or not a given gene is mutated is determined randomly with a 
predetermined - usually quite low - probability - typically independent 
of fitness - and if it is mutated, the change is determined  randomly.

H. Depending on the nature of the problem, repetition of the process of 
creating new generations may continue until an individual is found that is 
adjudged to be perfectly fit, or until fitness stops improving, or after a 
predetermined number of generations.

I. Simulated evolution of this sort differs from biological evolution in several 
ways:

1. We have already noted one - the notion of an explict goal

2. Another difference is the use of discrete generations.

3. A third difference may be the possibility that a very fit individual might 
survive for many generations.

J. Demonstrate NIM Example

1. Observe initial population.  Note how much of the game the best 
individual has learned (first place where it has a “wrong” value) 
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2. Observe population as evolution with population 500 is done through 
100 generations.  Note how much of the game has been learned now..

3. Demonstrate games at this point

4. Learn for another 100 generations and look at learner.

III. A Genetic Programming Example

A. A book that we have used in a previous version of the course includes a 
nice  example of genetic programming, where a computer program to 
solve a problem is evolved by genetic means.

B. The problem is to evolve a program for a robot such that, when it is 
placed in an enclosed room, it moves to a wall and follows the wall around 
the room.
E.g. Given a room like this: (PROJECT)

We want the robot to do something like this (though we don't care how it 
gets to the wall initially or whether it moves clockwise or 
counterclockwise). (PROJECT)

R
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C. The primitives from which the program is to be constructed are the 
following.

1. Actions: north, east, south, west - move one block in the specified 
direction (if possible - otherwise do nothing)

2. Tests: PROJECT NILSSON FIGURE 4.2

a) n, e, s, w - return true (1) if movement in the  specified direction is 
blocked by a wall

b) ne, se, sw, nw - return true (1) if there is a wall in the specified 
direction - including possibly a corner that doesn't actually block 
one of the robot's moves - e.g. ne would be true in all the following 
cases:

R R R

3. Boolean connectives:

AND (X, Y): if X == 0 then 0 else Y
OR (X, Y): if X == 1 then 1 else Y
NOT (X): if X then 0 else 1
IF (X, Y, Z): if X then Y else Z

4. Example of a program that would solve the problem: 

NILSSON FIGURE 4.3 - PROJECT

Trace through how this program works in the example problem

D. Applying Genetic Programming to this problem

1. A population of random programs is created

2. For each generation, the fitness of each program in the current 
population is evaluated.  Fitness is measured as “number of squares 
next to the the wall that the robot visits in some number of moves”

a) In the particular case Nilsson used, the room had 32 squares next to 
the wall.
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b) Fitness was measured as the number of these squares the robot  
visited in 60 moves from ten different random starting positions. [ 
A fitness score of 320 would be perfection].

3. Crossover is handled by switching subtrees between parents

NILSSON FIGURE 4.4 - PROJECT

4. Mutation could be handled by selecting a random subtree and replacing 
it with a new randomly-grown subtree.

E. Experimental results reported by Nilsson

1. The most fit individual in Generation 0 

NILSSON FIGURE 4.5 - PROJECT

2. The most fit individual in Generation 2

NILSSON FIGURE 4.6 - PROJECT

3. The most fit individual in Generation 6  

NILSSON FIGURE 4.7 - PROJECT

4. The most fit individual in Generation 10 - a program that is actually a 
100% solution.

NILSSON FIGURE 4.8 - PROJECT

5. Evolution of fitness over the generations 

NILSSON FIGURE 4.9 - PROJECT
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IV. Another Genetic Algorithm Example (omit if insufficient time)

A. Melanie Mitchell's book - cited earlier - discussed some experiments  with 
using GA's to evolve a strategy for a game known as “the prisoner's 
dilemma”.

1. READ Mitchell pp 17-18; PROJECT payoff matrix (p 18)

2. Mitchell's book discusses experiments done by Axelrod on this game.

B. Any one game can be categorized in one of 4 ways (CC - both players 
cooperated; CD A cooperated and B defected; DC; DD)

1. Because the programs in the tournament based their strategy on the 
last three games played with the same player, each with a move by 
each  player, and with each move having two possible values, a 
strategy must be  able to cope with 64 possible histories:
3 games/history
2 player moves/game
2 choices/player move

2. For each history, it must make a choice to either defect or cooperate 
on the next game.  Thus, a strategy may be encoded as a 64 genes, 
each of  which is either a C or a D, each representing the choice called 
for by  the strategy for one possible history - e.g.
choice to choice to .... choice to
make if all 3 make if first make if all 3
games were two games were games were
CC CC and last  DD

was CD

3. For example, TIT-FOR-TAT for Player A would be encoded as
CDCDCDCDCD ... CD (i.e. A always does what Player B did on the 
last game)

C. Results: READ Mitchell page 19 bottom - 21 top

V. A genetic solution to a “real” problem

A. The Floreano book develops an example where a genetic strategy was 
used to actually design an antenna for use in a space probe.

B. READ Floreano section 1.12.1 (pp. 40-42);  PROJECT bottom two parts 
of figure 1.16
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