Database Application
Development

CPS352: Database Systems

Simon Miner
Gordon College
Last Revised: 2/25/15

Agenda

Check-in

Application UI and the World Wide Web
Database Access from Applications
Group Exercise

Application Architecture

Database Design Tips

Exam 1

Check-1n

Application UI and the
World Wide Web

Application Programs and
User Interfaces (UI)

Most database users do not use a query language like SQL

An application program acts as the intermediary between
users and the database

+ Applications split into
 front-end
* middle layer
» backend

Front-end: user interface

- Forms

+ Graphical user interfaces

- Many interfaces are Web-based

Application Architecture
Evolution

« Three distinct eras of application architecture
mainframe (1960’s and 70’s)
personal computer era (1980’s)
Web era (1990’s onwards)

Terminals Desktop PCs Web browsers

Mainframe Computer Web Application Server
Database

Database

(a) Mainframe Era (b) Personal Computer Era (c) Web era

Thick and Thin Clients

e Thick clients
* Much of the work is done on the client, reducing server load

* Requires (complex) business logic software to be downloaded
and installed on the client machine

 Trickier to update and secure business software
* Less communication over network — leads to faster performance

 Thin client

* Most work is done on the server, minimizing the need for
specialized client software

» Updates and security are mostly handled on the server
 Business logic can reside in:

» Application programs or server-side scripts

* Database server itself — stored procedures

* More communication over network — can slow down performance

Web Interface

« Web browsers have become the de-facto standard
(thin client) user interface to databases

Enable large numbers of users to access databases

from anywhere
Avoid the need for downloading/installing specialized
code, while providing a good graphical user interface
« Javascript, Flash and other scripting languages run in
browser, but are downloaded transparently
Available on both desktop and mobile platforms

Examples: banks, airline and rental car reservations,
university course registration and grading, an so on.

The World Wide Web

The Web is a distributed information system based on
hypertext.

Most modern web documents are comprised of:

HTML (HyperText Markup Language) documents containing a
page’s content

« Text, images, semantic tags, links to other pages, forms
CSS (Cascading Style Sheets) to format the page’s layout
« Color, size, positioning and layout, basic animation
JavaScript functions to facilitate the behavior of the page

» User interactions, inline HTTP requests for resources

Separation of concerns
Content vs. layout vs. behavior
« HTML, CSS, and JavaScript can/should be kept in separate files

Frameworks have arisen to facilitate the development of complex
web applications (i.e. jQuery, Angular)

SPA — single page application

An Example Web Page

ID || Name | Department
00128 ||Zhang || Comp. Sci.
12345 ||Shankar| Comp. Sci.
19991 ||Brandt | History

Search for: [Student |

Name: |
 submit |

The Page Content in HTML

<html|>
<head><link href="styles.css” rel="styleshet” type="text/css”></head>

<body>

<table class="“students”>
<tr> <th>|D</th> <th>Name</th> <th>Department</th> </tr>
<tr> <td>00128</td> <td>Zhang</td> <td>Comp. Sci.</td> </tr>

</table>

<form id="student-search” action="PersonQuery" method=get>
Search for:
<select name="persontype"> _
<option value="student" selected>Student </option>
<option value="instructor"> Instructor </option>
</select>
 _
Name: <input t%pe_:text size=20 name="name” />
<input type=submit value="submit” />

</form>

</body> </html>

The Page Layout in CSS

styles.css

body {
l}aackground-color: HIFFFAT

Students {
border-width: 1px;
border-style: solid;

.students td { _
background-color: aguamarine;
border: 1px solid,;

E)addlng: 5px

#student-search {
display: inline;

Uniform Resource LLocators
(URLs)

* In the Web, functionality of pointers is provided by Uniform
Resource Locators (URLS).

 URL example: http://www.acm.org/sigmod

The first part indicates how the document is to be accessed

 “http” indicates that the document is to be accessed using the
Hyper Text Transfer Protocol.

The second part gives the unique name of a machine on the
Internet (domain).

The rest of the URL identifies the document within the
machine (path and query string).

« The local identification can be:
* The path name of a file on the machine, or

* An identifier (path name) of a program, plus arguments to be
passed to the program

e.g., http://www.google.com/search?g=silberschatz

Indicator to front-end JavaScript as to how to execute functionality
or update the page

http://a/
http://www.google.com/search?q=silberschatz
http://www.google.com/search?q=silberschatz

HTTP

« HyperText Transfer Protocol (HTTP) used for
communication with the Web server

HTTPS — secure version of the protocol which
encrypts request and response content
transferred between the client (i.e browsser) and

web server

Web Servers

A Web server can serve as an intermediary to provide access to a
variety of information services

l.e. files, databases, other web servers (via APIs), etc.

