
CPS331 Lecture: The Predicate Calculus	
 	
 last revised January 26, 2012

Objectives:

1. To introduce propositional calculus
2. To introduce the first order predicate calculus, including the syntax of WFFs
3. To introduce formalization of knowledge using predicate calculus
4. To introduce resolution-refutation theorem proving, including unification and

conversion to clause form

Materials:

1. Equivalence of WFF's Handout
2. Projectable of Cawsey Figure 2.2 (semantic net used in KR lecture)
3. Demo interactive_isa.pro
4. Resolution Proof that Jesse is an ancestor of Jesus

I. Introduction

A. One notation system that is widely used in symbolic AI systems is the
notation of formal mathematical logic.

1. Formal logic is much older than AI or computer science. Formal
logic is a mathematical formalism for reasoning about assertions.

2. Formal logic is not only used by mathematicians, but also by
philosophers. Here at Gordon, the philosophy department teaches
a course that (among other things) teaches and uses formal logic.

3. Behind formal logic is a history of hundreds of years of work.
Thus, it is a well-understood tool. (In fact, it is generally
recognized that the work of logicians like Boole, Frege, Russell
and others helped lay the foundation for AI.)

1

4. The particular type of formal logic we will use is called the first
order predicate calculus. This is the formalism most widely used
by AI workers.

a) Predicate calculus formulas can easily be represented using the
programming languages widely used in AI (LISP and Prolog).

b) In fact, predicate calculus is the formal basis of Prolog. This will
become obvious in the a subsequent series of lectures (on Prolog).

5. Predicate calculus is not a panacea for all problems, though. In
particular, it has serious difficulties dealing with realities we often
encounter in human reasoning, such as:

a) Incomplete knowledge. Example: in a medical diagnostic
system it may be necessary to take the patient's age into
consideration in certain cases. How shall the system cope with
a situation where the age of a particular patient is not known?

b) Inexact knowledge. To continue the above example, maybe all
we know is that the age is between 40 and 50.

c) Uncertain knowledge. Often times we face situations where we
say things like “I'm fairly sure that this is true”.

d) Non-monotonic knowledge. Sometimes new information
causes us to invalidate a belief we had previously accepted.
Example: if told that a certain creature is a bird, we would
ordinarily assume it can fly. If we are later told it is a penguin,
that assumption and all inferences built on it would have to be
canceled.

e) We will look at traditional formal logic now. In the next series of
lectures, we will look briefly at some approaches to addressing
issues like these in the general context of formal logic.

2

6. Nonetheless, predicate calculus will serve our purposes well.

II. Propositional Calculus

Your book (and many AI books) eases into predicate calculus by way of a
less powerful system of notation called the propositional calculus.

A. A propositional calculus formula is composed of atomic propositions,
which area simply statements that are either true or false.

Ex:	
 	
 “It is sunny outside”
	
 	
 “It is raining outside”.
	
 	
 “It is snowing outside”
	
 	
 “It is precipitating outside”
	
 	
 “It is hot outside”
	
 	
 “It is cold outside”

B. For convenience (and basically to save a lot of writing), we generally
refer to an atomic proposition by an upper case letter or a short phrase.
So, we might decide to on a scheme like this:

sunny = 	
 “It is sunny outside”
raining =	
 “It is raining outside”.
snowing =	
 “It is snowing outside”
precipitating =	
 “It is precipitating outside”
hot =	
 “It is hot outside”
cold =	
 “It is cold outside”

C. Atomic propositions are combined with various connectives to form
more complex sentences. The connectives used are

^ - and
v - or
¬ - not
→ - implies
↔ - equivalence

3

1. For example, given the above definitions, sunny ^ hot means “it is
sunny outside and it is hot outside”; snowing ^ cold means “it is
snowing outside and it is cold outside”.

2. Again, raining v snowing means “it is raining outside or it is
snowing outside”.

3. ¬ raining means “it is not raining outside”.

4. snowing → cold means “it is snowing outside implies it is cold
outside” or “if it is snowing outside, then it is cold outside”

5. precipitating ↔ (raining v snowing) means “The statements ‘it is
precipitating outside’ and ‘it is raining outside or it is snowing
outside’ are equivalent. (For simplicity, lets not worry about other
forms of precipitation!)

D. The meaning of the various connectives is formally defined by truth
tables, which allow us to draw a conclusion about truth of a statement
from the truth of its component parts.

1. For example, the connective ^ has the following truth table (where
F stands for “false” and T for “true”)

A	
 B	
 A ^ B

F	
 F	
 F
F	
 T	
 F
T	
 F	
 F
T	
 T	
 T

That is, A ^ B is true just when both A and B are true; it is false
when either is false.

4

2. The connective v has the following truth table:

A	
 B	
 A v B

F	
 F	
 F
F	
 T	
 T
T	
 F	
 T
T	
 T	
 T

That is, A v B is true just when at least one of A and B is true; note
that it is therefore true when both are true. (In formal logic, v is
what we call “inclusive or” rather than “exclusive or”.)

3. The connective ¬ has the following truth table:

A	
 ¬A

F	
 T
T	
 F

That is, ¬A is true just when A is false and vice versa.

