
CPS331 Lecture: Genetic Algorithms
last revised 3/25/10

Objectives:

1. To explain the basic ideas of GA/GP: evolution of a population; fitness,
crossover, mutation

Materials:
1. Genetic NIM learner demo
2. Projectable of wall-follower robot problem and a solution
3. Projectable of Nilsson figures 4.2 .. 4.9
4. Mitchell pp. 17-18 and 19-21 to read
5. Projectable of payoff matrix - p. 18
6. Floreano §1.12.1 to read
7. Projectable of bottom two sections of Floreano figure 1.16

I. Introduction

A. Genetic algorithms represent an attempt to imitate the architecture of
intelligence present in nature - in this case, the “intelligence” exhibited by
a species (not individuals) as it evolves to better fit its niche in the
ecosystem. That is, genetic algorithms draw their inspiration from
biological evolution.
Some key concepts of biological evolution.

1. The notion of a population, which is a collection of inter-breeding
individuals.

2. Diversity within a population. Though the individuals in a population
are similar, they are not identical. Some are more “fit“ than others.

3. Selection. Evolution does not operate to improve individuals; rather, it
operates to improve populations by increasing the proportion of
individuals exhibiting more fit characteristics over time. This happens
because more fit individuals are more likely to reproduce, either
because of being better able to survive, or because of other
characteristics that increase their likelihood of reproduction (e.g. the
fancy plumage of male birds in breeding season).

4. Heredity. An individual’s physical characteristic are encoded in its
DNA in the form of genes. (Humans, for example, have 20,000-
25,000 genes). An individual’s genes are copied from the genes of its
parents. though in the case of sexual reproduction, half the genes of an
offspring come from its father and half from its mother.

1

Because more fit individuals are more likely to reproduce, the
proportion of their genes in the population tends to increase over time.

5. Mutation. Occasionally, a gene will be slightly altered by random
processes as it is transmitted from parent to child, Such mutations are
often harmful, resulting in a child that is less fit than its parents; but
sometimes a mutation is beneficial, makes the child more fit, and is
passed on from that child to its offspring.

Mutation plays an important role in biological evolution, because
without it evolution can only rearrange existing genes, but cannot
discover new ones.

B. For a problem to be a good candidate for using a genetic algorithm or
genetic programming, several things need to be true.

1. The problem can't be “all or nothing” - that is, it must be meaningful
to talk about “solutions” which are less than perfect, just as there can
be diversity of fitness among individuals in a biological population.

a) This does not preclude the possibility of there being a perfect
solution - but it is to say that a solution that is less than perfect must
still be a viable solution.

b) Moreover, given a set of proposed solutions, there must be some
straightforward way to evaluate their relative fitness, so that it is
meaningful to talk about “better” solutions.

2. It must be possible to break a solution up into “genes” - each of which
represents part of the solution - which are, at least to some extent,
independent of each other.

a) Frequently, genetic algorithms combine two “parent” individuals to
produce an “offspring” individual by using crossover . Crossover
consists of taking some genes from one “parent” and the remaining
genes from the other “parent”. (In fact, often the crossover of two
parents is used to produce two offspring, with the second offspring
having the reverse pairing of genes.)

b) Frequently, genetic algorithms do mutation by randomly selecting a
gene of an offspring and changing is value to some other random -
though legal - value.

2

3. Some examples of problems which lend themselves to this approach.

a) The checkers program example discussed by Fogel.

(1) Checkers can be played by individuals at a wide variety of skill
levels.

(2) The obvious measure of fitness is how well the program plays
against players of various ability levels.

(3) A major factor in how well a game player program performs is
its static evaluation function. This, in turn, can be decomposed
into genes representing the weight assigned to various features
being considered, or - as Fogel did - weights assigned to various
connections in a neural network that does the static evaluation.
(We will discuss neural networks in the next lecture.)

b) Control problems (like teaching a robot to walk).

Several years ago, we had a speaker here who discussed work he
was doing on using genetic programming to evolve a program to
enable a hexapod robot to walk (actually a quite non-trivial task if
the terrain is uneven)

(1) A perfect solution would keep the system behaving in the
desired way endlessly, but a solution that keeps it behaving the
desired way for a long time is still useful. (Even we sometimes
fall down while walking!).

(2) Solutions can be compared based on how long they keep the
system behaving in the desired way before failing.

(3) The problem can be decomposed into “genes” representing the
relationship between various percepts and actions.

c) Optimization problems like travelling salesman, as discussed by
Fogel

(1) For large problems, we generally have to accept a good solution,
even if it is not possible to find a provably optimal one. (Indeed,
what we think to be a good solution may turn out to be the best
possible, even if we can’t prove that it is!)

