The Relational Model &
Relational Algebra

CPS 352: Database Systems

Simon Miner
Gordon College
Last Revised: 1/21/15

Agenda

Check-in

The Relational Model

Design Project Requirements Presentations
Relational Algebra

Homework 1

Check-1n

A Collection of Commandments

The Relational Model

Databases Have a History.

Hierarchical and network databases came first

First relational databases pioneered in 1970s
* Simpler than earlier models (easier for programmers)

- Based on mathematical theory of relations (expressed via
relational algebra).

* Had performance 1ssues which helped other models to persist
for a time

« Extensive research (i.e. on indexing strategies) helped
overcome performance bottlenecks

Today, the relational model is dominant in the database
world

* Though other approaches are often used in tandem with 1t —
polyglot persistence

Databases Have Entities and
Relationships.

« All database models must implement the following
two concepts

* Entity — real or abstract “things”
* Relationships between entities

Relational model represents both entities and
relationships via tables.

* Table attributes (columns) must be atomic and single
valued

Mathematical Terminology

Relational database — a collection of relations

Relation — a set of tuples of some arity
* Tuple -- a record in the set

* Arity — number of component attributes in a tuple
* Tuples in any given relation have the same arity
* Order of attributes in tuples is important
* Order of tuples in relation is not important

Attribute — numbered or named component of a tuple
* Drawn from a specific domain or set of possible values

Relation scheme — structure of tuples in a relation

Instance — a specific relation on some scheme
* Subset of the Cartesian product of the domains of its attributes

Alternative Terminology

Mathematical

Relation
Tuple
Attribute

Relation scheme

Alternate

Table
Row
Column

Sometimes represented by
column headings

Tuples are Uniquely Identified
by Keys.

The tuples comprising a relation must be unique
* No duplicates because the relation 1s a set

Superkey — Set of attributes which distinguish any tuple in the
relation from all others

Candidate key — a superkey with no proper subset of attributes
that 1s also a superkey

Primary key — a candidate key chosen to be the basis for
uniquely identifying tuples
* Underlined 1n a relation definition.

Foreign key — column(s) in one table that comprise the primary
key of another table

* Represent relationships in a relational database

Nulls are for Missing on
Undefined Attribute Values.

Special value NULL assigned to a field when the
attribute’s value is unknown or does not exist

NULL is not the same as:

* String of spaces (“ %)

« Empty string ()

« Zero (0)

- NULL (NULL = NULL even returns false)

Databases can specify not null constraints on columns
which must have values

* 1.e. Candidate, primary, and foreign key columns

Schemas and Instances

* Schema — the logical design of a database

+ Database schema comprised of tables (relations) and their
relationships with one another

» Instance — a snapshot of the actual data (relations) in the
database at a given point in time

Schema diagram — depicts entities and relationships in a
database schema

* Primary keys shaded or underlined

- Foreign keys represented by arrows between related tables

University Schema Diagram

takes

ID
course_id

sec_id

semester

section

course_id
sec_id
semester
year
building
room_no
time_slot_id

year
grade

student

ID

name
dept_name
tot_cred

course

A A A A

time_slot

course_id

title
dept_name
credits

department

classroom

building

room_no

capacity

time_slot_id

day

start_time
end_time

dept_name
building
budget

prereq

course_id
prereq_id

teaches

ID
course_id
sec_id
semester

year

advisor

s_id
i_id

instructor

1D
name
dept_name

salary

Design Project
Requirements
Presentations

Library Schema Diagram

borrower checked-out book

borrower-id borrower-id call-number
call-number
last-name title

first-name date-due author

employee

reserve-book
ssn

call-number
last-name

first-name
salary
supervisor-ssn

course-id

Simplifying assumptions for this example:

1) author of a book is single-valued

2) there is only one copy of a book with a given call number
3) a given book can only be on reserve for a single course
4) course-id is presumably a foreign key in a table not shown

Example Library Instance

borrower(borrower id, last_name, first_name)

12345 aardvark anthony
20147 cat charlene
89754 dog donna
60984 fox frederick
54872 zebra zelda

book(call number, title, author)

QA76.093 Wenham Zoo Guide elephant
RZ12.905 Fire Hydrants I Have Known dog
LM925.04 21 Ways to Cook a Cat dog
AB123.40 Karate koala

checked_out(borrower id, call number, date_due)

89754 RZ12.905 2002-11-10

89754 LM925.04 2002-11-10
20147 AB123.40 2002-11-15

reserve_book(call number, course_id)

QA76.093 BY123
AB123.40 PEOQ75

employee(ssn, last_name, first_name, salary, supervisor_ssn)
123-45-6789 aardvark anthony 40000 null
567-89-1234 buffalo boris 30000 123-45-6789
890-12-3456 elephant emily 50000 123-45-6789
111-11-1111 fox frederick 45000 567-89-1234

Example Queries Against the
Library Database

What is the name of the borrower
whose borrower 1d 1s 123457

List the names of all borrowers.

