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Check-in 



The Entities and Relationships of  the Psalms 
Psalm 30, 31, and 32 (NIV) 



Some Assertions about Psalm 

Data 
• Each psalm is identified by a number, has a text, and 

may have a type, recipient, and zero or more instruments 

• An author is identified by a name and has a 
position.  An author may write multiple psalms, but 
every author must be associated with at least one psalm. 

• An occasion is identified by a name and has a 
location.  A single psalm can be used for multiple 
occasions, but it doesn’t make sense to have an occasion 
without a psalm. (How boring would that be!) 

• A psalm can describe one or more acts of  God, and 
multiple psalms can describe a single act of  God. 

 



Design Project ERD 

Presentations 

Milestone II 



Database Design 

Principles 



Introduction 

• Terminology review 

• Relation scheme – set of  attributes for some relation (R, R1, R2) 

• Relation – the actual data stored in some relation scheme (r, r1, r2) 

• Tuple – a single actual row in the relation (t, t1, t2) 

• Changes to the library database schema 

• We make the following updates for this discussion 

• Add the following attributes to the book relation 

• copy_number – a library can have multiple copies of  a book 

• accession_number – unique number (ID) assigned to a copy of  a book when 
the library acquires it 

• New book and checked_out relation scheme 

• Book( call_number, copy_number, accession_number, title, author ) 

• Checked_out( borrower_id, call_number, copy_number, date_due ) 



The Art of  Database Design 

• Designing a database is a balancing act 

• On the one extreme, you can have a universal relation (in which all 

attributes reside within a single relation scheme) 

• Everything( 

    borrower_id, last_name, first_name,  // from borrower 

    call_number, copy_number, 

    accession_number, title, author          // from book 

    date_due                                              // from checked_out 

) 

• Leads to numerous anomalies with changing data in the database 



Break Up Relations with 

Decomposition 

• Decomposition is the process of  breaking up an original 
scheme into two or more schemes 

• Each attribute of  the original scheme appears in at least one 
of  the new schemes 

• But this can be taken too far 

• Borrower( borrower_id, last_name, first_name ) 

• Book( call_number, copy_number, accession_number, title, 
author ) 

• Checked_out( date_due ) 

• Leads to lossy-join problems 



We Want Lossless-Join 

Decompositions 
• Part of  the middle ground in the balancing act 

• Allows decomposition of  the Everything relation 

• Preserves connections between the tuples of  the participating 
relations 

• So that the natural join of  the new relations = the original 
Everything relation 

• Formal definition 

• For some relation scheme R decomposed into two or more 
schemes (R1, R2, … Rn) 

• Where R = R1 ∪ R2 ∪ … ∪ Rn 

• A lossless-join decomposition means that for every legal instance 
r of  R decomposed into r1, r2, … rn of  R1, R2, and Rn 

• r = r1 |X| r2 |X| … |X| rn 



Database Design Goal: Create 

“Good” Relations 

• We want to be able to determine whether a particular 
relation R is in “good” form. 

• We’ll talk about how to do this shortly 

• In the case that a relation R is not in “good” form, 
decompose it into a set of  relations {R1, R2, ..., Rn} such 
that  

• each relation is in good form  

• the decomposition is a lossless-join decomposition 

• Our theory is based on: 

• functional dependencies 

• multivalued dependencies 

 



Functional Dependency (FD) 

• When the value of  a certain set of  attributes uniquely 

determines the value for another set of  attributes 

• Generalization of  the notion of  a key 

• A way to find “good” relations 

• A → B (read: A determines B) 

• Formal definition 

• For some relation scheme R and attribute sets A (A  R) and 

B (B  R) 

• A → B if  for any legal relation on R 

• If  there are two tuples t1 and t2 such that t1(A) = t2(A) 

• It must be the case that t2(B) = t2(B) 



Finding Functional 

Dependencies 

• From keys of  an entity 

• From relationships between entities 

• Implied functional dependencies 



FDs from Entity Keys 

A → BC 



FDs from One to Many / 

Many to One Relationships 

A → BC 

W → XY 

A → BCMWXY 



FDs from One to One 

Relationships 

A → BC 
W → XY 
A → BCMWXY 
W → XYMABC 



FDs from Many to Many 

Relationships 

A → BC 

W → XY 

AW → M 



Implied Functional 

Dependencies 

• Initial set of  FDs logically implies other FDs 

• If  A → B and B → C, then A → C 

• Closure 

• If  F is the set of  functional dependencies we develop 

from the logic of  the underlying reality 

• Then F+ (the transitive closure of  F) is the set consisting 

of  all the dependencies of  F, plus all the dependencies 

they imply 



Rules for Computing F+ 

• We can find F+,  the closure of  F, by repeatedly applying 
Armstrong’s Axioms: 

• if    , then              (reflexivity) 

• Trivial dependency 

• if    , then                   (augmentation) 

• if    , and   , then     (transitivity) 

• Additional rules (inferred from Armstrong’s Axioms) 

• If     and   ,  then      (union) 

• If     , then     and     (decomposition) 

• If      and    , then     (pseudotransitivity) 

 

 

 



Applying the Axioms 

• R = (A, B, C, G, H, I) 
F = {  A  B 
    A  C 
 CG  H 
 CG  I 
    B  H} 

• some members of  F+ 

• A  H         

• by transitivity from A  B and B  H 

• AG  I        

• by augmenting A  C with G, to get AG  CG  
                   and then transitivity with CG  I  