The document name (path) in a URL may identify an executable
program, that, when run, generates a HTML document.

When an HTTP server receives a request for such a document, it
executes the program, and sends back the HTML document that is
generated.

The Web client can pass extra arguments with the name of the
document.

To install a new service on the web server, one needs to create
and install an executable that provides that service.

The web browser provides a graphical user interface to the information
service.

Common Gateway Interface (CGl): a standard interface between
web and application server

HTTP and Sessions

The HTTP protocol is stateless

- That s, once the server replies to a request, the server closes the
connection with the client, and forgets all about the request

In contrast, Unix logins and database connections stay connected
until the client disconnects

« retaining user authentication and other information
Motivation: reduces load on server

« operating systems have tight limits on number of open connections on
a machine

Information services need session information
* e.g., user authentication should be done only once per session

Solution: use a cookie

« Or some other state-preserving mechanism (i.e. embedding state in the
URL)

Sessions and Cookies

* A cookie is a small piece of text containing identifying
Information

- Sent by server to browser
« Sent on first interaction, to identify session

- Sent by browser to the server that created the cookie on
further interactions

» part of the HTTP protocol

* Server saves information about cookies it issued, and can
use it when serving a request

* e.g., authentication information, and user preferences

Cookies can be stored permanently or for a limited
time on the browser

Java Servlets

« Java Servlet specification defines an API for
communication between the Web/application

server and application program running in the
server

* e.g., methods to get parameter values from Web
forms, and to send HTML text back to client

« Application program (also called a servlet) is
loaded into the server

+ Each request spawns a new thread in the server
« thread is closed once the request is serviced

Example Servlet Code

Import java.io.*,
import javax.servlet.*;
import javax.servlet.http.*;

public class PersonQueryServlet extends HttpServlet {

public void doGet (HttpServiletRequest request, HttpServletResponse response)
throws ServietException, IOException {

response.setContentType("text/html");

PrintWriter out = response.getWriter();
out.printin("<HEAD><TITLE> Query Result</TITLE></HEAD>");
out.printin("<BODY>");

BODY OF SERVLET (next slide) ...

out.printin("</BODY>");
out.close();

Example Servlet Code
(Continued)

String persontype = request.getParameter("persontype");
String number = request.getParameter("name");

if(persontype.equals("student™)) {

.. code to find students with the specified name ...
... using JDBC to communicate with the database ..

out.printin("<table BORDER COLS=3>");
out.printin(" <tr> <td>ID</td> <td>Name: </td>" + " <td>Department</td> </tr>");

for(... each result ...){

... retrieve ID, name and dept name
... into variables ID, name and deptname

out.printin("<tr> <td>" + ID + "</td>" + "<td>" + name + "</td>" + "<td>" +
deptname
+ "<ftd></tr>");

out.printin("</table>");
} else {

... as above, but for instructors ...

Server-Side Scripting

Server-side scripting simplifies the task of connecting a
database to the Web

Define an HTML document with embedded executable
code/SQL queries.

Input values from HTML forms can be used directly in the
embedded code/SQL queries.

When the document is requested, the Web server executes
the embedded code/SQL queries to generate the actual
HTML document.

Numerous server-side scripting languages

- JSP, PHP
» General purpose scripting languages: VBScript, Perl, Python

Java Server Pages (JSP)

A JSP %e%ge with embedded Java code
<html>
<head> <title> Hello </title> </head>
<body>

<% if (request. getParameter(name”) == null)
out rintin("Hello World®); }
e se {pout printin(“Hello,

+ request.getParameter(“name”)); }
%>

</bod?/>
</htmI>

JSP is compiled into Java + Servlets

JSP allows new tags to be defined, in tag libraries

+ such tags are like library functions, can are used for example to build rich
user interfaces such as paginated display of large datasets

PHP

PHP is widely used for Web server scripting

Extensive libraries including for database access using ODBC

<htmlI>
<head> <title> Hello </title> </head>
<body>

<?php if (lisset($_REQUEST['name’]))

{ echo “Hello World”; }

else { echo “Hello, ” + $ REQUEST['name’]; }
?>

</body>
</html|>

Client Side Scripting

Browsers can fetch certain scripts (client-side scripts) or
programs along with documents, and execute them in “safe
mode” at the client site

- Javascript
+ Adobe Flash
+ Java Applets

Client-side scripts/programs allow documents to be active
* e.g., animation by executing programs at the local site

* e.g., ensure that values entered by users satisfy some
correctness checks

+ Permit flexible interaction with the user.