What is the title of the book whose
call number 1s QA76.093?

List the titles of all books that are
currently checked out.

List the names of all borrowers
having one or more books
overdue.

List the names of all employees
who earn more than their
SUPETrVISOT.

List the names of all people
connected with the library -

whether borrowers, employees, or
both.

List the names of all borrowers
who are not employees.

List all books needed as course
reserves that are currently checked
out to someone.

List the names of employees
together with their supervisor’s
name.

List the call numbers of all overdue
books, together with the number of
days they are overdue.

What is the average salary of all
employees?

Print a list of borrower 1d's and the
number of books each has out

List the titles of all books, together
with the borrower id of the person
(if any) who has the book out.

Query Languages

All DBMS’s support at least one query language which
allow for the following

* Interactive usage

+ Ability to embed within applications in programming
languages

Classifications

* Formal query language — uses mathematical notation and
concepts useful for research (i.e. proving theorems)

* Relational algebra

* Commercial languages — built on top of mathematical
language principles for easier usage

« SQL

Relational Algebra

Relational Algebra Operations

Involve either one or two relations
* Unary and binary operations

Each operation returns a new relation

* Enables composing or “chaining” of relations

Operation Types
* Primitive Operations
» Composite Operations

* Built with primitive operations, but common enough to
warrant their own operations

- Extended Relational Algebra

Primitive Operations

Selection

Projection

Join — a.k.a. Cartesian Product or Stmple Join
Rename

Union

Difference

Selection Retrieves Rows.

Select rows/tuples from a table/relation which meet
certain criteria

Denoted by lowercase Greek letter sigma -- ¢

Example: What 1s the name of the borrower whose
borrower 1d 1s 12345?

G porrower _id = 12345 DOTTOWET

Returns: 12345, aardvark, anthony
* A subset of rows/tuples in a table/relation

Multiple criteria can be specified by logical operators
* A-and

* V- or

* —-- negation (not)

Projection Chooses Columns

Choose only specific columns/attributes from all
rows/tuples 1n a table/relation

Denoted by the lowercase Greek letter p1 -«
Example: List the names of all borrowers

n last_name, first_name borrower

Returns the following rows/tuples
aardvark, anthony
cat, charlene
dog, donna
fox, frederick
zebra, zelda

Relational Algebra Operations
can be Combined.

Relational algebra operations can be combined

Example: What is the title of the book whose call
number 1s QA76.093?

T title O call_number = QA76.093 POOK

Returns: Wenham Zoo Guide

Projection and Duplicate
Results

A projection could produce duplicate rows by suppressing
the column(s)/attribute(s) which distinguish rows.

Example: List authors of books

T author book
* This 1s a problem

Duplicates eliminated because relations are sets

Returns the following
* dog

* elephant

* koala

Cartesian Product / Simple Join
Fetches all Row Combinations

* Select every combination of rows/tuples from two
tables relations

» Result has as many rows as the product of of the
number of rows/tuples in the two tables/relations
being joined

* Result has as many columns/attributes as the sum of
the columns in each table/relation involved in the join

* Denoted by a capital X

Cartesian Product Example

Example: List the titles of all books that are
currently checked out

* Requires an initial Cartesian product

checked out X book

Borrower call date-due call title author

RZ12.905 11-10-02 QA76.093 Wenham Zoo Guide

elephant

RZ12.905 11-10-02 RZ12.905 Fire Hydrants I Have Known
Rz212.905 11-10-02 LM925.04 21 Ways to Cook a Cat
RZ12.905 11-10-02 AB123.40 Karate

LM925.04 11-10-02 QA76.093 Wenham Zoo Guide

elephant

LM925.04 11-10-02 RZ12.905 Fire Hydrants I Have Known
ILM925.04 11-10-02 LMS925.04 21 Ways to Cook a Cat
ILM925.04 11-10-02 AB123.40 Karate

AB123.40 11-15-02 QA76.093 Wenham Zoo Guide

Cartesian Product Example
(continued)

* Apply selection to limit results to meaningful rows/tuples
Y checked_out.call_ number = book.call number (ChGCde_Out X bOOk)

* Yields the following:

89754 RZ12.905 11-10-02 RZ12.905 Fire Hydrants I Have Known
89754 IM925.04 11-10-02 LM925.04 21 Ways to Cook a Cat
20147 AB123.40 11-15-02 AB123.40 Karate

* Use a projection to return only book titles

T titge O checked_out.call number = book.call number (ChGCde_Out X bOOk)

 Which 1n turn yields:

 Fire Hydrants I Have Known
+ 21 Ways to Cook a Cat
+ Karate

Rename Changes the Names
of Tables and Columns.