4. The connective → has the following truth table:

A	
 B	
 A → B

F	
 F	
 T
F	
 T	
 T
T	
 F	
 F
T	
 T	
 T

That is, A → B is true so long as B is true whenever A is.
A → B is always true if A is false - e.g. the statement
moon_is_made_of_green_cheese →
george_washington_is_us_president is true!

5

5. The connective ↔ has the following truth table:

A	
 B	
 A ↔ B

F	
 F	
 T
F	
 T	
 F
T	
 F	
 F
T	
 T	
 T

That is, A ↔ B is true if A and B are either both true or both false

E. The power of symbolic logic comes from the fact that we can prove
statements by formulating them symbolically and then applying the
rules of symbolic logic to them.

1. For example, it is the case that

(A → B) ↔ (¬ A v B)

That is, A implies B is equivalent to not A or B. We can
demonstrate this using truth tables, as follows

(FILL in the three rightmost columns as a class exercise)

	
 A	
 B	
 	
 (A → B)	
 	
 ¬ A	
 (¬A v B)

	
 F	
 F	
 	
 T	
 	
 	
 T	
 T
	
 F	
 T	
 	
 T	
 	
 	
 T	
 T
	
 T	
 F	
 	
 F	
 	
 	
 F	
 F
	
 T	
 T	
 	
 T	
 	
 	
 F	
 T

Note that the columns for A → B and for ¬ A v B are identical -
that is, in all cases A → B and ¬ A v B have the same value - which
is what we mean by equivalence.

6

2. Example - let’s develop a proof of the following in a similar way:

(A ↔ B) ↔ ((A → B) ^ (B → A))

[Develop in class]

F. There are several proof rules that are often used with propositional
calculus statements

1. Modus ponens says: given A → B, and given A, we can conclude B

Symbolically;	
 	
 A → B, A

 B

(Here we call A → B and A the premises, and B the conclusion. The
rule of inference says that whenever the premises are true, the
conclusion is as well. Of course, this is only valid in the real world if
our premises are sound to begin with!)

Example: if we believe “it is snowing outside implies it is cold
outside”, and we are told “it is snowing outside”, it is reasonable to
infer that “it is cold outside”.

Symbolically	
 	
 snowing → cold, snowing

 cold

2. Modus tolens says: given A → B, and given ¬ B, we can conclude ¬ A

Symbolically;	
 	
 A → B, ¬ B

 ¬ A

Example: if we believe “it is snowing outside implies it is cold
outside”, and we are told “it not cold outside”, it is reasonable to infer
that “it is not snowing outside”.

7

Symbolically	
 	
 snowing → cold, ¬ not cold

 ¬ snowing

3. Note well that it is not sound to say “given A → B, and given B,
we can conclude A”. This sort of reasoning is called abduction.
While it sometimes the case, it is not always the case.

Example: if we believe “it is snowing outside implies it is cold
outside”, and we are told “it cold outside”, it is not necessarily the
case that “it is snowing outside”.

4. Another sound rule of inference that happens to be particularly
easy to automate in AI systems is called resolution. Like modus
ponens and modus tolens (but unlike abduction) it is a sound rule
of inference. Given A v B and ¬B v C, we can infer A v C

Symbolically:	
 A v B, ¬B v C

 A v C

(We refer to A v C as the “resolvent” of the two clauses A v B and
¬B v C)

Demonstration using truth tables - note that we do not care about
rows where it is not the case that both premises are true

A	
 B	
 C	
 A v B	
 ¬B v C	
 Both true	
 A v C	

F	
 F	
 F	
 F	
 T	
 -	
 -
F	
 F	
 T	
 F	
 T	
 -	
 -
F	
 T	
 F	
 T	
 F	
 -	
 -
F	
 T	
 T	
 T	
 T	
 ÷	
 T	

T	
 F	
 F	
 T	
 T	
 ÷	
 T
T	
 F	
 T	
 T	
 T	
 ÷	
 T
T	
 T	
 F	
 T	
 F	
 -	
 -
T	
 T	
 T	
 T	
 T	
 ÷	
 T

8

Example: If we believe that it is precipitating outside or it is sunny
outside, and we believe if it is sunny outside then it is hot outside,
then we can conclude it is precipitating outside or it is hot outside.
(Again, I’m not making claims about the New England weather -
just illustrating formal logic, so let’s assume these premises are
valid!)

Symbolically;	
 Given: precipitating v sunny, sunny → hot

Which is equivalent to:	
 precipitating v sunny, ¬ sunny v hot

 precipitating v hot

III.Introduction to Predicate Calculus

A. The first order predicate calculus is a formal language for expressing
the content of propositions. Like any formal language, it has a well-
defined syntax.

B. A properly-formed predicate calculus expression is called a well-
formed formula or WFF (pronounced wiff). WFFs are built up out of
several basic types of building block:

1. Constants: a constant is a symbolic name for a real-world person,
object, event etc.

Ex: Suppose we were building a database of information about pets
in my home a few years ago. Constants that might appear would
include:

rocco (my dog at the time I wrote this lecture)
alexander (who was then my cat)
 etc.

