
CPS331 Lecture: The Predicate Calculus	
 	
 last revised January 26, 2012

Objectives:

1. To introduce propositional calculus
2. To introduce the first order predicate calculus, including the syntax of WFFs
3. To introduce formalization of knowledge using predicate calculus
4. To introduce resolution-refutation theorem proving, including unification and 

conversion to clause form

Materials:

1. Equivalence of WFF's Handout
2. Projectable of Cawsey Figure 2.2 (semantic net used in KR lecture)
3. Demo interactive_isa.pro
4. Resolution Proof that Jesse is an ancestor of Jesus

I. Introduction

A. One notation system that is widely used in symbolic AI systems is the 
notation of formal mathematical logic.

1. Formal logic is much older than AI or computer science.  Formal  
logic is a mathematical formalism for reasoning about assertions.

2. Formal logic is not only used by mathematicians, but also by 
philosophers.  Here at Gordon, the philosophy department teaches 
a course that (among other things) teaches and uses formal logic.

3. Behind formal logic is a history of hundreds of years of work.  
Thus, it is a well-understood tool.  (In fact, it is generally 
recognized  that the work of logicians like Boole, Frege, Russell 
and others  helped lay the foundation for AI.)
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4. The particular type of formal logic we will use is called the first  
order predicate calculus.  This is the formalism most widely used 
by AI workers.  

a) Predicate calculus formulas can easily be represented using the 
programming languages widely used in AI (LISP and Prolog).  

b) In fact, predicate calculus is the formal basis of Prolog. This will 
become obvious in the a subsequent series of lectures (on Prolog). 

5. Predicate calculus is not a panacea for all problems, though.  In 
particular, it has serious difficulties dealing with realities we  often 
encounter in human reasoning, such as:

a) Incomplete knowledge.  Example: in a medical diagnostic 
system it may be necessary to take the patient's age into 
consideration in certain cases.  How shall the system cope with 
a situation where the age of a particular patient is not known?

b) Inexact knowledge.  To continue the above example, maybe all 
we know is that the age is between 40 and 50.

c) Uncertain knowledge.  Often times we face situations where we 
say things like “I'm fairly sure that this is true”.

d) Non-monotonic knowledge.  Sometimes new information 
causes us to invalidate a belief we had previously accepted.  
Example: if told that a certain creature is a bird, we would 
ordinarily assume it can fly.  If we are later told it is a penguin, 
that assumption and all inferences built on it would have to be 
canceled.

e) We will look at traditional formal logic now.  In the next series of 
lectures, we will look briefly at some approaches to addressing 
issues like these in the general context of formal logic.
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6. Nonetheless, predicate calculus will serve our purposes well.

II. Propositional Calculus

Your book (and many AI books) eases into predicate calculus by way of a 
less powerful system of notation called the propositional calculus.

A. A propositional calculus formula is composed of atomic propositions, 
which area simply statements that are either true or false.

Ex:	
 	
 “It is sunny outside”
	
 	
 “It is raining outside”.
	
 	
 “It is snowing outside”
	
 	
 “It is precipitating outside”
	
 	
 “It is hot outside”
	
 	
 “It is cold outside”

B. For convenience (and basically to save a lot of writing), we generally 
refer to an atomic proposition by an upper case letter or a short phrase.  
So, we might decide to on a scheme like this:

sunny = 	
 “It is sunny outside”
raining =	
 “It is raining outside”.
snowing =	
 “It is snowing outside”
precipitating =	
 “It is precipitating outside” 
hot =	
 “It is hot outside” 
cold =	
 “It is cold outside”

C. Atomic propositions are combined with various connectives to form 
more complex sentences.  The connectives used are

^ - and
v - or
¬ - not
→ - implies
↔ - equivalence
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1. For example, given the above definitions, sunny ^ hot means “it is 
sunny outside and it is hot outside”; snowing ^ cold means “it is  
snowing outside and it is cold outside”.

2. Again, raining v snowing means “it is raining outside or it is 
snowing outside”.

3. ¬ raining means “it is not raining outside”.

4. snowing → cold means “it is snowing outside implies it is cold 
outside” or “if it is snowing outside, then it is cold outside”

5. precipitating ↔ (raining v snowing) means “The statements ‘it is 
precipitating outside’ and ‘it is raining outside or it is snowing 
outside’ are equivalent.  (For simplicity, lets not worry about other 
forms of precipitation!)

D. The meaning of the various connectives is formally defined by truth 
tables, which allow us to draw a conclusion about truth of a statement 
from the truth of its component parts.

1. For example, the connective ^ has the following truth table (where 
F stands for “false” and T for “true”)

A	
 B	
 A ^ B

F	
 F	
 F
F	
 T	
 F
T	
 F	
 F
T	
 T	
 T

That is,  A ^ B is true just when both A and B are true; it is false 
when either is false.
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2. The connective v has the following truth table:

A	
 B	
 A v B

F	
 F	
 F
F	
 T	
 T
T	
 F	
 T
T	
 T	
 T

That is, A v B is true just when at least one of A and B is true; note 
that it is therefore true when both are true.  (In formal logic, v is 
what we call “inclusive or” rather than “exclusive or”.)

3. The connective ¬ has the following truth table:

A	
 ¬A

F	
 T
T	
 F

That is, ¬A is true just when A is false and vice versa.