 Executing programs at the client site speeds up interaction by
avoiding many round trips to server

Javascript

« Javascript very widely used

forms basis of new generation of Web applications (called
Web 2.0 applications) offering rich user interfaces

« Javascript functions can
check input for validity

modify the displayed Web a(ge, by altering the underlin%
document object model (% M) tree representation of the
displayed HTML text

communicate with a Web server to fetch data and modify the
current page using fetched data, without needing to
reload/refresh the page

» forms basis of AJAX technology used widely in Web 2.0
applications

° g% on selecting a country in a drop-down menu, the list of states
in that country is automatically populated in a linked drop-down
menu

Javascript Example

Example of Javascript used to validate form input

<html> <head> _ _
<script type="text/javascript">
function validate() { _
var credits=document.getElementByld("credits").value;
if (isNaN(credits)|| credits<=0 || credits>=16) {
al?rt("cfirledlts must be a number greater than 0 and less than 16");
return false

</script>

</head> <body> _ _
<form action="createCourse" onsubmit="return validate()">
Title: <input type="text" id="title" size="20" />

Credits: <input type="text" id="credits" size="2" />

<Input type="submit" value="Submit” />
</form>

</body> </html>

Web Interfaces to Databases

« Dynamic generation of documents

- Limitations of static HTML documents
e Cannot customize fixed Web documents for individual users.

* Problematic to update Web documents, especially if multiple
Web documents replicate data.

« Solution: Generate Web documents dynamically from data
stored in a database.

« Can tailor the display based on user information stored in the
database.

e.g., customized ads, local news weather, ...

« Displayed information is up-to-date, unlike the static Web
pages
e.g., Lane menus, stock market information, ..

Database Access from
Applications

Ways to Access a Database
from an Application

 JDBC Style (a.k.a. “dynamic” SQL)
 Embedded (“static”) SQL

* Object-relational mapping (ORM)

JDBC Style

« JDBC - Java Database Connectivity

Communicates with various databases
(i.e. Oracle, MySQL, DB2) via vendor-
specific drivers

Provides common API to execute SQL
commands and process their output

* Other languages have similar features
ODBC
Perl DBI
PEAR DB in PHP

Java program
using JDBC

1

JDBC Driver

(specific to a
particular DBMS)

1

JDBC Example

Drop a specified student from a specified course

@param courselD 1d of the course

@param studentName the name of the student

@exception IllegalArgumentException 1f the specified student cannot
be dropped from the specified course - message explains why

*/
public void doDrop(String courselID, String studentName)
throws IllegalArgumentException

{
try
i
int rows = statement.executelpdate(
"DELETE FROM ENROLLED_IN " +
"WHERE ID = "" + courseID + "' AND NAME = '"" + studentMName + "'");

1f (rows — @)
throw new IllegalArgumentException(
"Student 1s not enrolled in course");

}
catch (SQLException e)

{
System.err.println(e.getMessage());
System.err.println("SQL Error " + e.getSQLState());
e.printStackTrace();

Parameterized Queries are More
Efficient, Accurate, and Secure

* A better way to pass variables to SQL
More efficient — only compiles SQL statement once

More accurate — no need to worry about special
database characters

* 1.e. Literal string delimiter (‘) — student_name = O’Reilly
More secure — prevent SQL 1njection

* Also referred to as bind variables
Use “?” or other placeholder for variables in SQL

Statement 1s compiled before it 1s executed — can be
reused later in the program

Pass actual variable values to SQL statement

JDBC Example with
Parameterized Query

S/ Assume there 1s an i1nstance variable declared as follows:
PreparedStatement dropStatement;
/7 The following code needs to be executed just once

dropStatement = connection.prepareStatement(
"DELETE FROM ENROLLED_IN WHERE ID = 7 AND NAME = 7");

A7 The doDrop() procedure now becomes as follows:

public void doDrop(String courselD, String studentName)
throws IllegalArgumentException
{

try
i
dropStatement.setS5tring(l, courselD);
dropStatement.setS5tring(Z, studentMName);
int rows = dropStatement.executelUpdate();
1f (rows — @)
throw new IllegalArgumentException(
"Student 1s not enrolled 1n course™);

