Database Design Principles

CPS352: Database Systems

Simon Miner Gordon College Last Revised: 2/11/15

Agenda

- Check-in
- Design Project ERD Presentations
- Database Design Principles
 - Decomposition
 - Functional Dependencies
 - Closures
 - Canonical Cover
- Homework 3

Some Assertions about Psalm Data

- Each psalm is identified by a number, has a text, and may have a type, recipient, and zero or more instruments
- An author is identified by a name and has a position. An author may write multiple psalms, but every author must be associated with at least one psalm.
- An occasion is identified by a name and has a location. A single psalm can be used for multiple occasions, but it doesn't make sense to have an occasion without a psalm. (How boring would that be!)
- A psalm can describe one or more acts of God, and multiple psalms can describe a single act of God.

Design Project ERD Presentations

Milestone II

Database Design Principles

Introduction

- Terminology review
 - Relation scheme set of attributes for some relation (R, R₁, R₂)
 - Relation the actual data stored in some relation scheme (r, r_1 , r_2)
 - Tuple a single actual row in the relation (t, t_1, t_2)
- Changes to the library database schema
 - We make the following updates for this discussion
 - Add the following attributes to the book relation
 - copy_number a library can have multiple copies of a book
 - accession_number unique number (ID) assigned to a copy of a book when the library acquires it
 - New book and checked_out relation scheme
 - Book(<u>call_number</u>, <u>copy_number</u>, accession_number, title, author)
 - Checked_out(borrower id, call number, copy number, date_due)

The Art of Database Design

- Designing a database is a balancing act
- On the one extreme, you can have a *universal relation* (in which all attributes reside within a single relation scheme)
 - Everything(

borrower_id, last_name, first_name, // from borrower

call_number, copy_number,

accession_number, title, author // from book date_due

// from checked_out

Leads to numerous anomalies with changing data in the database

Break Up Relations with Decomposition

- *Decomposition* is the process of breaking up an original scheme into two or more schemes
 - Each attribute of the original scheme appears in at least one of the new schemes
- But this can be taken too far
 - Borrower(borrower_id, last_name, first_name)
 - Book(call_number, copy_number, accession_number, title, author)
 - Checked_out(date_due)
- Leads to *lossy-join* problems

We Want Lossless-Join Decompositions

- Part of the middle ground in the balancing act
 - Allows decomposition of the Everything relation
 - Preserves connections between the tuples of the participating relations
 - So that the natural join of the new relations = the original Everything relation
- Formal definition
 - For some relation scheme R decomposed into two or more schemes (R₁, R₂, ... R_n)
 - Where $R = R_1 \cup R_2 \cup \ldots \cup R_n$
 - A *lossless-join decomposition* means that for every legal instance r of R decomposed into $r_1, r_2, ..., r_n$ of R_1, R_2 , and R_n
 - $\mathbf{r} = \mathbf{r}_1 |\mathbf{X}| |\mathbf{r}_2 |\mathbf{X}| ... |\mathbf{X}| |\mathbf{r}_n$

Database Design Goal: Create "Good" Relations

- We want to be able to determine whether a particular relation *R* is in "good" form.
 - We'll talk about how to do this shortly
- In the case that a relation *R* is not in "good" form, decompose it into a set of relations {*R*₁, *R*₂, ..., *R_n*} such that
 - each relation is in good form
 - the decomposition is a lossless-join decomposition
- Our theory is based on:
 - functional dependencies
 - multivalued dependencies

Functional Dependency (FD)

- When the value of a certain set of attributes uniquely determines the value for another set of attributes
 - Generalization of the notion of a key
 - A way to find "good" relations
 - $A \rightarrow B$ (read: A determines B)
- Formal definition
 - For some relation scheme R and attribute sets A (A \subseteq R) and B (B \subseteq R)
 - $A \rightarrow B$ if for any legal relation on R
 - If there are two tuples t_1 and t_2 such that $t_1(A) = t_2(A)$
 - It must be the case that $t_2(B) = t_2(B)$

Finding Functional Dependencies

- From keys of an entity
- From relationships between entities
- Implied functional dependencies