4. The connective → has the following truth table:

A	
 B	
 A → B

F	
 F	
 T
F	
 T	
 T
T	
 F	
 F
T	
 T	
 T

That is, A → B is true so long as B is true whenever A is.
A → B is always true if A  is false - e.g. the statement 
moon_is_made_of_green_cheese  → 
george_washington_is_us_president is true!
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5. The connective ↔ has the following truth table:

A	
 B	
 A ↔ B

F	
 F	
 T
F	
 T	
 F
T	
 F	
 F
T	
 T	
 T

That is, A ↔ B is true if A and B are either both true or both false

E. The power of symbolic logic comes from the fact that we can prove 
statements by  formulating them symbolically and then applying the 
rules of symbolic logic to them.  

1. For example, it is the case that

(A → B) ↔  (¬ A v B)

That is, A implies B is equivalent to not A or B.   We can 
demonstrate this using truth tables, as follows

(FILL in the three rightmost columns as a class exercise)

	
 A	
 B	
 	
 (A → B)	
 	
 ¬ A	
 (¬A v B)

	
 F	
 F	
 	
 T	
 	
 	
 T	
 T
	
 F	
 T	
 	
 T	
 	
 	
 T	
 T
	
 T	
 F	
 	
 F	
 	
 	
 F	
 F
	
 T	
 T	
 	
 T	
 	
 	
 F	
 T

Note that the columns for A → B and for ¬ A v B are identical - 
that is, in all cases A → B and ¬ A v B have the same value - which 
is what we mean by equivalence.
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2. Example - let’s develop a proof of the following in a similar way:

(A ↔ B) ↔ ((A → B) ^ (B → A))

[ Develop in class ]

F. There are several proof rules that are often used with propositional 
calculus statements

1. Modus ponens says: given A → B, and given A, we can conclude B

Symbolically;	
 	
 A → B,  A
	
 	
 	
 ----------------
	
 	
 	
 	
 B 

(Here we call A → B and A the premises, and B the conclusion.  The 
rule of inference says that whenever the premises are true, the 
conclusion is as well.  Of course, this is only valid in the real world if 
our premises are sound to begin with!)

Example: if we believe “it is snowing outside implies it is cold 
outside”, and we are told “it is snowing outside”, it is reasonable to 
infer that “it is cold outside”.  

Symbolically	
 	
 snowing → cold,  snowing
	
 	
 	
 -------------------------------------
	
 	
 	
 	
 cold

2. Modus tolens says: given A → B, and given ¬ B, we can conclude ¬ A

Symbolically;	
 	
 A → B,  ¬ B
	
 	
 	
 -------------------
	
 	
 	
 	
 ¬ A

Example: if we believe “it is snowing outside implies it is cold 
outside”, and we are told “it not cold outside”, it is reasonable to infer 
that “it is not snowing outside”.  
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Symbolically	
 	
 snowing → cold,  ¬ not cold
	
 	
 	
 -------------------------------------
	
 	
 	
 	
 ¬ snowing

3. Note well that it is not sound to say “given A → B, and given B, 
we can conclude A”.  This sort of reasoning is called abduction.   
While it sometimes the case, it is not always the case.

Example: if we believe “it is snowing outside implies it is cold 
outside”, and we are told “it cold outside”, it is not necessarily the 
case that “it is snowing outside”.

4. Another sound rule of inference that happens to be particularly 
easy to automate in AI systems is called resolution.  Like modus 
ponens and modus tolens (but unlike abduction) it is a sound rule 
of inference.  Given A v B and ¬B v C, we can infer A v C

Symbolically:	
 A v B,  ¬B v C
	
 	
 	
 ---------------------
	
 	
 	
      A v C

(We refer to A v C as the “resolvent” of the two clauses A v B and  
¬B v C)

Demonstration using truth tables - note that we do not care about 
rows where it is not the case that both premises are true

A	
 B	
 C	
 A v B	
 ¬B v C	
 Both true	
 A v C	


F	
 F	
 F	
 F	
 T	
 -	
 -
F	
 F	
 T	
 F	
 T	
 -	
 -
F	
 T	
 F	
 T	
 F	
 -	
 -
F	
 T	
 T	
 T	
 T	
 ÷	
 T	

T	
 F	
 F	
 T	
 T	
 ÷	
 T
T	
 F	
 T	
 T	
 T	
 ÷	
 T
T	
 T	
 F	
 T	
 F	
 -	
 -
T	
 T	
 T	
 T	
 T	
 ÷	
 T
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Example: If we believe that it is precipitating outside or it is sunny 
outside, and we believe if it is sunny outside then it is hot outside, 
then we can conclude it is precipitating outside or it is hot outside.  
(Again, I’m not making claims about the New England weather - 
just illustrating formal logic, so let’s assume these premises are 
valid!)

Symbolically;	
 Given: precipitating v sunny, sunny → hot

Which is equivalent to:	
 precipitating v sunny,  ¬ sunny v hot
	
 	
 	
 	
 ---------------------------------------------
	
 	
 	
 	
 precipitating v hot

III.Introduction to Predicate Calculus

A. The first order predicate calculus is a formal language for expressing 
the content of propositions.  Like any formal language, it has a well-
defined syntax.