¥
catch (SQLException e)

i
System.err.println(e.getMessage());
System.err.println("SQL Error " + e.getSQLState());
e.printStackTrace();

SQL Injection

What would happen if a user specified the following
values to the 1nitial (non-parameterized) version of the
query?

courselD = “CPS352”
studentName = “Aardvark’ OR ‘a’ = ‘a”

Changes the scope of the statement

DELETE FROM ENROLLED_IN
WHERE ID = ‘CPS352’
AND NAME = ‘Aardvark’ OR ‘a’ = ‘a’;

+ Can be used to steal or destroy data

HI, THIS 15

YOUR SON'S SCHOOL.

WE'RE HAVING SOME
(OMPUTER TROUBLE.

K%Tﬁ

Bobby Tables

OH, DEAR - DID HE
BREAK SOMETHING?

IN H‘.JHY /

S

DID YOU REALLY
NAME YOUR SON
Robert'); DROP
TABLE Students:—- 7

!

~OH.YES LUTTLE
BOBBY TABLES,
WE CALL HIM.

WELL, WEVE LOST THIS
YEAR'S STUDENT RECORDS.
T HOPE YOURE HAPEY.

!

AND I HOPE
~~ YOUVE LEARNED

TO SANMIZE YOUR

DATABASE INPUITS.

© XKCD http://xkcd.com/327/

http://xkcd.com/327/

Embedded SOL

SQL(ish) statements are placed directly in the code of a host
language

+ DB2 supports this for Java (SQLJ), C/C++, Perl ,etc.

* SQL bracketed in code (i.e. #sql{ ... } for SQLJ)

* Host variables allow programs to pass variables to the database via the
SQL statement, or vice versa

* Typically preceded by a colon in the SQL (i.e. :categoryName)

* SQL statement processed when it is encountered in program (even in
conditionals or loops)

Pre-processor program
+ Takes a file containing a mixture of source code and SQL (.sqlj file)
* Emits (at least) two things)

* A program in the host language which can be compiled (.java)

* A SQL module (compiled) which gets bound to the underlying DBMS

SQLJ Example

/** Get information on an existing category about to be edited or deleted

@param categoryName the name of the category
@return values recorded in the database for this category - an array

of strings.

@exception an ErrorMessage is thrown with an appropriate message if
the category does not exist

*/
public String[] getCategoryInformation(String categoryName) throws ErrorMessage
{

String [] values = new String[3];

values[@] = categoryName;

int checkoutPeriod, maxBooksOut;

try

{
#sql { select checkout_period, max_books_out

into :checkoutPeriod, :maxBooksOut
from category
where category_name = :categoryName
+;
values[1] = "" + checkoutPeriod;
values[Z] = "" + maxBooksOut;
return values;

s
¥

public 5tring[] getlotegoryInformotion{5tring categoryName) throws ErrorMessage

i
S5tring [] wvalues = new 5tring[3];
values[@] = categoryName;
int checkoutPeriod, maxBooksOut;
try

S*@lineinfo:generated-code*//*@lineinfo:63944%/

.-lf.ulf e o) ol e o e R Rk R R

ff #sgl [select checkout_period, max_books_out

A from category

A where category_name = :categoryName

jj; L T T T 1-=-|--u- o

i _ _ _
sqlj.runtime.profile.RTResultSet __sJT_rtRs;
sqlj.runtime.ConnectionContext __s]T_connltx = sglj.runtime.ref.DefaultContext.getDefaultContext();
if (__sJT_connCtx == nmull) sglj.runtime.error.RuntimeRefErrors. raise_NWULL_DEFAULT_COMM_CTX(D):
sqlj.runtime.ExecutionContext __s)T_execltx = __s]T_connCix.getExecutionContext();
if (__s)T_execCtx == nmull) sglj.runtime.error.RuntimeRefErrors.raise_WULL_EXEC_CTXD);

S5tring __sJT_1 = cotegoryName;
synchronized (__sJIT_execCtx) {

sglj.runtime.profile.RTS5tatement __sJT_stmt = __s)T_execCix.registerStatement(__sJT_connCtx, Daotabase_S5IProfilekeys.ge
try
{ __=s)T_stmt.setString(l, __sJT_1);
sqlj.runtime.profile . RTResultSet __s)T_result = __s]T_execCix.executefuery();
_=s1T_rtRs = __s]1T_result;

