Database Design
Principles

CPS352: Database Systems

Simon Miner
Gordon College
Last Revised: 2/11/15

Agenda

Check-in
Design Project ERD Presentations

Database Design Principles
* Decomposition

* Functional Dependencies

* Closures

* Canonical Cover

Homework 3

Check-1n

The Entities and Relationships of the Psalms
Psalm 30, 31, and 32 (NIV)

Some Assertions about Psalm
Data

Each psalm 1s 1identified by a number, has a text, and
may have a type, recipient, and zero or more instruments

An author 1s identified by a name and has a
position. An author may write multiple psalms, but
every author must be associated with at least one psalm.

An occasion 1s identified by a name and has a

location. A single psalm can be used for multiple
occasions, but it doesn’t make sense to have an occasion
without a psalm. (How boring would that be!)

A psalm can describe one or more acts of God, and
multiple psalms can describe a single act of God.

Design Project ERD
Presentations

Milestone I1

Database Design
Principles

Introduction

e Terminology review
 Relation scheme — set of attributes for some relation (R, R, R,)
 Relation — the actual data stored in some relation scheme (z, ry, 1)
 Tuple — a single actual row in the relation (t, t, t,)

* Changes to the library database schema

- We make the following updates for this discussion
« Add the following attributes to the book relation

* copy_number — a library can have multiple copies of a book

* accession_number — unique number (ID) assigned to a copy of a book when
the library acquires it

* New book and checked_out relation scheme
* Book(call number, copy number, accession_number, title, author)
* Checked_out(borrower id, call number, copy number, date_due)

The Art of Database Design

Designing a database 1s a balancing act

On the one extreme, you can have a universal relation (in which all
attributes reside within a single relation scheme)

+ Everything(
borrower_id, last_name, first name, // from borrower
call_number, copy_number,
accession_number, title, author // from book

date_due // from checked out

)

Leads to numerous anomalies with changing data in the database

Break Up Relations with
Decomposition

* Decomposition 1s the process of breaking up an original
scheme into two or more schemes

- Each attribute of the original scheme appears in at least one
of the new schemes

But this can be taken too far
* Borrower(borrower_id, last_name, first_name)

* Book(call_number, copy_number, accession_number, title,
author)

* Checked_out(date_due)

Leads to lossy-join problems

We Want Lossless-Join
Decompositions

* Part of the middle ground 1n the balancing act
+ Allows decomposition of the Everything relation

 Preserves connections between the tuples of the participating
relations

* So that the natural join of the new relations = the original
Everything relation

 Formal definition

* For some relation scheme R decomposed into two or more
schemes (R, R,, ... R)

* Where R=R;UR,U...UR,

A lossless-join decomposition means that for every legal instance
r of R decomposed into ry, 1, ... r, of R{, R,, and R

cr=1 [X| 1, [X]| ... [X]| 1,

Database Design Goal: Create
“Good” Relations

We want to be able to determine whether a particular
relation R 1s in “good” form.

- We’ll talk about how to do this shortly

In the case that a relation R is not in "good” form,
decompose it into a set of relations {R, R,, ..., R} such
that

* each relation 1s in good form
* the decomposition is a lossless-join decomposition

Our theory 1s based on:
* functional dependencies
* multivalued dependencies

Functional Dependency (FD)

When the value of a certain set of attributes uniquely
determines the value for another set of attributes

* Generalization of the notion of a key
* A way to find “good” relations
* A — B (read: A determines B)

Formal definition

* For some relation scheme R and attribute sets A (A < R) and
B (BcR)

* A — B if for any legal relation on R
* If there are two tuples t; and t, such that t;(A) = t,(A)
* It must be the case that t,(B) = t,(B)

Finding Functional
Dependencies

* From keys of an entity
* From relationships between entities

* Implied functional dependencies

FDs from Entity Keys

N

FDs from One to Many /
Many to One Relationships

RES L RES

A — BC
W — XY
A —- BCMWXY

FDs tfrom One to One
Relationships

REFS T RPS”

A — BC

W — XY

A —- BCMWXY
W — XYMABC

FDs from Many to Many
Relationships

RES F RS
N

A — BC
W — XY
AW — M

Implied Functional
Dependencies

Initial set of FDs logically implies other FDs
cIfA—>Band B — C,then A —» C

Closure

- If F 1s the set of functional dependencies we develop
from the logic of the underlying reality

* Then F+ (the transitive closure of F) 1s the set consisting
of all the dependencies of F, plus all the dependencies
they imply

Rules for Computing F+

We can find F* the closure of F, by repeatedly applying
Armstrong’s Axioms:

 if fca,thena — f (reflexivity)

» Trivial dependency
cifoa— f thenya— yf (augmentation)
cifoa— f and f— y,thena — vy (transitivity)

Additional rules (inferred from Armstrong’s Axioms)
« If o - fand oo — vy, thena — fy (union)

c Ifao— fy,thena— fanda—y (decomposition)

- If o > f andy f— 9, then oy — O (pseudotransitivity)