B. A properly-formed predicate calculus expression is called a well-
formed  formula or WFF (pronounced wiff).  WFFs are built up out of 
several  basic types of building block:

1. Constants: a constant is a symbolic name for a real-world person, 
object, event etc.

Ex: Suppose we were building a database of information about pets 
in my home a few years ago.  Constants that might appear would 
include:

rocco (my dog at the time I  wrote this lecture)
alexander (who was then my cat)
 etc.
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a) Note that logicians often use the convention that constant 
names begin with an uppercase letter (or sometimes a numeral).  
This is the exact opposite of the convention in Prolog - where 
constants (atoms) begin with lowercase letters.  The book 
follows the Prolog conventions; we will, as well.

b) Numbers (often integers) can also serve as constants where 
appropriate.

c) Constants are also called atoms.

2. Predicates (or relation constants)

a) A predicate is an assertion that some property or relationship  
holds for one or more arguments.  

For example, to assert that Rocco is a dog, we would write:

dog(rocco)

To assert that Rocco chases Alexander, we would write:

chases(rocco, alexander)

b) Logicians often use the convention that predicate names begin 
with an uppercase letter.  Again, this is the opposite of the 
convention in Prolog, where predicate names begin with a 
lower-case letter.   Again, the book follows the Prolog 
conventions; we will, as well.

c) Predicates have a truth value - they are either true or false - e.g.

dog(rocco)	
 is true
dog(alexander) 	
 is false

d) Note that when a predicate has more than one argument, the 
order of arguments is significant.  However, the choice of order 
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is up to the designer of the predicate.  I simply chose, in 
defining the chases predicate, to put the chaser first and the 
chasee  second.  I could have equally well used the reverse 
convention.

e) Further, even the number of arguments (arity) for expressing a 
given  concept as a predicate is flexible.  For example, instead 
of a chases predicate of two arguments, I could have defined a  
specialized chasesCats predicate of one argument, yielding 
WFFs  like

chasesCats(rocco)

(Which variant I would prefer would depend on what I was 
planning to do with the database.  If chasing cats were a major 
category of information, then the second form might be 
preferred; but if I wished to deal with chasing other animals in a 
more general sense, I might prefer the former variant.)

f) Lurking in the background of our discussion here is a profound  
philosophical issue.

(1)The rules of predicate calculus are SYNTACTIC rules - they  
specify the FORM of predicates, but not their meaning (their  
SEMANTICS).

(2)An AI system that uses predicate calculus manipulates 
formulas according to syntactic rules.  If the system is 
designed correctly, then the results it produces make sense 
when interpreted in light of the semantics intended by the 
designer.

(3)But is there any sense in which a system that manipulates 
formulas according to syntactic rules can be said to   
UNDERSTAND what it is doing?  This question lies at the 
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heart of some of  the debates over the very nature of AI - for 
example, the Searle article we will read later in the course. 

3. Variables

a) A variable stands for a (currently unknown) constant, or for all 
possible constants.  For example:

dog(X)

is a predicate that is true for any X that is a canine.

b) Logicians often use the convention that variables are given 
lower-case  letters as names - often names like x, y, z.  Once 
again, this is the opposite of the convention of Prolog, where 
variables either begin with an upper-case letter, or with the 
underscore character (_).  Again, the book follows the Prolog 
conventions; we will, as well.  The following are all valid 
variable names:

X
Dog
_1

c) Note that, in first-order predicate calculus, a variable may only 
appear in place of a constant.  There are no “predicate 
variables”. This is what distinguishes first-order predicate 
calculus from  higher-order logics, in which variables can stand 
for predicates  as well as constants.  Most AI work has stuck 
with the first-order calculus, which turns out not to be unduly 
constraining - there are some “tricks” that can be used to get the 
effect of predicate variables, as we shall see later in the course.
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4. Connectives

a) Complex WFFs can be built up by joining simpler WFFs using 
the same connectives as were used with propositional calculus.   
That is, an atomic predicate calculus formula is simply a 
formalized way of writing a proposition, as opposed to writing 
it in English.  (Using this formal notion facilitates automated 
reasoning.)

b) By way of review, here are the connectives again.  I’ve also 
listed alternate forms for most which one sometimes sees:

(1)^ (alternate ∩)- and.  This operation is also called 
conjunction.

(2)v (alternate ∪) - or.   This operation is also called 
disjunction.

(3)¬ - not.  This operation is also called negation.

(4)  → (alternate ⊃) implies.  This operation is also called 
implication.

(a) The expression on the left is called the antecedent

(b)The expression on the right is called the consequent

Ex:	
 dog(X) →  barks(X)

- dog(X) is the antecedent
- barks(X) is the consequent
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(5)↔ (alternate ≡) equivalence.   (Recall that two formulas are 
equivalent if the first is true just when the second is true and 
vice versa)

c) Recall that the meaning of the connectives can be represented 
by truth  tables as follows:

A	
 B	
 A ^ B	
 A v B	
 ¬ A	
 A → B	
 A ↔ B

F	
 F	
 F	
 F	
 T	
 T	
 T
F	
 T	
 F	
 T	
 T	
 T	
 F
T	
 F	
 F	
 T	
 F	
 F	
 F
T	
 T	
 T	
 T	
 F	
 T	
 T

5. Quantifiers

a) Consider a predicate applied to some variable - e.g. p(X). There 
are two ways to interpret such a statement:

(1)We could interpret it as meaning to make a statement that p 
is true for all possible values of the variable.  For example, 
we might formulate “dogs chase cats” rule as follows.

dog(X) ^ cat(Y) → chases(X, Y)

The variables X and Y are understood as applying to all dogs 
and cats, respectively

(2)We could interpret it as meaning that there is at least one 
value of the variable for which the predicate is true.  For 
example, taken by itself the predicate dog(X) would have to 
be understood in this sense.  Certainly it is not the case that 
the dog predicate is true for all animals in the pets world (to 
say nothing of all possible values of X - including us!); but 
read as “there is some pet for which dog(X) is true” it does 
make sense.
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b) The correct interpretation of a variable is made explicit by 
preceding the WFF in which it appears with one of two 
quantifiers - ∀ or ∃.