Finally TRANSLATION INTO “PURE
i —s]T_execCtx.releaseStatement(); J AVAH PRODUCED BY TI‘[E
2, DB2 SQLJ COMPILER. (THE
{ is;cqlg!.zl:;Ti_lﬁ Rrsei; ﬁﬁl;}}ﬂet[terlmpl.check(ulmns(_sJT_rtns, 233 SQL IS ALSO TR AN SL A’I‘ED
{ sqlj .rl..lrltiIE.Errur.ﬂurltiIEEEfErrurs.rﬂiEEJﬂ_Rﬂﬂ_SELEET_IHTﬂ(};MO A FORI\"I THAT IS NOT
}checkuutPeriﬂd = __s]T_rtRs.getIntNoNull(1); H[]MAN—READABLE)

maxBooksOut = __sJIT_rtRs.getIntMoNull(2);
if (__s)T_rtRs.next())

5qlj.runtime.error. RuntimeRefErrors. raise_MULTI_ROW_SELECT_INTOO):

1
finally

{

Object Relational Mapping
(ORM)

Allows application code to be written on top of object-oriented data
model, while storing data in a traditional relational database

alternative; implement object-oriented or object-relational database to store
object model

* has not been commercially successful

Schema designer has to provide a mapping between object data and
relational schema

e.g. Java class Student mapped to relation student, with corresponding
mapping of attributes

An object can map to multiple tuples in multiple relations

Application opens a session, which connects to the database

Objects can be created and saved to the database using
session.save(object)

mapping used to create appropriate tuples in the database

Query can be run to retrieve objects satisfying specified predicates

Object-Relational Mapping
and Hibernate

 The Hibernate object-relational mapping system (Java) is
widely used

public domain system, runs on a variety of database systems

supports a query language (HQL) that can express complex queries
involving joins

 translates queries into SQL queries
allows relationships to be mapped to sets associated with objects
* e.g. courses taken by a student can be a set in Student object

see page 394 of Database System Concepts for Hibernate code
example

* The Entity Data Model developed by Microsoft
provides an entity-relationship model directly to application

maps data between entity data model and underlying storage, which
can be relational

Entity SQL language operates directly on Entity Data Model

« DBIx::Class package for Perl and the Perl DBI

Web Application
Architecture

Two-Tier Web Architecture

l
web server and
application server
[database server)

browser data é@

server

Three-Tier Web Architecture

|
(web server)

(application server)

(database server)

browser data é'é

server

Application Layers

Presentation or user interface
* model-view-controller (MVC) architecture
« model: (calls to) business logic
« view: presentation of data, depends on display device

» controller: receives events, executes actions, and returns a view to the
user

Business-logic layer

 provides high level view of data and actions on data
« often using an object relational model
 often via web services

 hides details of data storage schema

Data access layer
* 1interfaces between business logic layer and the underlying database

+ provides mapping from object model of business layer to relational
model of database

or might consist of just the database itself (with object mappings in
business logic layer)

Application Architecture
Diagram

1
. p— @@+ Controller
8

Web browser

52

Model

3

Data Access
Layer

=

Database

Web/Application Server

Business Logic Layer

Provides abstractions of entities
* e.g. students, instructors, courses, etc.

Enforces business rules for carrying out actions

* E.g. student can enroll in a class only if she has completed
prerequisites, and has paid her tuition fees

May support workflows which define how a task involving
multiple participants is to be carried out

+ E.g. how to process application by a student applying to a
university

- Sequence of steps to carry out task

 Error handling
* e.g. what to do if recommendation letters not received on time

Web Services

 Allow data on Web to be accessed using remote procedure
call mechanism

« Two approaches are widely used

Representation State Transfer (REST): allows use of
standard HTTP request to a URL to execute a request and
return data

* returned data is encoded either in XML, or in JavaScript Object

Notation (JSON)
JSON is lightweight and immediately usable in Javascript

Big Web Services:

uses XML representation for sending request data, as well as for
returning results

standard protocol layer built on top of HTTP
e.g. SOAP, RPC

More overhead involved, but also more standardized (?)
RESTful web services seem to be winning...