9

a) Note that logicians often use the convention that constant
names begin with an uppercase letter (or sometimes a numeral).
This is the exact opposite of the convention in Prolog - where
constants (atoms) begin with lowercase letters. The book
follows the Prolog conventions; we will, as well.

b) Numbers (often integers) can also serve as constants where
appropriate.

c) Constants are also called atoms.

2. Predicates (or relation constants)

a) A predicate is an assertion that some property or relationship
holds for one or more arguments.

For example, to assert that Rocco is a dog, we would write:

dog(rocco)

To assert that Rocco chases Alexander, we would write:

chases(rocco, alexander)

b) Logicians often use the convention that predicate names begin
with an uppercase letter. Again, this is the opposite of the
convention in Prolog, where predicate names begin with a
lower-case letter. Again, the book follows the Prolog
conventions; we will, as well.

c) Predicates have a truth value - they are either true or false - e.g.

dog(rocco)	
 is true
dog(alexander) 	
 is false

d) Note that when a predicate has more than one argument, the
order of arguments is significant. However, the choice of order

10

is up to the designer of the predicate. I simply chose, in
defining the chases predicate, to put the chaser first and the
chasee second. I could have equally well used the reverse
convention.

e) Further, even the number of arguments (arity) for expressing a
given concept as a predicate is flexible. For example, instead
of a chases predicate of two arguments, I could have defined a
specialized chasesCats predicate of one argument, yielding
WFFs like

chasesCats(rocco)

(Which variant I would prefer would depend on what I was
planning to do with the database. If chasing cats were a major
category of information, then the second form might be
preferred; but if I wished to deal with chasing other animals in a
more general sense, I might prefer the former variant.)

f) Lurking in the background of our discussion here is a profound
philosophical issue.

(1)The rules of predicate calculus are SYNTACTIC rules - they
specify the FORM of predicates, but not their meaning (their
SEMANTICS).

(2)An AI system that uses predicate calculus manipulates
formulas according to syntactic rules. If the system is
designed correctly, then the results it produces make sense
when interpreted in light of the semantics intended by the
designer.

(3)But is there any sense in which a system that manipulates
formulas according to syntactic rules can be said to
UNDERSTAND what it is doing? This question lies at the

11

heart of some of the debates over the very nature of AI - for
example, the Searle article we will read later in the course.

3. Variables

a) A variable stands for a (currently unknown) constant, or for all
possible constants. For example:

dog(X)

is a predicate that is true for any X that is a canine.

b) Logicians often use the convention that variables are given
lower-case letters as names - often names like x, y, z. Once
again, this is the opposite of the convention of Prolog, where
variables either begin with an upper-case letter, or with the
underscore character (_). Again, the book follows the Prolog
conventions; we will, as well. The following are all valid
variable names:

X
Dog
_1

c) Note that, in first-order predicate calculus, a variable may only
appear in place of a constant. There are no “predicate
variables”. This is what distinguishes first-order predicate
calculus from higher-order logics, in which variables can stand
for predicates as well as constants. Most AI work has stuck
with the first-order calculus, which turns out not to be unduly
constraining - there are some “tricks” that can be used to get the
effect of predicate variables, as we shall see later in the course.

12

4. Connectives

a) Complex WFFs can be built up by joining simpler WFFs using
the same connectives as were used with propositional calculus.
That is, an atomic predicate calculus formula is simply a
formalized way of writing a proposition, as opposed to writing
it in English. (Using this formal notion facilitates automated
reasoning.)

b) By way of review, here are the connectives again. I’ve also
listed alternate forms for most which one sometimes sees:

(1)^ (alternate ∩)- and. This operation is also called
conjunction.

(2)v (alternate ∪) - or. This operation is also called
disjunction.

(3)¬ - not. This operation is also called negation.

(4) → (alternate ⊃) implies. This operation is also called
implication.

(a) The expression on the left is called the antecedent

(b)The expression on the right is called the consequent

Ex:	
 dog(X) → barks(X)

- dog(X) is the antecedent
- barks(X) is the consequent

13

(5)↔ (alternate ≡) equivalence. (Recall that two formulas are
equivalent if the first is true just when the second is true and
vice versa)

c) Recall that the meaning of the connectives can be represented
by truth tables as follows:

A	
 B	
 A ^ B	
 A v B	
 ¬ A	
 A → B	
 A ↔ B

F	
 F	
 F	
 F	
 T	
 T	
 T
F	
 T	
 F	
 T	
 T	
 T	
 F
T	
 F	
 F	
 T	
 F	
 F	
 F
T	
 T	
 T	
 T	
 F	
 T	
 T

5. Quantifiers

a) Consider a predicate applied to some variable - e.g. p(X). There
are two ways to interpret such a statement:

(1)We could interpret it as meaning to make a statement that p
is true for all possible values of the variable. For example,
we might formulate “dogs chase cats” rule as follows.

dog(X) ^ cat(Y) → chases(X, Y)

The variables X and Y are understood as applying to all dogs
and cats, respectively

(2)We could interpret it as meaning that there is at least one
value of the variable for which the predicate is true. For
example, taken by itself the predicate dog(X) would have to
be understood in this sense. Certainly it is not the case that
the dog predicate is true for all animals in the pets world (to
say nothing of all possible values of X - including us!); but
read as “there is some pet for which dog(X) is true” it does
make sense.