 $A \rightarrow BC$

FDs from One to Many / Many to One Relationships

 $A \rightarrow BC$ $W \rightarrow XY$ $A \rightarrow BCMWXY$

FDs from One to One Relationships

 $A \rightarrow BC$ $W \rightarrow XY$ $A \rightarrow BCMWXY$ $W \rightarrow XYMABC$

FDs from Many to Many Relationships

 $\begin{array}{l} A \rightarrow BC \\ W \rightarrow XY \\ AW \rightarrow M \end{array}$

Implied Functional Dependencies

- Initial set of FDs *logically implies* other FDs
 - If $A \to B$ and $B \to C$, then $A \to C$
- Closure
 - If F is the set of functional dependencies we develop from the logic of the underlying reality
 - Then F+ (the *transitive closure* of F) is the set consisting of all the dependencies of F, plus all the dependencies they imply

Rules for Computing F+

- We can find F^{+,} the closure of F, by repeatedly applying Armstrong's Axioms:
 - if $\beta \subseteq \alpha$, then $\alpha \to \beta$
 - Trivial dependency
 - if $\alpha \rightarrow \beta$, then $\gamma \alpha \rightarrow \gamma \beta$
 - if $\alpha \to \beta$, and $\beta \to \gamma$, then $\alpha \to \gamma$ (transitivity)
- Additional rules (inferred from Armstrong's Axioms)
 - If $\alpha \to \beta and \alpha \to \gamma$, then $\alpha \to \beta \gamma$ (union)
 - If $\alpha \to \beta \gamma$, then $\alpha \to \beta$ and $\alpha \to \gamma$ (decomposition)
 - If $\alpha \rightarrow \beta$ and $\gamma \beta \rightarrow \delta$, then $\alpha \gamma \rightarrow \delta$ (pseudotransitivity)

(augmentation)

(reflexivity)

Applying the Axioms

- R = (A, B, C, G, H, I) $F = \{ A \rightarrow B$ $A \rightarrow C$ $CG \rightarrow H$ $CG \rightarrow I$ $B \rightarrow H \}$
- some members of F^+
 - $A \rightarrow H$
 - by transitivity from $A \rightarrow B$ and $B \rightarrow H$
 - $AG \rightarrow I$
 - by augmenting $A \rightarrow C$ with G, to get $AG \rightarrow CG$ and then transitivity with $CG \rightarrow I$
 - $CG \rightarrow HI$
 - by augmenting $CG \rightarrow I$ to infer $CG \rightarrow CGI$, and augmenting of $CG \rightarrow H$ to infer $CGI \rightarrow HI$, and then transitivity
 - or by the union rule

Algorithm to Compute F+

• To compute the closure of a set of functional dependencies F:

 $F^+ = F$

repeat for each functional dependency f in F^+ apply reflexivity and augmentation rules on fadd the resulting functional dependencies to F^+ for each pair of functional dependencies f_1 and f_2 in Fif f_1 and f_2 can be combined using transitivity

then add the resulting functional dependency to F^+ until F^+ does not change any further

Algorithm to Compute the Closure of Attribute Sets

- Given a set of attributes α, define the *closure* of α under F (denoted by α⁺) as the set of attributes that are functionally determined by α under F
- Algorithm to compute α^+ , the closure of α under *F*

```
result := \alpha;

while (changes to result) do

for each \beta \rightarrow \gamma in F do

begin

if \beta \subseteq result then result := result \cup \gamma

end
```

Example of Attribute Set Closure

• R = (A, B, C, G, H, I)

•
$$F = \{A \rightarrow B \\ A \rightarrow C \\ CG \rightarrow H \\ CG \rightarrow I \\ B \rightarrow H\}$$

- (*AG*)⁺
 - 1. result = AG
 - 2. result = ABCG ($A \rightarrow C$ and $A \rightarrow B$)
 - 3. result = ABCGH (CG \rightarrow H and CG \subseteq AGBC)
 - 4. *result* = ABCGHI ($CG \rightarrow I$ and $CG \subseteq AGBCH$)
- Is *AG* a candidate key?
 - 1. Is AG a super key?
 - 1. Does $AG \rightarrow R? ==$ Is $(AG)^+ \supseteq R$
 - 2. Is any subset of AG a superkey?
 - 1. Does $A \to R$? == Is (A)⁺ \supseteq R
 - 2. Does $G \rightarrow R$? == Is $(G)^+ \supseteq R$