(1)The universal quantifier ∀ (read “for all”) indicates that any 
value may be substituted for the indicated variable. 

(2)The existential quantifier ∃ (read “there exists” indicates that 
there is some value (at least one, perhaps more) of the 
indicated variable for which the WFF is true.

(3)When a variable appears in a WFF, the choice of quantifier 
affects the meaning of the WFF.  

(a) For example, for the rule about dogs barking, the 
universal quantifier is probably what we want:

(∀ X) (dog(X) → barks(X))

This says “all dogs bark” (“for all X such that X is a dog, 
X barks”)   

Since an implication is true whenever its antecedent is 
true (regardless of the value of its consequent), we are 
not saying anything about any X that is not a dog.

(The existential quantifier would also yield a meaningful 
sentence, but probably not what we want: 

(∃x) (dog(X) → barks(X)))

“There exists at least one creature such that its being a 
dog implies that it barks” (but there might be other dogs 
that don’t bark).  Of course, given the meaning of 
implies, this would be true even if there were no barking 
dogs in the world, provided there was at least one non-
dog!)
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(b)On the other hand, if we had the WFF dog(X), we clearly 
want the existential quantifier:

(∃X) (dog(X))

This says “some dog exists” (“there exists an X such that 
X is a dog.”)

(If we used the universal quantifier

(∀ X) (dog(X))

we would be saying “everything is a dog” - Rocco, 
Alexander, you, me, the chair you’re sitting in ...)

c) Quantifiers should be chosen to reflect the meaning intended  
for the WFF.  

(1)For example, in our formula about dogs chasing cats the 
variables should be quantified universally:

(∀ X) (∀ Y) (dog(X) ^ cat(Y) → chases(X, Y))

This reflects our intention that it be interpreted as a rule 
describing the behavior of all dogs toward all cats.

(2)On the other hand, suppose we wanted to assert that “in our 
world there is a cat that chases dogs”.  Here, we would use 
the existential quantifier for the “cat variable” to get:

(∃Y) cat(Y) ^ ((∀ X) (dog(X) → chases(Y, X)))

(Note also the rearrangement of  ^ and →)

“There is some creature who is a cat and who chases any 
creature that is a dog”.
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d) Normally, in a WFF, all variables are quantified.  Such variables  
are said to be bound.  Any variable that is not quantified is said 
to be free.  We will not work with WFFs containing free 
variables.

e) We speak of the scope of a quantifier as the region in which the 
variable it names is bound.  For example, in

p(a) v (∀ X) (q(a,X)) v (∃ X) (r(a, X)), the scope of the (∀ X) 
quantifier is q(a, X), and the variable “X” that appears in r(a, X) 
is not necessarily the same as the variable “X” that appears in q
(a, X)

f) It turns out to be the case that any WFF can be written in such a 
way as to eliminate all existential quantifiers.  When a WFF is 
in this form, all variables are of necessity universally 
quantified; therefore, it is common practice to drop the 
quantifiers.  Thus, if you see a WFF with variables but no 
quantifiers, you may generally assume that all the variables are 
universally quantified.

Ex:	
 (∀ X) (∀ Y) (dog(X) ^ cat(Y) → chases(X, Y))

	
 	
 is often written as simply

	
 	
 dog(X) ^ cat(Y) → chases(X, Y)

	
 	
 with (∀ X) (∀ Y)  understood.
6. Functions

a) A predicate calculus function stands for some (currently not 
known) constant that is related in some way to its argument(s).  
For example, in our pets world every pet has an owner.  We 
may therefore invent an owner function to use in our formulas.
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Ex: “The owner of Rocco” could be represented by

	
 	
 owner(rocco)

Ex. The statement “the owner of a cat that is chased by a dog 
will be mad at the owner of the dog” can be represented by:

(∀ X) (∀ Y) [(dog(X) ^ cat(Y) ^ chases(X, Y)) → 
	
 	
 	
 madAt(owner(Y), owner(X))]

b) By convention, function names are written in lower case letters.  
Often, a single letter near the middle of the alphabet (f, g, h 
etc.) is used.

c) Notice that for every function we can invent a related predicate 
- e.g. for the function owner(X) we have the related predicate 
owner(X, Y) that asserts that the owner of X is Y (or vice versa 
if you prefer - just be consistent).  

(1)The meanings are different, however:

(a) owner(X) is a function yielding an individual

(b)owner(X, Y) is a predicate that is true just when Y owns X

(2)Therefore, the following is certainly true:

(∀ X) (pet(X) → owner(X, owner(X))

(3)However, we would rarely use both the function and the 
related predicate in the same WFF, because this can be quite 
confusing!
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d) In our example about the owners of chased cats, we could have 
used the owner predicate instead:

(∀ W) (∀ X) (∀ Y) (∀ Z) [(dog(W) ^ cat(X) ^ chases(W, X) ^ 
owner(W, Y)  ^ owner(X, Z )) → madAt(Z, Y)]

We will see shortly that if our database includes assertions 
about owners, then the latter form would be more easily used in 
reasoning.  In practice, functions are avoided where possible 
because predicate calculus has no mechanism for expressing 
algorithms for computing them.