14

b) The correct interpretation of a variable is made explicit by
preceding the WFF in which it appears with one of two
quantifiers - ∀ or ∃.

(1)The universal quantifier ∀ (read “for all”) indicates that any
value may be substituted for the indicated variable.

(2)The existential quantifier ∃ (read “there exists” indicates that
there is some value (at least one, perhaps more) of the
indicated variable for which the WFF is true.

(3)When a variable appears in a WFF, the choice of quantifier
affects the meaning of the WFF.

(a) For example, for the rule about dogs barking, the
universal quantifier is probably what we want:

(∀ X) (dog(X) → barks(X))

This says “all dogs bark” (“for all X such that X is a dog,
X barks”)

Since an implication is true whenever its antecedent is
true (regardless of the value of its consequent), we are
not saying anything about any X that is not a dog.

(The existential quantifier would also yield a meaningful
sentence, but probably not what we want:

(∃x) (dog(X) → barks(X)))

“There exists at least one creature such that its being a
dog implies that it barks” (but there might be other dogs
that don’t bark). Of course, given the meaning of
implies, this would be true even if there were no barking
dogs in the world, provided there was at least one non-
dog!)

15

(b)On the other hand, if we had the WFF dog(X), we clearly
want the existential quantifier:

(∃X) (dog(X))

This says “some dog exists” (“there exists an X such that
X is a dog.”)

(If we used the universal quantifier

(∀ X) (dog(X))

we would be saying “everything is a dog” - Rocco,
Alexander, you, me, the chair you’re sitting in ...)

c) Quantifiers should be chosen to reflect the meaning intended
for the WFF.

(1)For example, in our formula about dogs chasing cats the
variables should be quantified universally:

(∀ X) (∀ Y) (dog(X) ^ cat(Y) → chases(X, Y))

This reflects our intention that it be interpreted as a rule
describing the behavior of all dogs toward all cats.

(2)On the other hand, suppose we wanted to assert that “in our
world there is a cat that chases dogs”. Here, we would use
the existential quantifier for the “cat variable” to get:

(∃Y) cat(Y) ^ ((∀ X) (dog(X) → chases(Y, X)))

(Note also the rearrangement of ^ and →)

“There is some creature who is a cat and who chases any
creature that is a dog”.

16

d) Normally, in a WFF, all variables are quantified. Such variables
are said to be bound. Any variable that is not quantified is said
to be free. We will not work with WFFs containing free
variables.

e) We speak of the scope of a quantifier as the region in which the
variable it names is bound. For example, in

p(a) v (∀ X) (q(a,X)) v (∃ X) (r(a, X)), the scope of the (∀ X)
quantifier is q(a, X), and the variable “X” that appears in r(a, X)
is not necessarily the same as the variable “X” that appears in q
(a, X)

f) It turns out to be the case that any WFF can be written in such a
way as to eliminate all existential quantifiers. When a WFF is
in this form, all variables are of necessity universally
quantified; therefore, it is common practice to drop the
quantifiers. Thus, if you see a WFF with variables but no
quantifiers, you may generally assume that all the variables are
universally quantified.

Ex:	
 (∀ X) (∀ Y) (dog(X) ^ cat(Y) → chases(X, Y))

	
 	
 is often written as simply

	
 	
 dog(X) ^ cat(Y) → chases(X, Y)

	
 	
 with (∀ X) (∀ Y) understood.
6. Functions

a) A predicate calculus function stands for some (currently not
known) constant that is related in some way to its argument(s).
For example, in our pets world every pet has an owner. We
may therefore invent an owner function to use in our formulas.

17

Ex: “The owner of Rocco” could be represented by

	
 	
 owner(rocco)

Ex. The statement “the owner of a cat that is chased by a dog
will be mad at the owner of the dog” can be represented by:

(∀ X) (∀ Y) [(dog(X) ^ cat(Y) ^ chases(X, Y)) →
	
 	
 	
 madAt(owner(Y), owner(X))]

b) By convention, function names are written in lower case letters.
Often, a single letter near the middle of the alphabet (f, g, h
etc.) is used.

c) Notice that for every function we can invent a related predicate
- e.g. for the function owner(X) we have the related predicate
owner(X, Y) that asserts that the owner of X is Y (or vice versa
if you prefer - just be consistent).

(1)The meanings are different, however:

(a) owner(X) is a function yielding an individual

(b)owner(X, Y) is a predicate that is true just when Y owns X

(2)Therefore, the following is certainly true:

(∀ X) (pet(X) → owner(X, owner(X))

(3)However, we would rarely use both the function and the
related predicate in the same WFF, because this can be quite
confusing!

18

d) In our example about the owners of chased cats, we could have
used the owner predicate instead:

(∀ W) (∀ X) (∀ Y) (∀ Z) [(dog(W) ^ cat(X) ^ chases(W, X) ^
owner(W, Y) ^ owner(X, Z)) → madAt(Z, Y)]

We will see shortly that if our database includes assertions
about owners, then the latter form would be more easily used in
reasoning. In practice, functions are avoided where possible
because predicate calculus has no mechanism for expressing
algorithms for computing them.