Rapid Application
Development

A lot of effort is required to develop Web application interfaces

more so, to support rich interaction functionality associated with modern
applications

Several approaches to speed up application development
Function library to generate user-interface elements
Drag-and-drop features in an IDE to create user-interface elements
Automatically generate code for user interface from a declarative specification

Above features have been in used as part of rapid application
development (RAD) tools even before advent of Web

Web application development frameworks
Java Server Faces (JSF) includes JSP tag library
Spring Roo (Java)

Ruby on Rails

» Allows easy creation of simple CRUD (create, read, update and delete)
interfaces by code generation from database schema or object model

Perl Catalyst, Dancer, and Mojolicious framework

Web Application Performance
Optimization

« Performance is an issue for popular Web sites

May be accessed by millions of users every day, thousands
of requests per second at peak time

« Caching techniques used to reduce cost of serving pages by
exploiting commonalities between requests

At the server site:

« Caching of JDBC connections between servlet requests
a.k.a. connection pooling

» Caching results of database queries
Cached results must be updated if underlying database changes

» Caching of generated HTML and web service reponses

At the client’s network

» Caching of pages by Web proxy

» Content delivery network (CDN)

Sample Web Application

Architecture Internet

Presentation / Ul Layer

Deskiop Website Application Native 10S Application
View (1OS
View (HTML) wadgets)

Model (Client-
Controller side ORM + web Controller
services)

Model (ORM +
web services)

Business Logic Layer

| Caching Layer A

[Appication / Web Services Tier (Business Logic)

View (JSON)

Controller

Data Access Layer

i Caching Layer

:

Databases

Database Design Tips

The Importance of Good
Names

Names chosen for database objects (i.e. tables, columns) will probably last a
long time

Naming guidelines

* Appropriately descriptive (depending on context)
* Consider a table named “transfer_student”
* Potential candidates for name of primary key column
« ‘“transfer_student_id”, “student_1d”, “1d”
+ “Best” choice may depend on how this column will be accessed (i.e. “select transfer_student.id ...”
* Succinct yet clear

* Consider the name of a table to hold data on candidates for the US House of
Representatives

+ “united_states_house_of_representatives_candidate” vs. “ushrc” — neither is good
* “house_candidate” might be a good balance

Need to consider DBMS character limit restrictions (i.e. Oracle allows a max of 32
characters for names of database objects)

Separate words in names with underscores
* Camel case will not work well because some DBMS’s print names in ALL. UPPERCASE

Tables

Table names
« Singular or plural name of stored entity (be consistent)

* May include short (2-5 character) prefix to group related tables within a single schema
« Example: “dlm” = Downloadable Media” (i.e. dim_product, dlm_vendor)

Columns every table definition should include
* 1d — unique integer value used for primary key
* Independent of all other data in the table that may change (including other candidate keys)
* Helps ensure as high a normal form as possible for the table
Date/time stamp columns
» created and last_modified — for tables whose records might be updated
* timestamp — for tables whose records will never be updated (i.e. page_view)
status — current state of each record in the table
* 1.e. Active, Inactive, Pending

* Provides a way to “turn off” a record without actually deleting it (logic to check this must be coded
in the database application)

Break up “wide” tables with too many columns into smaller tables (decomposition)
+ Sets of related columns that could form their own table (relation)
« Sparsely populated columns

Columns

Column names
* Prefer conciseness: i.e. “page_count” over “number_of_pages”
+ Phrase columns containing Boolean values as questions

* Examples: is_checked_out, can_merge_into_superrobot

* Value of column should answer the question

» Foreign key columns — foreign_table_name_id

Boolean vs. enumerated values

* When creating a column to hold a Boolean value, consider if there could ever be a “third” answer
beyond true and false

Example

* “is_active” column set to true if the record is active and false otherwise

* What happens when a record can be in a pending state

+ “status” would be a better name — allows for a short set of enumerated values (Active, Inactive, Pending)

“Flags in the wind”

* Scenario: want to store many similar pieces of data about a record
* 1.e. preference data: fiction, bibles, homeschool, pastor, music, etc.
* Don’t create separate Boolean columns for each flag

* Do create a separate table to store this information via a one- or many-to-many relationship with the
original table

Application Design

* Keep business logic out of the presentation and data
access layers

* Ties you to a given platform or client and DBMS

 If the web server or database ever changes, need to recode
business logic

 If additional clients or databases need to be supported, need
to duplicate business logic

* Avoid triggers and stored procedures — these store business
logic in the data access layer

* Where should business logic go?

e In the model (MVC) — allows reuse throughout the
application

* In the application tier (as web services)
- Allows access from multiple platforms 7 programming languages

