
Database Design

Principles

CPS352: Database Systems

Simon Miner

Gordon College

Last Revised: 2/11/15

Agenda

• Check-in

• Design Project ERD Presentations

• Database Design Principles

• Decomposition

• Functional Dependencies

• Closures

• Canonical Cover

• Homework 3

Check-in

The Entities and Relationships of the Psalms
Psalm 30, 31, and 32 (NIV)

Some Assertions about Psalm

Data
• Each psalm is identified by a number, has a text, and

may have a type, recipient, and zero or more instruments

• An author is identified by a name and has a
position. An author may write multiple psalms, but
every author must be associated with at least one psalm.

• An occasion is identified by a name and has a
location. A single psalm can be used for multiple
occasions, but it doesn’t make sense to have an occasion
without a psalm. (How boring would that be!)

• A psalm can describe one or more acts of God, and
multiple psalms can describe a single act of God.

Design Project ERD

Presentations

Milestone II

Database Design

Principles

Introduction

• Terminology review

• Relation scheme – set of attributes for some relation (R, R1, R2)

• Relation – the actual data stored in some relation scheme (r, r1, r2)

• Tuple – a single actual row in the relation (t, t1, t2)

• Changes to the library database schema

• We make the following updates for this discussion

• Add the following attributes to the book relation

• copy_number – a library can have multiple copies of a book

• accession_number – unique number (ID) assigned to a copy of a book when
the library acquires it

• New book and checked_out relation scheme

• Book(call_number, copy_number, accession_number, title, author)

• Checked_out(borrower_id, call_number, copy_number, date_due)

The Art of Database Design

• Designing a database is a balancing act

• On the one extreme, you can have a universal relation (in which all

attributes reside within a single relation scheme)

• Everything(

 borrower_id, last_name, first_name, // from borrower

 call_number, copy_number,

 accession_number, title, author // from book

 date_due // from checked_out

)

• Leads to numerous anomalies with changing data in the database

Break Up Relations with

Decomposition

• Decomposition is the process of breaking up an original
scheme into two or more schemes

• Each attribute of the original scheme appears in at least one
of the new schemes

• But this can be taken too far

• Borrower(borrower_id, last_name, first_name)

• Book(call_number, copy_number, accession_number, title,
author)

• Checked_out(date_due)

• Leads to lossy-join problems

We Want Lossless-Join

Decompositions
• Part of the middle ground in the balancing act

• Allows decomposition of the Everything relation

• Preserves connections between the tuples of the participating
relations

• So that the natural join of the new relations = the original
Everything relation

• Formal definition

• For some relation scheme R decomposed into two or more
schemes (R1, R2, … Rn)

• Where R = R1 ∪ R2 ∪ … ∪ Rn

• A lossless-join decomposition means that for every legal instance
r of R decomposed into r1, r2, … rn of R1, R2, and Rn

• r = r1 |X| r2 |X| … |X| rn

Database Design Goal: Create

“Good” Relations

• We want to be able to determine whether a particular
relation R is in “good” form.

• We’ll talk about how to do this shortly

• In the case that a relation R is not in “good” form,
decompose it into a set of relations {R1, R2, ..., Rn} such
that

• each relation is in good form

• the decomposition is a lossless-join decomposition

• Our theory is based on:

• functional dependencies

• multivalued dependencies

Functional Dependency (FD)

• When the value of a certain set of attributes uniquely

determines the value for another set of attributes

• Generalization of the notion of a key

• A way to find “good” relations

• A → B (read: A determines B)

• Formal definition

• For some relation scheme R and attribute sets A (A R) and

B (B R)

• A → B if for any legal relation on R

• If there are two tuples t1 and t2 such that t1(A) = t2(A)

• It must be the case that t2(B) = t2(B)

Finding Functional

Dependencies

• From keys of an entity

• From relationships between entities

• Implied functional dependencies

FDs from Entity Keys

A → BC

FDs from One to Many /

Many to One Relationships

A → BC

W → XY

A → BCMWXY

FDs from One to One

Relationships

A → BC
W → XY
A → BCMWXY
W → XYMABC

FDs from Many to Many

Relationships

A → BC

W → XY

AW → M

Implied Functional

Dependencies

• Initial set of FDs logically implies other FDs

• If A → B and B → C, then A → C

• Closure

• If F is the set of functional dependencies we develop

from the logic of the underlying reality

• Then F+ (the transitive closure of F) is the set consisting

of all the dependencies of F, plus all the dependencies

they imply

Rules for Computing F+

• We can find F+, the closure of F, by repeatedly applying
Armstrong’s Axioms:

• if , then (reflexivity)

• Trivial dependency

• if , then (augmentation)

• if , and , then (transitivity)

• Additional rules (inferred from Armstrong’s Axioms)

• If and , then (union)

• If , then and (decomposition)

• If and , then (pseudotransitivity)