(2) But solutions can be compared on the basis of total cost.

3

(3) The problem can be decomposed into “genes” representing the
relative order of visiting cities.

C. Genetic algorithms/programming are an approach to problem solving in
which a population of potential solutions is evolved to produce
increasingly better solutions to the problem.

1. Genetic algorithms/programming, though inspired by biological
evolution, differ from it in one important respect - the existence of a
goal (other than simple survival) by which fitness can be measured.
When evolution has been successful, the most fit individual in the
population is taken as being the solution to the problem

2. There are two related concepts: genetic algorithms and genetic
programming.

a) Sometimes, the goal is to find a solution to a problem, with fitness
being determined by measuring some quality of the solution (e.g.
travelling salesman)

b) At other times, the goal is to to evolve a computer program that
effectively solves a given problem, in which case, the approach is
called genetic programming, and fitness is measured by measuring
the quality of the resultant solution (e.g. checkers playing or
controlling a hexapod robot).
We will look at examples of both approaches.

D. A genetic algorithm can be thought of as a form of reinforcement
learning, best suited to problems where a solution is not known ahead of
time and cannot be found by more traditional means.

1. The examples we will use are not really a good example of a place
where Genetic Algorithms/Programming is useful, since the tasks can
be programmed directly in a straight-forward way.

2. But they are good examples for understanding the process itself.

E. This field is fairly new. Some indication of how new it is can be seen by
what I have discovered when I first looked for books on it..

1. In 1999, there was no subject heading for “Genetic Algorithms” or
“Genetic Programming” in the online card catalog from NOBLE.
(Of course, there is now for both)

4

2. In 1999, we had one book on the subject - An Introduction to Genetic
Algorithms by Melanie Mitchell. However, it was housed in the
Genetics section under Biology in the library! (Based on the LC
classification in the book itself - indicating that the LC classification
system itself had not caught up with this new field.).
(Today., the LC classification system has caught up)

II. Structure of a Genetic Algorithm

A. A GA proceeds by evolving a population of individuals, each of which
represents a different possible solution to the problem at hand. (In the
case of GP, each individual represents a possible program.)

1. Possible solutions to a given problem are encoded as a sequence of
“genes”, each of which may be (depending on the problem) a value
from a discrete set of possible values, or a real number.

2. The initial population is constructed by choosing values for each gene
at random. It is therefore unlikely that any individual in the population
constitutes a good solution to the problem.

3. Over time, the population evolves to consist of increasingly fit
individuals, until an individual representing a satisfactory solution is
found.

B. We will use a very simple variant of the game of NIM as an example.

1. This is not a good example of a problem where a genetic approach is
really useful (since we know an algorithm for it), but it does provide a
simple illustration of how genetic programming can be applied.

2. (Explain the one-pile variant of the game, then play a few demo games)

3. (Explain, then justify, the “Nim Algorithm” for this case)

4. We can represent a strategy for playing this variant of NIM as a vector
of moves corresponding to each possible state of the pile - each of
which we will consider to be a gene.
For example, with a pile size limited to 10 and moves limited to taking
3 items, there would be 10 genes, each a number in the range 1 .. 3
(except that the first gene would have to be 1, and the second would
have to be either 1 or 2 to comply with the rules of the game.)

5

a) In this case, one possible solution might be
1 1 3 2 2 2 1 3 1 3
This says “if the pile contains 1 item, take 1; if it contains 2, take 1;
if it contains 3, take 3; if it contains 4 take 2 ...”

b) Obviously, the above is far from a perfect solution. However, it is
still meaningful to call it a solution.
Note that it will win in some cases - even if playing against an
algorithmic player - e.g. game starts out with 8 items; opponent
takes 2 (there is no algorithmically correct choide) leaving 6;
program takes 2 leaving 4; opponent takes 1 leaving 3; program
takes 3 and wins.

c) It is, of course, easily possible to create a random population of
solutions by randomly choosing values in the range 1 .. maximum
move for each gene. (Except that gene 1 must be a 1, gene 2 must
be a 1 or a 2 ...)

C. A fitness function measures the extent to which each individual in the
population represents a good solution to the problem. Initially, given
random individuals, the fitness function for each individual will be small;
but there will be some that are better than others, and the GA will attempt
to evolve their good points into the next generation of possible solutions.