Applying the Axioms

* R=(A4,BCGHI
F={ A—>B
A—->C
CG—>H
CG—>1

B— H}

* some members of F*
- A—>H
* by transitivity from A — Band B— H
c AG—>1

* by augmenting 4 — C with G, to get AG — CG
and then transitivity with CG — I

« CG— HI
* by augmenting CG — Ito infer CG — CG],
and augmenting of CG — H to infer CGI — HI,
and then transitivity
* or by the union rule

Algorithm to Compute F+

* To compute the closure of a set of functional
dependencies F:

F+=F
repeat
for each functional dependency fin F*
apply reflexivity and augmentation rules on f
add the resulting functional dependencies to F'*
for each pair of functional dependencies fiand f, in F’

if f; and f, can be combined using transitivity
then add the resulting functional
dependency to F'*
until F'* does not change any further

Algorithm to Compute the
Closure of Attribute Sets

* Given a set of attributes o, define the closure of o under F
(denoted by a*) as the set of attributes that are
functionally determined by o under F

* Algorithm to compute a*, the closure of o under F’

result :== o;
while (changes to result) do
for each — yin F'do
begin
if B < result then result .= result U vy
end

Example of Attribute Set
Closure

R=(4,BCGH]I)

F={A—> B
A—>C
CG->H
CG—1

B— H}

(AG)*
1. result = AG
2. result = ABCG (A— Cand 4 — B)
3. result = ABCGH (CG — Hand CG < AGBC)
4. result = ABCGHI (CG — Iand CG < AGBCH)

Is AG a candidate key?
1. Is AG a super key?
1. Does AG — R? ==1s (AG)* > R
2. Is any subset of AG a superkey?
1. Does4 —> R? ==1s(A)*o R
2. Does G—> R?'==1s(G)*o R

Canonical Cover

Sets of functional dependencies may have redundant
dependencies that can be inferred from the others

* For example: A — Cisredundantin: {4 —>B, B—>C A— C}

 Parts of a functional dependency may be redundant
« Eg:onRHS: {A—> B, B—>C(C, A— CD} can be simplified to
{A—>B, B—>C, A— D}

 Eg:onLHS: {A—>B, B—(C, AC— D} can be simplified to
{A—>B, B>C, A—> D}

Intuitively, a canonical cover of F is a “minimal” set of
functional dependencies equivalent to F, having no redundant
dependencies or redundant parts of dependencies

Definition of Canonical Cover

A canonical cover for F'is a set of dependencies Fsuch that
Flogically implies all dependencies in F, and
F logically implies all dependencies in F, and
No functional dependency in F, contains an extraneous attribute, and
Each left side of functional dependency in F. is unique.

To compute a canonical cover for F:
repeat
Use the union rule to replace any dependencies in F’
o; = PB; and o, — B, with oy = B B,
Find a functional dependency o — [with an
extraneous attribute either in o or in 3
/* Note: test for extraneous attributes done using F, not F*/
If an extraneous attribute 1s found, delete it from o — 3
until /' does not change

Note: Union rule may become applicable after some extraneous attributes
have been deleted, so it has to be re-applied

How to Find a Canonical
Cover

Another algorithm

- Write F as a set of dependencies where each has a
single attribute on the right hand side

- Eliminate trivial dependencies
* In which oo > fand f < a (reflexivity)

» Eliminate redundant dependencies (implied by other
dependencies)

* Combine dependencies with the same left hand side

For any given set of FDs, the canonical cover is not
necessarily unique

Uses of Functional
Dependencies

* Testing for lossless-join decomposition
» Testing for dependency preserving decompositions

* Defining keys

Testing for Lossless-Join
Decomposition

The closure of a set of FDs can be used to test if a
decomposition is lossless-join

For the case of R = (R, R,), we require that for all
possible relations » on schema R

r=1lg;(r) llg,(r)

A decomposition of R into R; and R, 1s lossless join if at
least one of the following dependencies 1s in F*:

* RiNR, >R,
* RiNR, >R,

Does the intersection of the decomposition satisfy at least
one FD?

Testing for Dependency
Preserving Decompositions

The closure of a set of FDs allows us to test a new tuple being
inserted into a table to see if it satisfies all relevant FDs without
having to do a join

This is desirable because joins are expensive

Let F;be the set of dependencies F'+ that include only
attributes in R.

- A decompos1tion is dependency preserving, if
(FLOUFR,VU...OUF)f=F*

 If it is not, then checking updates for violation of functional
dependenc1es may require computing joins, which is expensive.

The closure of a dependency preserving decomposition equals
the closure of the original set

Can all FDs be tested (either directly or by implication) without
doing a join?

Keys and Functional
Dependencies

* (@Given a relation scheme R with attribute set K < R
- K is a superkey if K > R

- K is a candidate key if there 1s no subset L of K such that L
—> R

* A superkey with one attribute 1s always a candidate key
* Primary key is the candidate key K chosen by the designer

« Every relation must have a superkey (possibly the entire
set of attributes)

* Key attribute — an attribute that 1s or is part of a candidate
key

Homework 3