C. Rules of equivalence for WFFs 

1. We say that two WFFs are equivalent if the first is true when, and 
only when, the second is true.  We denote this by W1 ↔ W2.  

For example, we have already noted that:

(A → B) ↔ (¬A v B)

2. DISTRIBUTE, GO OVER HANDOUT WITH RULES OF 
EQUIVALENCE 

Especially note properties of quantifiers, including effect of 
negation 

IV.Formalization using the First Order Predicate Calculus.

A. We use the term “formalization” to describe the process of converting 
an English statement into an equivalent expression in some formal 
language like predicate calculus.  Any sort of automated reasoning 
process will require some sort of formalization scheme.

B. In general, when we formalize an English statement:

1. We convert verbs to predicates
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2. We convert nouns and adjectives to constants.

3. Clauses of the form: “Every ____ has ____ property” or “All 
members of _____ category ____”  generally translate into a WFF 
with one (or more) universally-quantified variables with an 
implication in the scope of the quantifier.

Ex: “Dogs bark” (i.e. “every dog has the barks property” or “all 
members of the dog category bark”)

(∀ X) (dog(X) → barks(X)) 

As a general rule, universally quantified variables always contain a 
top-level implication in their scope - otherwise, we are making a 
statement about every conceivable entity!

Ex: (∀ X) (createdBy(X, god)) might seem to be an exception, but 
this says that God created even Himself, so even this WFF is not 
really correct! 

4.  Where we have a qualified generic noun, we have two basic 
options:

 Ex: “The dog who lives with Garfield does not chase 
cats”  (“There is a dog who lives with Garfield and it is not the 
case that this dog chases cats”)

a) We can use an existentially-quantified variable

(∃X) (dog(X) ^ livesWith(X, garfield) ^ ¬ chasesCats(X))

b) We can create a special sort of name - called a Skolem constant 
in honor of its inventor - to stand for the otherwise unknown 
name of “the dog”, since we do not have the dog's name - only 
the statement that it is the dog who lives with Garfield.  We can 
invent a name like dog1, and formalize as:
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dog(dog1) ^ livesWith(dog1, garfield) ^ ¬ chasesCats(dog1)

That is, sentences of the form “Some _____” generally translate 
into a WFF with one (or more) existentially-quantified 
variables, or Skolem constant(s).

As a general rule, existentially quantified variables do not 
contain a top-level implication in their scope - otherwise, we 
are making a vacuous statement

Ex: (∃X) (god(X) → createdWorld(X)) does not say that God 
created the world - it is also satisfied by any instantiation of X 
where the antecedent is false (e.g. it is true for X = satan, since 
Satan is not God!)   The correct form of the statement would be  
(∃X) (god(X) ^ createdWorld(X))

C. Some examples from the pets world. [have various ones in class do - 
try to find more than one way of formalizing each]

1. “Rocco is a dog”.	
 dog(rocco)
	
 or species(rocco, dog)

2. “Garfield is orange” 	
 orange(garfield)
	
 or color(garfield, orange)

3. “Rocco chases cats”	
 chasesCats(rocco)
	
 or (∀ X) (Cat(X) → chases(rocco, X) 

4. “Cats eat mice” 	
 (∀ X) (cat(X) → eatsMice(X)) 
	
 or (∀ X) (∀ Y) (cat(X) ^ mouse(Y)→ eats(X, Y))

5. “The cat who lives at	
 address(cat1, 11) ^ color(cat1, orange)
#11 is orange”	
 or (∃X)(cat(X)^address(X, 11)^color(X.orange))
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Note: There are a number of wrong ways to formalize this:

(∀ X) (cat(X) ^ address(X, 11) → color(X, orange))

- This does not require that there actually be such a cat - it is satisfied if 
no cat lives at #11.
- This says that any cat who lives at #11 is orange - not that a particular 
cat that lives there is orange.  (This would allow for an arbitrary number 
of orange cats at #11, and would preclude a non-orange cat at #11 - 
though probably the latter is intentional.)

(∀ X) (cat(X) ^ address(X, 11) ^ color(X, orange)

- This says that everything is a cat, lives at #11, and is orange - i.e. all of 
us are orange cats living at #11!

D. Some more complicated examples arise where we need quantifiers 
inside the scope of other quantifiers:

1. “Every mailman has been chased by a dog”

(∀ X) [mailman(X) → (∃Y) { dog(Y) ^ hasChased(Y,X) }]

2. “Every city has a dogcatcher who has been bitten by every dog in 
town” (Example from Nilsson’s earlier book)

(∀ X) [city(X) → (∃Y) 
	
 { dogCatcher(Y) ^ worksFor(Y, X) ^ 
	
 	
 	
 (∀ Z) (dog(Z) ^ livesIn(Z,X) → hasBitten(Z,Y))}]

E. Do semantic net example from Knowledge Representation lecture

1. PROJECT Cawsey Figure 2.2

2. Class exercise: Translate some of the link in net into predicate 
calculus.
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F. It should be clear that formalizing nontrivial statements is, at best, 
difficult.  In fact, the debate over whether all knowledge is, in 
principle, formalizable lies in the background over some of the 
debates about the very possibility of strong symbolic AI. 