Renames a given table/relation and potentially its attributes as well
Denoted by the lowercase Greek letter rho — p

Useful in conjunction with joins
+ Especially when joining a table with itself

Example: List the names of all employees who earn more than their
SUpervisor

n employee last_name, employee.first_name

empl flee superv1sor ssn = supervisor.ssn A employee.salary > supervisor.salary

(employee X employee

P supervisor

Returns
* elephant, emily
» fox, frederick

Union “Stacks” Rows from
Multiple Stmilar Tables.

Combine two tables/relations in the same scheme into one
 Eliminates duplicate rows/tuples

Denoted by U set algebra operator

Example: List the names of all people connected with the library -
whether borrowers, employees, or both

(n last_name, first_name bOITOWCI') U (n last_name, first_name employee)

Preparing similar tables/relations for union operation
* Projecting columns/attributes common to both relations
- Renaming attributes

Ditterence “Subtracts” Rows in
One Table from Another Table

Takes rows/tuples from two tables/relations with
the same scheme, and returns only those rows
present in the first table, but not the second

Denoted by — set algebra operator

Example: List the names of all borrowers who are
not employees.

(n last_name, first_name borrower) o (n last_name, first_ name
employee)

Composite Operators

* Intersection
e Natural Join
* Theta Join
* Semijoin

* Antjjoin

Intersection Returns Rows
Common to Multiple Tables.

Returns rows/tuples from two tables/relations with the same
scheme which occur in both of them

Denoted by N set algebra operator

Example: List all books (call numbers only) needed as course
reserves that are currently checked out to someone

(T call number Y€SETVE_bOOK) N (T checked_out)

call number

Can be computed via primitive relational operations
* Given relations R and S:
* Intersection =R - (R -S)

Natural Join Retrieves Matching
Rows Using Shared Column Value.

Special join which returns only those rows/tuples from two
tables/relations which have the same values in one or more
columns/attributes in a selection

Natural join removes duplicate join key values

Denoted by the | X | (bowtie) operator

Example: List all data for books that are checked out
book | X| checked_out

Same as this.

n checked_out.call_number, borrower_id, date_due, title, author

(checked_out X book)

Y checked_out.call number = book.call_number
Based on Cartesian product

Theta Join (0-join) Returns

Matching Rows Using Comparisons.

Join allowing for any arithmetic comparison operator (<, <, =, >, or >), not just
strict equality of values of columns/attributes

Natural join (which does an equality comparison) could actually be a subset of theta joi
* Sometimes referred to as an equijoin

Example: List the names of all employees together with their supervisor’s name
Can be done as follows:
* Cartesian product of the table against itself (renamed appropriately)
« Selection comparing the employee’s and supervisor’s SSN values
* Projection of the desired name data

n elast_name, e.first_name, s.last_name, s. first name

Y €. superv1sor_ssn S.SSn p emp Oyee X p employee)

The selection can be “injected” into the Cartesian product as its join criteria for
1mproved efficiency

employee

employee)

east name, e, 1ﬁrs’c name, s.last_name, s.first_name

p .. employee X

0 e..supervisor_ssn = s.ssn Ps

Semijoin Returns Natural Join
Matches from One Relation.

* Does a natural join and returns attributes from just
one of the relations.

» Left (| X) and right (X |) semijoins

« Example: For book | X| checked_out

* Left semijoin (book | X checked_out) returns
call_number, title, and author attributes

 Right semijoin (book X | checked_out) returns
borrower_id, call_number, date_due)

Antyjoin Yields Records
without Matches.

Returns tuples that are not in the natural join results
Denoted by [operator

Example: List data on books that are not checked
out.

* books [1 checked out

* Same as this:
* books — (books | X | checked_out)

Extended Relational Algebra

* Generalized Projection
« Aggregate Functions

 Quter Join

Generalized Projection Allows
Computed Values to be Projected.

* Allow projections to include computations based on
column/attribute values in addition to column
values themselves

« Example: List the call numbers of all overdue books,
together with the number of days they are overdue.

* T call_number, today — date_dueG date_due < today checked_out

Aggregate Functions Give
Summaries of Multiple Rows.

« Allow the use of functions which return summary data from
a set of rows/tuples

° min, max, sum, average to a column/attribute
* count to an entire table/relation

Denoted by the fancy capital G

Example: What 1s the average salary of all employees?
° G average(salary) employee

Can produce summaries by groups

Example: Print a list of borrower 1d's and the number of
books each has out

) borrower_id G count(call_number) Ch€Ck€d_Out

Outer Join Returns Rows That Do
Not Necessarily Have a Match.

Variant of natural or theta join which will include rows/tuples in
one table/relation, even if there is no match in the other

Includes a dummy relation of all nulls in the result row for the
unmatched relation

Variants

» Left outer join — denoted by 1< -- no match in right table OK
» Right outer join — denoted by > -- no match in left table OK
 Full outer join — denoted by < -- no match in either table OK

Example: List the titles of all books, together with the borrower 1d
of the person (if any) who has the book checked out.

T borrower id, title book > checked_out

Homework 1

