
Course Introduction &

Foundational Concepts

CPS 352: Database Systems

Simon Miner

Gordon College

Last Revised: 1/14/15

Agenda

• Introductions

• Course Syllabus

• Databases

• Why

• What

• Terminology and Concepts

• Design Project

Introductions

• Who are you? (name, background, class, major,

minors)

• What excites you about computer science?

• What do you like to do in your free time?

• How is God working in this season of your life?

• What’s one interesting thing about you that nobody

in the room knows?

Course Syllabus

Feedback Sheets

Why Databases?

Databases are Biblical

• Genesis 2:19

• Good information architecture reflects God’s image

• Naming and organizing ideas

• Communicating concepts and information

• Biblical genealogies, census data, laws, building instructions

• Fighting against the chaos and entropy brought on by the
Fall

• “Eternity in the heart of man., yet no one can fathom
what God has done…” Ecclesiastes 3:11

• “Infinite complexity within perfect structure.” Andrew
Pudewa

Why do we need databases?

• Why can’t we just use the file system?

• Store data in files

• Write applications to access and manipulate this

data as they are needed

• That’s the way our (grand)parents did it!

Using the File System

• Sometimes using the file system for your
applications is just fine

• Word processing

• Pictures

• Games

• As the complexity of the application and the amount
of information it works with increase, some
disadvantages of solely relying on the file system
start to surface..

• Example – consider a banking system

Why Use a Database

Instead of the File

System?

File System Disadvantages

• Data redundancy - wasted space

• Update issues – every copy of
the data needs to be modified

• Data inconsistency – sometimes
every copy is not modified

• Data access issues (getting to just
the right data)

• “There’s no program for that.”

• Data isolation - pulling all the
data from disparate sources
together)

• Integrity constraints buried in
application logic – hard to add to
or change

• Atomicity problems – what
happens when the system
crashes during an important
operation?

• Concurrency issues – when
multiple users work with the
same data at the same time

• Security issues – how to give
someone access to some, but not
all, of the data

A Database Can Help.

• “Decouples” applications from the files on the file

system

• Programs go through the database to access data stored

in the underlying files

• This extra software layer is called the database

management system (DBMS)

The Data Dictionary Contains

Data about the Data.

• In addition to storing data, the DBMS also stores
metadata – data about the data – in a data dictionary

• A standard name for each data item that applications
use to access it

• Where the data item is stored (which file and where in
that file)

• Security constraints – rules about who is allowed to
access which data can be applied at the data item level;
these are enforced by the DBMS

• Integrity constraints – which values are valid for data
items; enforced by the DBMS

Databases Have Advantages…

• Atomic transactions – either everything in a batch of

work completes, or no changes are made

• Concurrency management

• Ad hoc / customized access to the data through a

query language

• SQL

…but also Trade-offs.

• The additional DBMS software layer comes with some
costs

• Each application incurs overhead by going through the
database to access its data

• Applications (on their own) cannot optimize access to data
stored in the underlying database files

• Designers and programmers need more (albeit standardized)
knowledge of how a DBMS works

• Additional layer can lead to increased complexity (at least in
the short term)

• Database and file systems are not “either / or” solutions

• More like “both / and”

What is a Database?

Characteristics and Structure

• A database consists of an organization’s operational data

• Data is typically interrelated

• Set of programs to work with the data

• An environment that is consistent, efficient, and convenient to
use

• Does not necessarily include transient data like input and output
streams

• Several aspects from which to look at databases

• Data description layers / levels of abstraction

• Data models

• DBMS Organization

• Transactions

DBMS Abstraction Layers

• Physical – where the data is actually stored (files)

• Logical (conceptual) – describes data and data

relationships in the data

• View – targeted end-user interfaces to database that

highlights some data, hides others, and may include

virtual fields computed from the data.

• Data independence – changes at one abstraction

layer should not impact other layers

Data Models

• Relational model

• Entity-relationship model

• Aggregate data models (NoSQL)

• Key-value data model

• Document data model

• Column-family stores

• Graph model

• Other models

• Object-based

• Semi-structured (XML) models

• Hierarchical

• Network

DBMS Components

• Storage manager

• Interface between the applications and queries using

the system and the low-level data

• Manages interaction with file system

• Facilitates efficient storing, retrieving, and updating

data

• Query processor

• Parses and executes queries efficiently

Query Processor Diagram

A Transaction is a Complete Unit

of Work with the Database.

• Unit of work with the following (ACID) properties

• Atomic

• Consistent

• Isolated

• Durable

• Transaction management involves coping with

system failures as well as concurrent users

Terminology and

Concepts

Covered So Far…

• Database

• Metadata

• Query language

• Data description/abstraction layers (3 of them)

Important Concerns

• Data redundancy

• Data inconsistency

• Security constraints

• Integrity constraints

• Concurrency constraints

Database Building Blocks

• Schema

• Instance

• Entity

• Table

• Row (record)

• Column (attribute)

Database Languages

• Data definition language (DDL)

• Data manipulation language (DML)

• Query Language

• Structured Query Language (SQL)

Design Project