V. Making inferences using predicate calculus

A. One of the most important reasons for using predicate calculus in AI is 
that there exists a body of well-understood mechanisms for making 
inferences from predicate-calculus WFFs.  The terminology often 
used in discussing this is the terminology of mathematical proof - note 
that predicate calculus was first developed as a tool for use in the 
proof process.

1. An axiom is a WFF that is asserted to be true without proof.  In an 
AI system, the axioms would be:

a) The domain-specific knowledge rules in the database, and

b) The input data supplied by the user.

2. A theorem is a WFF that can be proven true on the basis of the 
axioms.  In an AI system, the theorems would be:

a) Inferences that can be drawn from the rules and input data (in a  
forward chaining system.)

b) Questions posed by the user. 

Note, for example, that a question like “Who chases 
Alexander?” can be turned into a predicate calculus theorem

(∃X) (chases(X, alexander))
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As we shall see, the method of proof we use with theorems 
containing existentially quantified variables has, as a side effect, 
the finding in the knowledge base of a value for the variable for 
which the desired condition holds.  This, of course, would 
answer the original question.

c) Technically, we say that our task is to prove that a given WFF is 
a theorem - i.e. it is only a theorem if it can be shown to be true.

3. Thus, “reasoning” in a logic-based AI system is accomplished by 
using methods of mathematical proof.  Since these have a long 
history, they provide a wealth of resources for us to draw on in 
doing AI.

B. In formulating proofs, one of our most important tools are the laws of  
inference which allow us to form new theorems from axioms and 
other theorems.  Recall the rules of inference we talked about in 
conjunction with propositional calculus.

1. Modus ponens:	
 	
 	
 A → B,  A
	
 	
 	
 ----------------
	
 	
 	
 	
 B 

2. Modus tolens:	
 	
 	
 A → B,  ¬B
	
 	
 	
 ------------------
	
 	
 	
 	
 ¬A

3. Resolution	
 	
 	
 A v B,  ¬B v C
	
 	
 	
 ---------------------
	
 	
 	
 	
 A v C

a) Note that A, B and C may be single expressions, complex 
expressions, or NIL - empty.
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(1)  For example, if we resolve:

	
 A v B
	
 ¬B

we get A since “C” is NIL

(Formally, we are resolving (A v B) with (¬B v false), which 
leads to (A v false), which implies A)

(2) If we resolve	
 A1 v A2 v A3 v B ...
with	
 	
 ¬B v C1 v C2 v C3 ..., 
we get 	
 A1 v A2 v A3 ... v C1 v C2 v C3 ...

(We do this by using the associative property of disjunction, 
treating A1 v A2 v A3... as “A” and  C1 v C2 v C3... as “C”.)

b) If we resolve B with ¬B - ie. both “A” and “C” are NIL, we get 
NIL.  If the outcome of any resolution operation is NIL, then 
the clauses involved are contradictory.  We will use this in the 
method of resolution refutation, which is a special form of 
proof by contradiction.

It turns out that this particular proof strategy is easily 
automated, and is the basis of the inference procedure used by 
Prolog.

VI.Unification

A. We have learned about proof rules in the propositional calculus that 
can be also used in the predicate calculus.  What happens, though, 
when we try to do a proof with axioms/theorems that contain 
variables?

1. The rule of universal specialization (instantiation) says:

Given 	
 (∀ X)w(X)	
 -- where w is some WFF containing X
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We may infer	
 w(a)	
 	
 -- where a is any constant

Ex:    From	
 (∀ X) (dog(X) → chasesCats(X)
	
 We infer  dog(rocco) → chasesCats(rocco)

(We also infer dog(bjork) → chasesCats(bjork) - which is a true 
statement since I am not a dog!)

2. When our clauses contain variables it is possible to use 
specialization to resolve clauses containing disjuncts that are not 
exact opposites.

Ex: Suppose we have 	
 (∀ X) (dog(X) → chasesCats(X)
      and	
 	
 	
 dog(rocco)

The former is equivalent to ¬dog(X) v chasesCats(X), from the 
definition of implies.  However, clearly dog(rocco) is not the same 
as dog(X), which is what we would need to resolve them.  By 
using universal specialization we could change dog(X) to dog
(rocco) (and at the same time chasesCats(X) to chasesCats(rocco), 
since both are in the scope of the same quantifier), allowing us to 
resolve:

¬dog(rocco) v chasesCats(rocco) with dog(rocco) to conclude 
chasesCats(rocco), as desired

B. The process of making substitutions for variables in two clauses so 
that they can be resolved is called unification, and the set of 
substitutions is called a unifier.

Ex: In the above, the unifier is X = rocco

(Note that the substitution is applied to the entirety of the clause, not 
just to the parts that will cancel.)

C. Unification is important for two reasons:

1. It makes resolution of clauses containing variables possible.
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2. We will see later that the unifier(s) used in a resolution proof 
provide our handle for using the proof outcome to answer 
questions.

D. Generally speaking, the necessary unifier will be apparent when 
examining two clauses.   However, there is a whole body of theory on 
unification, including a unification algorithm, that can help us:

1. A substitution is a set of pairs {t1/V1, t2/V2 ...} - meaning that t1 
is to be substituted for V1, t2 for V2 etc.

2. We write an expression followed by a substitution to denote the 
expression that results from making the specified substitution to 
the specified expression.