• CG  HI      

• by augmenting CG  I to infer CG  CGI,  

 and augmenting of  CG  H to infer CGI  HI,  

                         and then transitivity 

• or by the union rule  

 



Algorithm to Compute F+ 

• To compute the closure of  a set of  functional 
dependencies F: 

     F + = F 
repeat 
 for each functional dependency f in F+ 

        apply reflexivity and augmentation rules on f 
        add the resulting functional dependencies to F + 

 for each pair of  functional dependencies f1and f2 in F 
+ 

        if f1 and f2 can be combined using transitivity 
   then add the resulting functional 
dependency to F + 

until F + does not change any further 



Algorithm to Compute the 

Closure of  Attribute Sets 

• Given a set of  attributes , define the closure of   under F 
(denoted by +) as the set of  attributes that are 
functionally determined by  under F 

•  Algorithm to compute +, the closure of   under F 

       result := ; 
 while (changes to result) do 
  for each    in F do 
   begin 
    if   result then  result := result    
   end 



Example of  Attribute Set 

Closure 
• R = (A, B, C, G, H, I) 

• F = {A  B 
 A  C  
 CG  H 
 CG  I 
 B  H} 

• (AG)+ 
1. result = AG 

2. result = ABCG (A  C and A  B) 

3. result = ABCGH (CG  H and CG  AGBC) 

4. result = ABCGHI (CG  I and CG  AGBCH) 

• Is AG a candidate key?   
1. Is AG a super key? 

1. Does AG  R? == Is (AG)+  R 

2. Is any subset of  AG a superkey? 

1. Does A  R? == Is (A)+  R 

2. Does G  R? == Is (G)+  R 



Canonical Cover 

• Sets of  functional dependencies may have redundant 
dependencies that can be inferred from the others 

• For example:  A  C is redundant in:   {A  B,   B  C, A  C} 

• Parts of  a functional dependency may be redundant 

• E.g.: on RHS:   {A  B,   B  C,   A  CD}  can be simplified to  
                         {A  B,   B  C,   A  D}  

• E.g.: on LHS:    {A  B,   B  C,   AC  D}  can be simplified to  
                         {A  B,   B  C,   A  D}  

• Intuitively, a canonical cover of  F is a “minimal” set of  
functional dependencies equivalent to F, having no redundant 
dependencies or redundant parts of  dependencies  



Definition of  Canonical Cover 

• A canonical cover for F is a set of  dependencies Fc such that  

• F logically implies all dependencies in Fc, and  

• Fc logically implies all dependencies in F, and 

• No functional dependency in Fc contains an extraneous attribute, and 

• Each left side of  functional dependency in Fc is unique. 

• To compute a canonical cover for F: 
repeat 
 Use the union rule to replace any dependencies in F 
   1  1 and 1  2 with 1  1 2  
 Find a functional dependency    with an  
  extraneous attribute either in  or in   
                       /* Note: test for extraneous attributes done using Fc, not F*/ 
  If  an extraneous attribute is found, delete it from     
until F does not change 

• Note: Union rule may become applicable after some extraneous attributes 
have been deleted, so it has to be re-applied 



How to Find a Canonical 

Cover 

• Another algorithm 

• Write F as a set of  dependencies where each has a 
single attribute on the right hand side 

• Eliminate trivial dependencies 

• In which    and    (reflexivity) 

• Eliminate redundant dependencies (implied by other 
dependencies) 

• Combine dependencies with the same left hand side 

• For any given set of  FDs, the canonical cover is not 
necessarily unique 



Uses of  Functional 

Dependencies 

• Testing for lossless-join decomposition 

• Testing for dependency preserving decompositions 

• Defining keys 



Testing for Lossless-Join 

Decomposition 
• The closure of  a set of  FDs can be used to test if  a 

decomposition is lossless-join 

• For the case of R = (R1, R2), we require that for all 
possible relations r on schema R 

  r = R1 (r )    R2 (r )  

• A decomposition of  R into R1 and R2 is lossless join if  at 
least one of  the following dependencies is in F+: 

• R1  R2  R1 

• R1  R2  R2 

• Does the intersection of  the decomposition satisfy at least 
one FD? 



Testing for Dependency 

Preserving Decompositions 
• The closure of  a set of  FDs allows us to test a new tuple being 

inserted into a table to see if  it satisfies all relevant FDs without 
having to do a join 

• This is desirable because joins are expensive 

•  Let Fi be the set of  dependencies F + that include only 
attributes in Ri.  

•  A  decomposition is dependency preserving,  if 

         (F1  F2  …  Fn )
+ = F + 

• If  it is not, then checking updates for violation of  functional 
dependencies may require computing joins, which is expensive. 

• The closure of  a dependency preserving decomposition equals 
the closure of  the original set 

• Can all FDs be tested (either directly or by implication) without 
doing a join? 



Keys and Functional 

Dependencies 

• Given a relation scheme R with attribute set K  R 

• K is a superkey if  K  R 

• K is a candidate key if  there is no subset L of  K such that L 
 R 

• A superkey with one attribute is always a candidate key 

• Primary key is the candidate key K chosen by the designer 

• Every relation must have a superkey (possibly the entire 
set of  attributes) 

• Key attribute – an attribute that is or is part of  a candidate 
key 



Homework 3 