1. That is, the critic in the learning system evaluates the overall fitness of
each individual.

2. For the NIM Example, solutions can be compared by having each play
against the pool of others and measuring fitness as percentage of wins.
For the initial, random population, we would expect the average fitness
of an individual to be 50%. However, it is likely that some individuals
will be more fit than this, while others will be less.

a) For the example we will use for demonstration, it turns out that,
with an initial population of 500, the most fit individual will have a
fitness of over 90%, while the least fit will be under 10%. (Of
course, since fitness is measured relative to other individuals in the
population, even an individual that scores very high may not really
be very good!)

b) Note that the critic does not attempt to evaluate fitness in terms of
the correctness of individual moves, but in terms of overall
performance. (To make the problem interesting, we have to assume
we don’t actually know what the correct move is!)

6

c) DEMO: genetic NIM - show initial random population., noting
fitness evaluation for each.

D. Evolution of the population consists of a series of generations.

1. In each generation, the individuals in the population are tested and the
most fit are allowed to reproduce.

2. Typically, reproduction is done by crossing two fit individuals, in the
hope that their offspring will inherit the good features of each and thus
be even more fit (though, of course, some inherit bad features from
each parent and end up less fit.)

3. A small amount of random mutation is also often allowed

4. Each generation may consist of a completely new collection of
individuals created by crossover and/or mutation from the individuals
in the previous generation - i.e. individuals “live” for only one
generation. However, it is also possible to allow a subset of the most fit
individuals in one generation to survive unchanged to the next.

E. Crossing is handled as follows:

1. If each individual has the same number of genes arranged in some kind
of sequence - we can pick a crossover point in the sequence at random,
generating two offspring - e.g.
Individual A: A1 A2 A3 A4 A5 A6 A7 A8
Individual B: B1 B2 B3 B4 B5 B6 B7 B8
Offspring if we cross between genes 2 and 3:
A1 A2 B3 B4 B5 B6 B7 B8
B1 B2 A3 A4 A5 A6 A7 A8
(We may choose to keep both offspring, or just one.)

2. NIM Example
a) Suppose we want to cross the solutions

1 1 3 2 2 2 1 3 1 3 and 1 2 3 3 2 1 1 2 3 2
just after the fifth gene
The “children” of this cross are
1 1 3 2 2 1 1 2 3 2 and 1 2 3 3 2 2 1 3 1 3

b) Given that we know the NIM algorithm, comparing the expected
fitness of the “children” to that of the parents is instructive

7

(1) In the case of each of the parents, half of the genes for which we
know an algorithmically corrrect value are correct
1 1 3 2 2 2 1 3 1 3 1 2 3 3 2 1 1 2 3 2
R W R - W R W - R W R R R - W W W - W R
4/(4+4) = 0.5 4/(4+4) = 0.5

(2) In the case of the children, one is better and one is worse.
1 1 3 2 2 1 1 2 3 2 1 2 3 3 2 2 1 3 1 3
R W R - W W W - W R R R R - W R W - R W
3/(3+5) = 0.375 5/(5+3) = 0.625

(3) Of course, in a real problem we wouldn’t be able to make this
sort of comparison!

F. Mutation is done by randomly altering an individual gene. This may result
in a solution that is less fit, more fit, or having the same fitness as the
original.

1. Mutation is often important, because it may be that no individual in the
initial population contains the “correct” value of some gene, or
perhaps the “correct” value of a gene is lost early due to
incompatibility with some other genes that are selected away later.

2. Of course, mutation can also be harmful, causing a “correct” value
that was discovered by selection to be lost.

3. Mutation is usually done with a fairly small probability - e.g. (say) 1%
of the individuals in the new generation may undergo mutation.

4. NIM Example:

a) Suppose we mutate 1 1 3 2 2 2 1 3 1 3 at the third gene. Any
change we make will produce a less fit individual, since that gene
was “right”

b) OTOH, if we mutate this individual at the fifth gene, a change to 1
will likely produce a more fit individual, while a change to 3 will
likely produce no fitness change.

8

G. Everything is done randomly, often with probabilities determined by
fitness:

1. We have already noted that the initial population is generated
randomly.

2. Some implementations may allow some individuals to survive
unchanged to the next generation. In this case, the individuals that
survive can be selected randomly, with probability based on fitness - i.e.
the more fit individuals have a higher probability of survival. (In some
implementations, the most fit individuals may be guaranteed the right
to survive unconditionally).

3. The individuals that reproduce may be selected randomly, with a
probability based on fitness - i.e. the more fit individuals are given a
higher probability of selection and the less fit ones a lower probability.
(In some implementations, the most fit individuals may be guaranteed
an opportunity to reproduce.)

4. The crossover point used when crossing parents is chosen randomly.

5. Whether or not a given gene is mutated is determined randomly with a
predetermined - usually quite low - probability - typically independent
of fitness - and if it is mutated, the change is determined randomly.

H. Depending on the nature of the problem, repetition of the process of
creating new generations may continue until an individual is found that is
adjudged to be perfectly fit, or until fitness stops improving, or after a
predetermined number of generations.