C. Rules of equivalence for WFFs

1. We say that two WFFs are equivalent if the first is true when, and
only when, the second is true. We denote this by W1 ↔ W2.

For example, we have already noted that:

(A → B) ↔ (¬A v B)

2. DISTRIBUTE, GO OVER HANDOUT WITH RULES OF
EQUIVALENCE

Especially note properties of quantifiers, including effect of
negation

IV.Formalization using the First Order Predicate Calculus.

A. We use the term “formalization” to describe the process of converting
an English statement into an equivalent expression in some formal
language like predicate calculus. Any sort of automated reasoning
process will require some sort of formalization scheme.

B. In general, when we formalize an English statement:

1. We convert verbs to predicates

19

2. We convert nouns and adjectives to constants.

3. Clauses of the form: “Every ____ has ____ property” or “All
members of _____ category ____” generally translate into a WFF
with one (or more) universally-quantified variables with an
implication in the scope of the quantifier.

Ex: “Dogs bark” (i.e. “every dog has the barks property” or “all
members of the dog category bark”)

(∀ X) (dog(X) → barks(X))

As a general rule, universally quantified variables always contain a
top-level implication in their scope - otherwise, we are making a
statement about every conceivable entity!

Ex: (∀ X) (createdBy(X, god)) might seem to be an exception, but
this says that God created even Himself, so even this WFF is not
really correct!

4. Where we have a qualified generic noun, we have two basic
options:

 Ex: “The dog who lives with Garfield does not chase
cats” (“There is a dog who lives with Garfield and it is not the
case that this dog chases cats”)

a) We can use an existentially-quantified variable

(∃X) (dog(X) ^ livesWith(X, garfield) ^ ¬ chasesCats(X))

b) We can create a special sort of name - called a Skolem constant
in honor of its inventor - to stand for the otherwise unknown
name of “the dog”, since we do not have the dog's name - only
the statement that it is the dog who lives with Garfield. We can
invent a name like dog1, and formalize as:

20

dog(dog1) ^ livesWith(dog1, garfield) ^ ¬ chasesCats(dog1)

That is, sentences of the form “Some _____” generally translate
into a WFF with one (or more) existentially-quantified
variables, or Skolem constant(s).

As a general rule, existentially quantified variables do not
contain a top-level implication in their scope - otherwise, we
are making a vacuous statement

Ex: (∃X) (god(X) → createdWorld(X)) does not say that God
created the world - it is also satisfied by any instantiation of X
where the antecedent is false (e.g. it is true for X = satan, since
Satan is not God!) The correct form of the statement would be
(∃X) (god(X) ^ createdWorld(X))

C. Some examples from the pets world. [have various ones in class do -
try to find more than one way of formalizing each]

1. “Rocco is a dog”.	
 dog(rocco)
	
 or species(rocco, dog)

2. “Garfield is orange” 	
 orange(garfield)
	
 or color(garfield, orange)

3. “Rocco chases cats”	
 chasesCats(rocco)
	
 or (∀ X) (Cat(X) → chases(rocco, X)

4. “Cats eat mice” 	
 (∀ X) (cat(X) → eatsMice(X))
	
 or (∀ X) (∀ Y) (cat(X) ^ mouse(Y)→ eats(X, Y))

5. “The cat who lives at	
 address(cat1, 11) ^ color(cat1, orange)
#11 is orange”	
 or (∃X)(cat(X)^address(X, 11)^color(X.orange))

21

Note: There are a number of wrong ways to formalize this:

(∀ X) (cat(X) ^ address(X, 11) → color(X, orange))

- This does not require that there actually be such a cat - it is satisfied if
no cat lives at #11.
- This says that any cat who lives at #11 is orange - not that a particular
cat that lives there is orange. (This would allow for an arbitrary number
of orange cats at #11, and would preclude a non-orange cat at #11 -
though probably the latter is intentional.)

(∀ X) (cat(X) ^ address(X, 11) ^ color(X, orange)

- This says that everything is a cat, lives at #11, and is orange - i.e. all of
us are orange cats living at #11!

D. Some more complicated examples arise where we need quantifiers
inside the scope of other quantifiers:

1. “Every mailman has been chased by a dog”

(∀ X) [mailman(X) → (∃Y) { dog(Y) ^ hasChased(Y,X) }]

2. “Every city has a dogcatcher who has been bitten by every dog in
town” (Example from Nilsson’s earlier book)

(∀ X) [city(X) → (∃Y)
	
 { dogCatcher(Y) ^ worksFor(Y, X) ^
	
 	
 	
 (∀ Z) (dog(Z) ^ livesIn(Z,X) → hasBitten(Z,Y))}]

E. Do semantic net example from Knowledge Representation lecture

1. PROJECT Cawsey Figure 2.2

2. Class exercise: Translate some of the link in net into predicate
calculus.

22

F. It should be clear that formalizing nontrivial statements is, at best,
difficult. In fact, the debate over whether all knowledge is, in
principle, formalizable lies in the background over some of the
debates about the very possibility of strong symbolic AI.