Ex: 	
 [p(X, f(X, Y))] {a/X, b/Y} ↔ p(a, f(a,b))

3. If we have two formulas A and B (at least one of which contains 
variables) and there is a substitution s that makes them identical, 
then s is a unifier for A and B.  

Ex:	
 A unifier for p(a, X) and p(Y, Z) is {a/Y, X/Z }.

4. Often there will be more than one possible unifier for a pair of formulas

Ex:	
 Another unifier for the above is {a/Y, b/X, b/Z}

(Note that we can substitute a variable, or a term containing variables 
for another variable - provided that the variable being substituted for 
does not appear in the substitution.)

5. When there are multiple possible unifiers, there will be at least one, 
called a most general unifier (mgu), that has the property that all 
other unifiers can be derived by applying some substitution 
AFTER applying the mgu.
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Ex:	
 In the above,{a/Y, X/Z } is an mgu.  If we apply it, and 
	
 then apply a second substitution b/X, we get the second 
	
 unifier we showed.  The reverse would not be possible.

a) Note that the mgu preserves as much generality as possible for 
the two formulas.  When we use unification as part of 
resolution, we must apply the substitution not only to the “B” 
clauses but also to the “A” and “C” clauses.  By using the mgu, 
we leave the  maximum flexibility for the resolvent A v C to 
resolve with other clauses.

b) Note that the mgu is not necessarily unique.  

For example, {a/Y, Z/X} is also an mgu for our example

E. There is an algorithm for finding an mgu, which we will not discuss.  

VII.Resolution Refutation as A Means of Inference

A. Many AI systems that represent knowledge using predicate calculus 
use RESOLUTION REFUTATION as an inference technique for 
deriving new knowledge.  The new knowledge is derived by 
discovering a proof that it must be true if the given knowledge is true - 
i.e. it is a theorem, given the current knowledge as axioms.

1. To use resolution, we must put our axioms into the form of a set of 
clauses 

a) A clause is a set of literals or’ed together, where a literal is a 
simple formula like dog(X) or its negation.)  Moreover, all 
variables in a clause must be universally quantified, so the 
quantifiers are omitted.

To do this, we take advantage of the equivalence

A → B ↔ ¬A v B
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b) In set of clause form, we also standardize variables apart to that 
each clause uses different variable names. 

Recall that the variable name bound by a given quantifier can 
be changed to any other variable name as long as all 
occurrences of the name in the given scope are changed.

c) There is a general algorithm for doing this, which we won’t 
discuss.

2. Resolution refutation operates as follows: to our set of axioms, we  
add the NEGATION of the theorem we wish to prove.  We then 
use resolution until we get to clauses that resolve down to nil - e.g.

B and ¬B

a) This situation indicates that there is a contradiction in our set of 
clauses.

b) If our original axioms were consistent, then the contradiction 
must have arisen because we introduced the negation of what 
we want to prove.  If it is contradiction to believe the negation 
of our theorem, then our theorem must be true.

B. An Example:

 Given the following axioms

	
 (∀ X)( ∀ Y) (dog(X) ^ cat(Y) → chases(X, Y))
	
 dog(rocco)
	
 cat(alexander)

Prove	
 chases(rocco, alexander)
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1. Convert the axioms to clause form

The first is equivalent to the clause

(1)	
 ¬ dog(X) v ¬ cat(Y) v chases(X, Y)

	
 (note how negating the antecedent turns the and to or by
	
 DeMorgan’s theorem; and how the universal quantifier is
	
 dropped because implicit)

The second and third are already clauses - we will refer to these as 
(2) and (3) in the proof

(2)	
 dog(rocco)
(3)	
 cat(alexander)

2. Add the negation of the theorem to the database:

(4)	
 ¬ chases(rocco, alexander)

3. Resolve (4) with (1) with unifier { rocco/X, alexander/Y }

(5)	
 ¬ dog(rocco) v ¬ cat(alexander)

4. Resolve (5) with (2)

(6)	
 ¬ cat(alexander)

5. Resolve (6) with (3)

NIL - a contradiction

6. Since we have been able to “prove” false, our set of axioms plus 
negated theorem are contradictory.  Since the axioms are assumed to 
be non-contradictory, the ability to prove false must have arisen 
from our negated theorem, which must not be true.  But if the 
negated theorem is not true, the original theorem must be true - QED

Note: if we have an initial set of axioms that is contradictory, we can 
prove anything by resolution refutation!
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C. Resolution refutation was introduced as an automated reasoning 
technique by Robinson in 1965.  Its attraction is that it is much easier 
to automate than modus ponens.  It is, in fact, the basis for the proof 
mechanism of Prolog (though this is not obvious until one looks 
closely at what is going on.)

VIII.Actually Using Resolution Refutation

A. To prove a theorem by resolution refutation, we proceed as follows:

1. Convert the axioms to a set of clauses.

2. Negate the theorem, convert the result to a clause, and add it to he 
set of axioms.  This amounts to saying “Assume that our axioms  
are true and our theorem is false”.

- Note: This tends to eliminate existential quantifiers.  Existential 
quantifiers tend to appear in theorems more often than in axioms 
(though this is not an absolute rule by any means.)  Negating an 
existential quantifier turns it into a universal quantifier.