Applying the Axioms

• R = (A, B, C, G, H, I)
F = { A B
 A C
 CG H
 CG I
 B H}

• some members of F+

• A H

• by transitivity from A B and B H

• AG I

• by augmenting A C with G, to get AG CG
 and then transitivity with CG I

• CG HI

• by augmenting CG I to infer CG CGI,

 and augmenting of CG H to infer CGI HI,

 and then transitivity

• or by the union rule

Algorithm to Compute F+

• To compute the closure of a set of functional
dependencies F:

 F + = F
repeat
 for each functional dependency f in F+

 apply reflexivity and augmentation rules on f
 add the resulting functional dependencies to F +

 for each pair of functional dependencies f1and f2 in F
+

 if f1 and f2 can be combined using transitivity
 then add the resulting functional
dependency to F +

until F + does not change any further

Algorithm to Compute the

Closure of Attribute Sets

• Given a set of attributes , define the closure of under F
(denoted by +) as the set of attributes that are
functionally determined by under F

• Algorithm to compute +, the closure of under F

 result := ;
 while (changes to result) do
 for each in F do
 begin
 if result then result := result
 end

Example of Attribute Set

Closure
• R = (A, B, C, G, H, I)

• F = {A B
 A C
 CG H
 CG I
 B H}

• (AG)+
1. result = AG

2. result = ABCG (A C and A B)

3. result = ABCGH (CG H and CG AGBC)

4. result = ABCGHI (CG I and CG AGBCH)

• Is AG a candidate key?
1. Is AG a super key?

1. Does AG R? == Is (AG)+ R

2. Is any subset of AG a superkey?

1. Does A R? == Is (A)+ R

2. Does G R? == Is (G)+ R

Canonical Cover

• Sets of functional dependencies may have redundant
dependencies that can be inferred from the others

• For example: A C is redundant in: {A B, B C, A C}

• Parts of a functional dependency may be redundant

• E.g.: on RHS: {A B, B C, A CD} can be simplified to
 {A B, B C, A D}

• E.g.: on LHS: {A B, B C, AC D} can be simplified to
 {A B, B C, A D}

• Intuitively, a canonical cover of F is a “minimal” set of
functional dependencies equivalent to F, having no redundant
dependencies or redundant parts of dependencies

Definition of Canonical Cover

• A canonical cover for F is a set of dependencies Fc such that

• F logically implies all dependencies in Fc, and

• Fc logically implies all dependencies in F, and

• No functional dependency in Fc contains an extraneous attribute, and

• Each left side of functional dependency in Fc is unique.

• To compute a canonical cover for F:
repeat
 Use the union rule to replace any dependencies in F
 1 1 and 1 2 with 1 1 2
 Find a functional dependency with an
 extraneous attribute either in or in
 /* Note: test for extraneous attributes done using Fc, not F*/
 If an extraneous attribute is found, delete it from
until F does not change

• Note: Union rule may become applicable after some extraneous attributes
have been deleted, so it has to be re-applied

How to Find a Canonical

Cover

• Another algorithm

• Write F as a set of dependencies where each has a
single attribute on the right hand side

• Eliminate trivial dependencies

• In which and (reflexivity)

• Eliminate redundant dependencies (implied by other
dependencies)

• Combine dependencies with the same left hand side

• For any given set of FDs, the canonical cover is not
necessarily unique

Uses of Functional

Dependencies

• Testing for lossless-join decomposition

• Testing for dependency preserving decompositions

• Defining keys

Testing for Lossless-Join

Decomposition
• The closure of a set of FDs can be used to test if a

decomposition is lossless-join

• For the case of R = (R1, R2), we require that for all
possible relations r on schema R

 r = R1 (r) R2 (r)

• A decomposition of R into R1 and R2 is lossless join if at
least one of the following dependencies is in F+:

• R1 R2 R1

• R1 R2 R2

• Does the intersection of the decomposition satisfy at least
one FD?

Testing for Dependency

Preserving Decompositions
• The closure of a set of FDs allows us to test a new tuple being

inserted into a table to see if it satisfies all relevant FDs without
having to do a join

• This is desirable because joins are expensive

• Let Fi be the set of dependencies F + that include only
attributes in Ri.

• A decomposition is dependency preserving, if

 (F1 F2 … Fn)
+ = F +

• If it is not, then checking updates for violation of functional
dependencies may require computing joins, which is expensive.

• The closure of a dependency preserving decomposition equals
the closure of the original set

• Can all FDs be tested (either directly or by implication) without
doing a join?

Keys and Functional

Dependencies

• Given a relation scheme R with attribute set K R

• K is a superkey if K R

• K is a candidate key if there is no subset L of K such that L
 R

• A superkey with one attribute is always a candidate key

• Primary key is the candidate key K chosen by the designer

• Every relation must have a superkey (possibly the entire
set of attributes)

• Key attribute – an attribute that is or is part of a candidate
key

Homework 3

