
Database

Normalization

CPS352: Database Systems

Simon Miner

Gordon College

Last Revised: 2/18/15

Agenda

• Check-in

• Functional Dependencies (continued)

• Team exercise

• Database Normalization

Check-in

Depending on the Psalms
Psalm 46 (NIV)

Psalm ERD

Database

Normalization

The (Evolving) Art of

Database Design
• Goals

• Avoid redundancies and the resulting from insert, update, and
delete anomalies by decomposing schemes as needed

• Ensure that all decompositions are lossless-join

• Ensure that all decompositions are dependency preserving

• Sometimes you cannot have all three

• Allow for redundancy to preserve dependencies

• Or give up dependency preservation to eliminate redundancy

• Never give up lossless-join as doing so would remove the ability
to connect tuples in different relations

• Database normal forms help eliminate redundancy and
anomalies

• Specify a set of decomposition rules to convert a database that is
not in a given normal form into one that is

First Normal Form (1NF)

• A relation scheme R is in 1NF if the domains of all

attributes in R are atomic

• Single and non-composite

• Guarantees that each non-key attribute in R is

functionally dependent on the primary key

Second Normal Form (2NF)

• A 1NF relationship scheme R is in 2NF if each non-key

attribute is fully functionally dependent on each candidate key

• Functionally dependent on the whole key, not just part of it

• This restriction does not apply to key attributes

• Avoids redundancy of information which is dependent on part of

the primary key

• Any non-2NF scheme can be decomposed into 2NF schemes

by factoring out

• The non-key attributes dependent on a portion of a candidate key

• The portion of the candidate key these attributes depend on

• Any 1NF scheme without a composite primary key is in 2NF

Third Normal Form (3NF)

• A 2NF relation scheme R is in 3NF if no non-key
attribute of R is transitively dependent on a candidate key
through some other non-key attribute(s)

• This restriction does not apply to key attributes

• Transitive dependencies on a candidate key lead to insert,
update, and delete anomalies

• Any non-3NF scheme can be decomposed into 3NF
schemes by factoring out

• The transitively dependent attributes

• The “transitional” attributes which connect these to the
candidate key

• Any non-3NF relation can be decomposed into 3NF in a
lossless-join and dependency preserving manner

3NF Decomposition

Algorithm
 Let Fc be a canonical cover for F;

i := 0;
for each functional dependency in Fc do
 if none of the schemas Rj, 1 j i contains
 then begin
 i := i + 1;
 Ri :=
 end
if none of the schemas Rj, 1 j i contains a candidate key for R
 then begin
 i := i + 1;
 Ri := any candidate key for R;
 end
/* Optionally, remove redundant relations */

 repeat
if any schema Rj is contained in another schema Rk
 then /* delete Rj */
 Rj = R;;
 i=i-1;
return (R1, R2, ..., Ri)

Boyce-Codd Normal Form

(BCNF)

• 3NF did not take multiple candidate keys into account

• BCNF developed to address this

• A normalized relation is in BCNF if every FD satisfied by R is of
the form A→B, where A is a superkey

• BCNF is a stronger 3NF

• Every BCNF schema is also in 3NF

• Not every 3NF schema is in BCNF

• Some 3NF schemas cannot be decomposed into BCNF in a
lossless-join and dependency preserving manner

• BCNF does not build on other normal forms

BCNF Decomposition

Algorithm
 result := {R };

done := false;
compute F +;
while (not done) do
 if (there is a schema Ri in result that is not in BCNF)
 then begin
 let be a nontrivial functional dependency that
 holds on Ri such that Ri is not in F +,
 and = ;
 result := (result – Ri) (Ri –) (,);
 end
 else done := true;

 Note: each Ri is in BCNF, and decomposition is lossless-join.

Multivalued Dependencies

(MVDs)
• A set of attributes A multi-determines a set of attributes

B if

• In any relation including attributes A and B

• For any given value of A there is a (non-empty) set of

values for B

• Such that we expect to see all of those B values (and no

others) associated with the given A

• Along with remaining attribute values

• The number of B values associated with a given A value

may vary between A values.

Formal Definition of

Multivalued Dependency

• Let R be a relation schema and let R and R. The
multivalued dependency

 holds on R if in any legal relation r(R), for all pairs for
tuples t1 and t2 in r such that t1[] = t2 [], there exist
tuples t3 and t4 in r such that:

 t1[] = t2 [] = t3 [] = t4 []
 t3[] = t1 []
 t3[R –] = t2[R –]
 t4 [] = t2[]
 t4[R –] = t1[R –]

MVDs and E-R Diagrams

• MVDs correspond to multi-valued attributes

 A → B

A C

Properties of MVDs

• MVDs require the addition of certain tuples

• Example: copies of a book with multiple authors

• Opposite to FDs which prohibit certain tuples

• If A → B, then A →→ B

• FDs are a special case of MVDs

• An MVD is trivial if either of the following is true

• Its right-hand side is a subset of its left-hand side (just like FDs)

• The union of its left- and right-hand sides is the entire scheme

• The closure D+ of D is the set of all FDs and MVDs implied by D

• D+ can be computed from the formal definitions of FD and MVD

• Additional rules of inference (see Appendix C of Database Systems
Concepts)

Fourth Normal Form (4NF)

• A relation schema R is in 4NF for all MVDs in D+

of the form , where R and R, at

least one of the following hold:

• is trivial (i.e., or = R)

• is a superkey for schema R (in which case it is an FD)

• If a relation is in 4NF it is in BCNF

• 4NF avoids redundancies introduced by MVDs

4NF Decomposition

Algorithm
 result: = {R};

done := false;
compute D+;
Let Di denote the restriction of D+ to Ri

 while (not done)
 if (there is a schema Ri in result that is not in 4NF) then
 begin

 let be a nontrivial multivalued dependency that
holds
 on Ri such that Ri is not in Di, and ;
 result := (result - Ri) (Ri -) (,);
 end
 else done:= true;

 Note: each Ri is in 4NF, and decomposition is lossless-join

Database Design Guidelines

• Use the highest normal form possible

• 4NF unless it is not dependency preserving

• BCNF unless (in rare cases) it is not dependency preserving

• 3NF otherwise – never need to compromise beyond this

• Lower normal forms may be useful for efficiency purposes

• Use good keys

• Every attribute should depend on the key, the whole key, and nothing
but the key (BCNF)

• Avoid composite keys (automatic 2NF)

• Generate a unique single-attribute key if needed

• Factor out transitive dependencies (“sub-relations”) into their own
schemes (3NF

• Isolate MVDs to their own schemes (4NF)

Approaches to Database

Design

• Start with a universal relation and decompose it

• The approach taken in this lecture

• Start with an E-R diagram

• Modify it while you normalize it

• Normalize it when converting it to a relational schema