V. Making inferences using predicate calculus

A. One of the most important reasons for using predicate calculus in AI is
that there exists a body of well-understood mechanisms for making
inferences from predicate-calculus WFFs. The terminology often
used in discussing this is the terminology of mathematical proof - note
that predicate calculus was first developed as a tool for use in the
proof process.

1. An axiom is a WFF that is asserted to be true without proof. In an
AI system, the axioms would be:

a) The domain-specific knowledge rules in the database, and

b) The input data supplied by the user.

2. A theorem is a WFF that can be proven true on the basis of the
axioms. In an AI system, the theorems would be:

a) Inferences that can be drawn from the rules and input data (in a
forward chaining system.)

b) Questions posed by the user.

Note, for example, that a question like “Who chases
Alexander?” can be turned into a predicate calculus theorem

(∃X) (chases(X, alexander))

23

As we shall see, the method of proof we use with theorems
containing existentially quantified variables has, as a side effect,
the finding in the knowledge base of a value for the variable for
which the desired condition holds. This, of course, would
answer the original question.

c) Technically, we say that our task is to prove that a given WFF is
a theorem - i.e. it is only a theorem if it can be shown to be true.

3. Thus, “reasoning” in a logic-based AI system is accomplished by
using methods of mathematical proof. Since these have a long
history, they provide a wealth of resources for us to draw on in
doing AI.

B. In formulating proofs, one of our most important tools are the laws of
inference which allow us to form new theorems from axioms and
other theorems. Recall the rules of inference we talked about in
conjunction with propositional calculus.

1. Modus ponens:	
 	
 	
 A → B, A

 B

2. Modus tolens:	
 	
 	
 A → B, ¬B

 ¬A

3. Resolution	
 	
 	
 A v B, ¬B v C

 A v C

a) Note that A, B and C may be single expressions, complex
expressions, or NIL - empty.

24

(1) For example, if we resolve:

	
 A v B
	
 ¬B

we get A since “C” is NIL

(Formally, we are resolving (A v B) with (¬B v false), which
leads to (A v false), which implies A)

(2) If we resolve	
 A1 v A2 v A3 v B ...
with	
 	
 ¬B v C1 v C2 v C3 ...,
we get 	
 A1 v A2 v A3 ... v C1 v C2 v C3 ...

(We do this by using the associative property of disjunction,
treating A1 v A2 v A3... as “A” and C1 v C2 v C3... as “C”.)

b) If we resolve B with ¬B - ie. both “A” and “C” are NIL, we get
NIL. If the outcome of any resolution operation is NIL, then
the clauses involved are contradictory. We will use this in the
method of resolution refutation, which is a special form of
proof by contradiction.

It turns out that this particular proof strategy is easily
automated, and is the basis of the inference procedure used by
Prolog.

VI.Unification

A. We have learned about proof rules in the propositional calculus that
can be also used in the predicate calculus. What happens, though,
when we try to do a proof with axioms/theorems that contain
variables?

1. The rule of universal specialization (instantiation) says:

Given 	
 (∀ X)w(X)	
 -- where w is some WFF containing X

25

We may infer	
 w(a)	
 	
 -- where a is any constant

Ex: From	
 (∀ X) (dog(X) → chasesCats(X)
	
 We infer dog(rocco) → chasesCats(rocco)

(We also infer dog(bjork) → chasesCats(bjork) - which is a true
statement since I am not a dog!)

2. When our clauses contain variables it is possible to use
specialization to resolve clauses containing disjuncts that are not
exact opposites.

Ex: Suppose we have 	
 (∀ X) (dog(X) → chasesCats(X)
 and	
 	
 	
 dog(rocco)

The former is equivalent to ¬dog(X) v chasesCats(X), from the
definition of implies. However, clearly dog(rocco) is not the same
as dog(X), which is what we would need to resolve them. By
using universal specialization we could change dog(X) to dog
(rocco) (and at the same time chasesCats(X) to chasesCats(rocco),
since both are in the scope of the same quantifier), allowing us to
resolve:

¬dog(rocco) v chasesCats(rocco) with dog(rocco) to conclude
chasesCats(rocco), as desired

B. The process of making substitutions for variables in two clauses so
that they can be resolved is called unification, and the set of
substitutions is called a unifier.

Ex: In the above, the unifier is X = rocco

(Note that the substitution is applied to the entirety of the clause, not
just to the parts that will cancel.)

C. Unification is important for two reasons:

1. It makes resolution of clauses containing variables possible.

26

2. We will see later that the unifier(s) used in a resolution proof
provide our handle for using the proof outcome to answer
questions.

D. Generally speaking, the necessary unifier will be apparent when
examining two clauses. However, there is a whole body of theory on
unification, including a unification algorithm, that can help us:

1. A substitution is a set of pairs {t1/V1, t2/V2 ...} - meaning that t1
is to be substituted for V1, t2 for V2 etc.

2. We write an expression followed by a substitution to denote the
expression that results from making the specified substitution to
the specified expression.

Ex: 	
 [p(X, f(X, Y))] {a/X, b/Y} ↔ p(a, f(a,b))

3. If we have two formulas A and B (at least one of which contains
variables) and there is a substitution s that makes them identical,
then s is a unifier for A and B.