Canonical Cover

- Sets of functional dependencies may have redundant dependencies that can be inferred from the others
 - For example: $A \to C$ is redundant in: $\{A \to B, B \to C, A \to C\}$
 - Parts of a functional dependency may be redundant
 - E.g.: on RHS: $\{A \to B, B \to C, A \to CD\}$ can be simplified to $\{A \to B, B \to C, A \to D\}$
 - E.g.: on LHS: $\{A \rightarrow B, B \rightarrow C, AC \rightarrow D\}$ can be simplified to $\{A \rightarrow B, B \rightarrow C, A \rightarrow D\}$
- Intuitively, a canonical cover of F is a "minimal" set of functional dependencies equivalent to F, having no redundant dependencies or redundant parts of dependencies

Definition of Canonical Cover

- A **canonical cover** for *F* is a set of dependencies F_c such that
 - F logically implies all dependencies in F_{c_i} and
 - F_c logically implies all dependencies in F_c and
 - No functional dependency in F_c contains an extraneous attribute, and
 - Each left side of functional dependency in F_c is unique.

• To compute a canonical cover for *F*: **repeat**

Use the union rule to replace any dependencies in F $\alpha_1 \rightarrow \beta_1$ and $\alpha_1 \rightarrow \beta_2$ with $\alpha_1 \rightarrow \beta_1 \beta_2$ Find a functional dependency $\alpha \rightarrow \beta$ with an extraneous attribute either in α or in β /* Note: test for extraneous attributes done using F_{c_i} not F*/ If an extraneous attribute is found, delete it from $\alpha \rightarrow \beta$ until *F* does not change

• Note: Union rule may become applicable after some extraneous attributes have been deleted, so it has to be re-applied

How to Find a Canonical Cover

- Another algorithm
 - Write F as a set of dependencies where each has a single attribute on the **right hand side**
 - Eliminate trivial dependencies
 - In which $\alpha \rightarrow \beta$ and $\beta \subseteq \alpha$ (reflexivity)
 - Eliminate redundant dependencies (implied by other dependencies)
 - Combine dependencies with the same left hand side
- For any given set of FDs, the canonical cover is not necessarily unique

Uses of Functional Dependencies

- Testing for lossless-join decomposition
- Testing for dependency preserving decompositions
- Defining keys

Testing for Lossless-Join Decomposition

- The closure of a set of FDs can be used to test if a decomposition is lossless-join
- For the case of $R = (R_1, R_2)$, we require that for all possible relations *r* on schema *R*

 $r = \prod_{R1}(r) \quad \prod_{R2}(r)$

- A decomposition of R into R_1 and R_2 is lossless join if at least one of the following dependencies is in F^+ :
 - $R_1 \cap R_2 \rightarrow R_1$
 - $R_1 \cap R_2 \rightarrow R_2$
- Does the intersection of the decomposition satisfy at least one FD?

Testing for Dependency Preserving Decompositions

- The closure of a set of FDs allows us to test a new tuple being inserted into a table to see if it satisfies all relevant FDs without having to do a join
 - This is desirable because joins are expensive
- Let F_i be the set of dependencies F^+ that include only attributes in R_i .
 - A decomposition is **dependency preserving**, if $(F_1 \cup F_2 \cup \ldots \cup F_n)^+ = F^+$
 - If it is not, then checking updates for violation of functional dependencies may require computing joins, which is expensive.
- The closure of a dependency preserving decomposition equals the closure of the original set
- Can all FDs be tested (either directly or by implication) without doing a join?

Keys and Functional Dependencies

- Given a relation scheme R with attribute set $K \subseteq R$
 - K is a superkey if $K \rightarrow R$
 - K is a candidate key if there is no subset L of K such that L \rightarrow R
 - A superkey with one attribute is always a candidate key
 - Primary key is the candidate key K chosen by the designer
- Every relation must have a superkey (possibly the entire set of attributes)
- *Key attribute* an attribute that is or is part of a candidate key

Homework 3