3. Use resolution repeatedly, adding each new resolvent to the set of  
axioms, until some resolvent is NIL (false).  This amounts to 
saying “The outcome of our assumption that our theorem is false is 
a  contradiction.  Therefore, our theorem must be true.”

4. This method is called resolution refutation because we prove a 
theorem true by refuting its negation.

5. It can be shown (though we will not attempt it) that resolution  
refutation is a complete proof method provided that our axioms are 
in clause form.  That is, any theorem that can be proved from a 
given set  of axioms can be proved by resolution refutation.
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B. An example: 

1. Given the following statements:

The father of someone or the mother of someone is an ancestor of 
that person.
An ancestor of someone's ancestor is also an ancestor of that 
person.
Jesse is the father of David.
David is an ancestor of Mary.
Mary is the mother of Jesus.

Prove: Jesse is an ancestor of Jesus

2. Formalization (with conversion to clause form given for the rules):

a) (∀X)(∀Y) [ ( father(X, Y) v mother(X, Y) ) → ancestor(X, Y) ]

¬father(X1, Y1) v ancestor(X1, Y1)	
 [1]
¬mother(X2, Y2) v ancestor(X2, Y2)	
 [2]

b) ∀R)(∀S)(∀T) [ ( ancestor(R, S) ^ ancestor(S, T) ) → ancestor
(R, T) ]

¬ancestor(R, S) v ¬ancestor(S, T) v ancestor(R, T)	
 [3]
c) father(jesse, david)	
[4]
d) ancestor(david, mary)	
 [5]
e) mother(mary, jesus)	
 [6]

Prove: ancestor(jesse, jesus)

PROJECT
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3. Proof

a) Negated theorem: ¬ancestor(jesse, jesus)	
 	
 [7]

b) Resolving [7] with [3], using { jesse/R, jesus/T }	
 	

¬ancestor(jesse, S) v ¬ancestor(S, jesus)	
 	
 [8]

c) Resolving this with [1], using { jesse/X1, S/Y1 }
¬father(jesse, S) v ¬ancestor(S, jesus)	
 	
 	
 [9]

d) Resolving this with [4], using { david/S }
¬ancestor(david, jesus)	
 	
 	
 	
 	
 [10]

e) Resolving this with [3], using { david/R, jesus/T }
¬ancestor(david, S) v ¬ancestor(S, jesus)	
 	
 [11]

f) Resolving this with [5] , using   { mary/S }
¬ancestor(mary, jesus)	
 	
 	
 	
 	
 [12]

g) Resolving this with [2], using  { mary/X2, jesus/Y2 }
¬mother(mary, jesus)	
 	
 	
 	
 	
 [13]

h) Resolving this with [6]
NIL - QED

PROJECT
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C. Resolution refutation can not only be used to prove theorems, but also 
to answer questions.  

1. Example:  Earlier we developed a resolution refutation proof of 
chases(rocco, alexander), given the following axioms (in clause 
form)

(1)	
 ¬ dog(X) v ¬ cat(Y) v chases(X, Y)
(2)	
 dog(rocco)
(3) 	
 cat(alexander)

Suppose, instead, we were trying to answer the question “What 
animal chases Alexander?”

a) We can formalize the question as

(∃X) (chases(X, alexander))

 -- where our goal is to prove that such an animal exists in such 
a way as to find out who it is.

b) Negating and converting to clause form (using the rules of 
equivalence for WFFs)

¬(∃X) (chases(X, alexander))	
 becomes
(∀ X) (¬chases(X, alexander))	
becomes
(∀ Z) (¬chases(Z, alexander))	
 becomes
¬chases(Z, alexander)	
 (universal quantifier implicit)

(Call this clause (4))

c) Resolving (4) with axiom (1), with unifier X/Z, alexander/Y:

(5) 	
 ¬dog(X)  v ¬cat(alexander)

34



d) Resolving (5) with axiom (3)

(6)	
 ¬dog(X)

e) Resolving (6) with axiom (2), with unifier rocco/X

NIL

f) To answer our original question, we apply the composition of 
the unifiers we used to the original query (with the standardized 
apart variable names.)

(1)We used the unifiers X/Z, alexander/Y and rocco/X in that 
order

(2)This gives us chases(Z, alexander) {X/Z, alexander/Y, rocco/
X } or

chases(rocco, alexander)

2. We can automate this process by using a strategy called Green’s 
device (named after the logician Cordell Green)  

What we do is to augment the original question with a “dummy” 
term answer(-- whatever variable(s) we want the value for).  Then 
we resolve down to a clause in which only this dummy term 
appears, and it is our answer.  Applying this to the previous 
example:

a) Augmented goal:

(4) 	
 ¬chases(Z, alexander) v answer(Z)

b) After first resolution:

(5) 	
 ¬dog(X)  v ¬cat(alexander) » answer(X)
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c) After second resolution:

(6) 	
 ¬dog(X)  v answer(X)

d) After final resolution

answer(rocco)

3. The original process (or actually its equivalent in Prolog) can be 
used to produce a question answering system

Demo: 	
  	
 Start Prolog from command line.
 	
  	
 Consult interactive_isa
	
 	
 interactive_isa.
	
 	
 rocco is a dog.
	
 	
 alexander is a cat.
	
 	
 dogs chase cats.
	
 	
 quit, saving database to a file, then examine
	
 	
 assertz(print_translation).
	
 	
 interactive_isa.
	
 	
 who chases alexander?
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