Ex:	
 A unifier for p(a, X) and p(Y, Z) is {a/Y, X/Z }.

4. Often there will be more than one possible unifier for a pair of formulas

Ex:	
 Another unifier for the above is {a/Y, b/X, b/Z}

(Note that we can substitute a variable, or a term containing variables
for another variable - provided that the variable being substituted for
does not appear in the substitution.)

5. When there are multiple possible unifiers, there will be at least one,
called a most general unifier (mgu), that has the property that all
other unifiers can be derived by applying some substitution
AFTER applying the mgu.

27

Ex:	
 In the above,{a/Y, X/Z } is an mgu. If we apply it, and
	
 then apply a second substitution b/X, we get the second
	
 unifier we showed. The reverse would not be possible.

a) Note that the mgu preserves as much generality as possible for
the two formulas. When we use unification as part of
resolution, we must apply the substitution not only to the “B”
clauses but also to the “A” and “C” clauses. By using the mgu,
we leave the maximum flexibility for the resolvent A v C to
resolve with other clauses.

b) Note that the mgu is not necessarily unique.

For example, {a/Y, Z/X} is also an mgu for our example

E. There is an algorithm for finding an mgu, which we will not discuss.

VII.Resolution Refutation as A Means of Inference

A. Many AI systems that represent knowledge using predicate calculus
use RESOLUTION REFUTATION as an inference technique for
deriving new knowledge. The new knowledge is derived by
discovering a proof that it must be true if the given knowledge is true -
i.e. it is a theorem, given the current knowledge as axioms.

1. To use resolution, we must put our axioms into the form of a set of
clauses

a) A clause is a set of literals or’ed together, where a literal is a
simple formula like dog(X) or its negation.) Moreover, all
variables in a clause must be universally quantified, so the
quantifiers are omitted.

To do this, we take advantage of the equivalence

A → B ↔ ¬A v B

28

b) In set of clause form, we also standardize variables apart to that
each clause uses different variable names.

Recall that the variable name bound by a given quantifier can
be changed to any other variable name as long as all
occurrences of the name in the given scope are changed.

c) There is a general algorithm for doing this, which we won’t
discuss.

2. Resolution refutation operates as follows: to our set of axioms, we
add the NEGATION of the theorem we wish to prove. We then
use resolution until we get to clauses that resolve down to nil - e.g.

B and ¬B

a) This situation indicates that there is a contradiction in our set of
clauses.

b) If our original axioms were consistent, then the contradiction
must have arisen because we introduced the negation of what
we want to prove. If it is contradiction to believe the negation
of our theorem, then our theorem must be true.

B. An Example:

 Given the following axioms

	
 (∀ X)(∀ Y) (dog(X) ^ cat(Y) → chases(X, Y))
	
 dog(rocco)
	
 cat(alexander)

Prove	
 chases(rocco, alexander)

29

1. Convert the axioms to clause form

The first is equivalent to the clause

(1)	
 ¬ dog(X) v ¬ cat(Y) v chases(X, Y)

	
 (note how negating the antecedent turns the and to or by
	
 DeMorgan’s theorem; and how the universal quantifier is
	
 dropped because implicit)

The second and third are already clauses - we will refer to these as
(2) and (3) in the proof

(2)	
 dog(rocco)
(3)	
 cat(alexander)

2. Add the negation of the theorem to the database:

(4)	
 ¬ chases(rocco, alexander)

3. Resolve (4) with (1) with unifier { rocco/X, alexander/Y }

(5)	
 ¬ dog(rocco) v ¬ cat(alexander)

4. Resolve (5) with (2)

(6)	
 ¬ cat(alexander)

5. Resolve (6) with (3)

NIL - a contradiction

6. Since we have been able to “prove” false, our set of axioms plus
negated theorem are contradictory. Since the axioms are assumed to
be non-contradictory, the ability to prove false must have arisen
from our negated theorem, which must not be true. But if the
negated theorem is not true, the original theorem must be true - QED

Note: if we have an initial set of axioms that is contradictory, we can
prove anything by resolution refutation!

30

C. Resolution refutation was introduced as an automated reasoning
technique by Robinson in 1965. Its attraction is that it is much easier
to automate than modus ponens. It is, in fact, the basis for the proof
mechanism of Prolog (though this is not obvious until one looks
closely at what is going on.)

VIII.Actually Using Resolution Refutation

A. To prove a theorem by resolution refutation, we proceed as follows:

1. Convert the axioms to a set of clauses.

2. Negate the theorem, convert the result to a clause, and add it to he
set of axioms. This amounts to saying “Assume that our axioms
are true and our theorem is false”.

- Note: This tends to eliminate existential quantifiers. Existential
quantifiers tend to appear in theorems more often than in axioms
(though this is not an absolute rule by any means.) Negating an
existential quantifier turns it into a universal quantifier.

3. Use resolution repeatedly, adding each new resolvent to the set of
axioms, until some resolvent is NIL (false). This amounts to
saying “The outcome of our assumption that our theorem is false is
a contradiction. Therefore, our theorem must be true.”