I. Simulated evolution of this sort differs from biological evolution in several
ways:

1. We have already noted one - the notion of an explict goal

2. Another difference is the use of discrete generations.

3. A third difference may be the possibility that a very fit individual might
survive for many generations.

J. Demonstrate NIM Example

1. Observe initial population. Note how much of the game the best
individual has learned (first place where it has a “wrong” value)

9

2. Observe population as evolution with population 500 is done through
100 generations. Note how much of the game has been learned now..

3. Demonstrate games at this point

4. Learn for another 100 generations and look at learner.

III. A Genetic Programming Example

A. A book that we have used in a previous version of the course includes a
nice example of genetic programming, where a computer program to
solve a problem is evolved by genetic means.

B. The problem is to evolve a program for a robot such that, when it is
placed in an enclosed room, it moves to a wall and follows the wall around
the room.
E.g. Given a room like this: (PROJECT)

We want the robot to do something like this (though we don't care how it
gets to the wall initially or whether it moves clockwise or
counterclockwise). (PROJECT)

R

10

C. The primitives from which the program is to be constructed are the
following.

1. Actions: north, east, south, west - move one block in the specified
direction (if possible - otherwise do nothing)

2. Tests: PROJECT NILSSON FIGURE 4.2

a) n, e, s, w - return true (1) if movement in the specified direction is
blocked by a wall

b) ne, se, sw, nw - return true (1) if there is a wall in the specified
direction - including possibly a corner that doesn't actually block
one of the robot's moves - e.g. ne would be true in all the following
cases:

R R R

3. Boolean connectives:

AND (X, Y): if X == 0 then 0 else Y
OR (X, Y): if X == 1 then 1 else Y
NOT (X): if X then 0 else 1
IF (X, Y, Z): if X then Y else Z

4. Example of a program that would solve the problem:

NILSSON FIGURE 4.3 - PROJECT

Trace through how this program works in the example problem

D. Applying Genetic Programming to this problem

1. A population of random programs is created

2. For each generation, the fitness of each program in the current
population is evaluated. Fitness is measured as “number of squares
next to the the wall that the robot visits in some number of moves”

a) In the particular case Nilsson used, the room had 32 squares next to
the wall.

11

b) Fitness was measured as the number of these squares the robot
visited in 60 moves from ten different random starting positions. [
A fitness score of 320 would be perfection].

3. Crossover is handled by switching subtrees between parents

NILSSON FIGURE 4.4 - PROJECT

4. Mutation could be handled by selecting a random subtree and replacing
it with a new randomly-grown subtree.

E. Experimental results reported by Nilsson

1. The most fit individual in Generation 0

NILSSON FIGURE 4.5 - PROJECT

2. The most fit individual in Generation 2

NILSSON FIGURE 4.6 - PROJECT

3. The most fit individual in Generation 6

NILSSON FIGURE 4.7 - PROJECT

4. The most fit individual in Generation 10 - a program that is actually a
100% solution.

NILSSON FIGURE 4.8 - PROJECT

5. Evolution of fitness over the generations

NILSSON FIGURE 4.9 - PROJECT

12

IV. Another Genetic Algorithm Example (omit if insufficient time)

A. Melanie Mitchell's book - cited earlier - discussed some experiments with
using GA's to evolve a strategy for a game known as “the prisoner's
dilemma”.

1. READ Mitchell pp 17-18; PROJECT payoff matrix (p 18)

2. Mitchell's book discusses experiments done by Axelrod on this game.

B. Any one game can be categorized in one of 4 ways (CC - both players
cooperated; CD A cooperated and B defected; DC; DD)

1. Because the programs in the tournament based their strategy on the
last three games played with the same player, each with a move by
each player, and with each move having two possible values, a
strategy must be able to cope with 64 possible histories:
3 games/history
2 player moves/game
2 choices/player move

2. For each history, it must make a choice to either defect or cooperate
on the next game. Thus, a strategy may be encoded as a 64 genes,
each of which is either a C or a D, each representing the choice called
for by the strategy for one possible history - e.g.
choice to choice to choice to
make if all 3 make if first make if all 3
games were two games were games were
CC CC and last DD

was CD

3. For example, TIT-FOR-TAT for Player A would be encoded as
CDCDCDCDCD ... CD (i.e. A always does what Player B did on the
last game)

C. Results: READ Mitchell page 19 bottom - 21 top

V. A genetic solution to a “real” problem

A. The Floreano book develops an example where a genetic strategy was
used to actually design an antenna for use in a space probe.

B. READ Floreano section 1.12.1 (pp. 40-42); PROJECT bottom two parts
of figure 1.16

13