4. This method is called resolution refutation because we prove a
theorem true by refuting its negation.

5. It can be shown (though we will not attempt it) that resolution
refutation is a complete proof method provided that our axioms are
in clause form. That is, any theorem that can be proved from a
given set of axioms can be proved by resolution refutation.

31

B. An example:

1. Given the following statements:

The father of someone or the mother of someone is an ancestor of
that person.
An ancestor of someone's ancestor is also an ancestor of that
person.
Jesse is the father of David.
David is an ancestor of Mary.
Mary is the mother of Jesus.

Prove: Jesse is an ancestor of Jesus

2. Formalization (with conversion to clause form given for the rules):

a) (∀X)(∀Y) [(father(X, Y) v mother(X, Y)) → ancestor(X, Y)]

¬father(X1, Y1) v ancestor(X1, Y1)	
 [1]
¬mother(X2, Y2) v ancestor(X2, Y2)	
 [2]

b) ∀R)(∀S)(∀T) [(ancestor(R, S) ^ ancestor(S, T)) → ancestor
(R, T)]

¬ancestor(R, S) v ¬ancestor(S, T) v ancestor(R, T)	
 [3]
c) father(jesse, david)	
[4]
d) ancestor(david, mary)	
 [5]
e) mother(mary, jesus)	
 [6]

Prove: ancestor(jesse, jesus)

PROJECT

32

3. Proof

a) Negated theorem: ¬ancestor(jesse, jesus)	
 	
 [7]

b) Resolving [7] with [3], using { jesse/R, jesus/T }	
 	

¬ancestor(jesse, S) v ¬ancestor(S, jesus)	
 	
 [8]

c) Resolving this with [1], using { jesse/X1, S/Y1 }
¬father(jesse, S) v ¬ancestor(S, jesus)	
 	
 	
 [9]

d) Resolving this with [4], using { david/S }
¬ancestor(david, jesus)	
 	
 	
 	
 	
 [10]

e) Resolving this with [3], using { david/R, jesus/T }
¬ancestor(david, S) v ¬ancestor(S, jesus)	
 	
 [11]

f) Resolving this with [5] , using { mary/S }
¬ancestor(mary, jesus)	
 	
 	
 	
 	
 [12]

g) Resolving this with [2], using { mary/X2, jesus/Y2 }
¬mother(mary, jesus)	
 	
 	
 	
 	
 [13]

h) Resolving this with [6]
NIL - QED

PROJECT

33

C. Resolution refutation can not only be used to prove theorems, but also
to answer questions.

1. Example: Earlier we developed a resolution refutation proof of
chases(rocco, alexander), given the following axioms (in clause
form)

(1)	
 ¬ dog(X) v ¬ cat(Y) v chases(X, Y)
(2)	
 dog(rocco)
(3) 	
 cat(alexander)

Suppose, instead, we were trying to answer the question “What
animal chases Alexander?”

a) We can formalize the question as

(∃X) (chases(X, alexander))

 -- where our goal is to prove that such an animal exists in such
a way as to find out who it is.

b) Negating and converting to clause form (using the rules of
equivalence for WFFs)

¬(∃X) (chases(X, alexander))	
 becomes
(∀ X) (¬chases(X, alexander))	
becomes
(∀ Z) (¬chases(Z, alexander))	
 becomes
¬chases(Z, alexander)	
 (universal quantifier implicit)

(Call this clause (4))

c) Resolving (4) with axiom (1), with unifier X/Z, alexander/Y:

(5) 	
 ¬dog(X) v ¬cat(alexander)

34

d) Resolving (5) with axiom (3)

(6)	
 ¬dog(X)

e) Resolving (6) with axiom (2), with unifier rocco/X

NIL

f) To answer our original question, we apply the composition of
the unifiers we used to the original query (with the standardized
apart variable names.)

(1)We used the unifiers X/Z, alexander/Y and rocco/X in that
order

(2)This gives us chases(Z, alexander) {X/Z, alexander/Y, rocco/
X } or

chases(rocco, alexander)

2. We can automate this process by using a strategy called Green’s
device (named after the logician Cordell Green)

What we do is to augment the original question with a “dummy”
term answer(-- whatever variable(s) we want the value for). Then
we resolve down to a clause in which only this dummy term
appears, and it is our answer. Applying this to the previous
example:

a) Augmented goal:

(4) 	
 ¬chases(Z, alexander) v answer(Z)

b) After first resolution:

(5) 	
 ¬dog(X) v ¬cat(alexander) » answer(X)

35

c) After second resolution:

(6) 	
 ¬dog(X) v answer(X)

d) After final resolution

answer(rocco)

3. The original process (or actually its equivalent in Prolog) can be
used to produce a question answering system

Demo: 	
 	
 Start Prolog from command line.
 	
 	
 Consult interactive_isa
	
 	
 interactive_isa.
	
 	
 rocco is a dog.
	
 	
 alexander is a cat.
	
 	
 dogs chase cats.
	
 	
 quit, saving database to a file, then examine
	
 	
 assertz(print_translation).
	
 	
 interactive_isa.
	
 	
 who chases alexander?

36

