
Database Application

Development

CPS352: Database Systems

Simon Miner

Gordon College

Last Revised: 2/25/15

Agenda

• Check-in

• Application UI and the World Wide Web

• Database Access from Applications

• Group Exercise

• Application Architecture

• Database Design Tips

• Exam 1

Check-in

Application UI and the

World Wide Web

Application Programs and

User Interfaces (UI)

• Most database users do not use a query language like SQL

• An application program acts as the intermediary between
users and the database

• Applications split into

• front-end

• middle layer

• backend

• Front-end: user interface

• Forms

• Graphical user interfaces

• Many interfaces are Web-based

Application Architecture

Evolution
• Three distinct eras of application architecture

• mainframe (1960’s and 70’s)

• personal computer era (1980’s)

• Web era (1990’s onwards)

Thick and Thin Clients

• Thick clients

• Much of the work is done on the client, reducing server load

• Requires (complex) business logic software to be downloaded
and installed on the client machine

• Trickier to update and secure business software

• Less communication over network – leads to faster performance

• Thin client

• Most work is done on the server, minimizing the need for
specialized client software

• Updates and security are mostly handled on the server

• Business logic can reside in:

• Application programs or server-side scripts

• Database server itself – stored procedures

• More communication over network – can slow down performance

Web Interface

• Web browsers have become the de-facto standard

(thin client) user interface to databases

• Enable large numbers of users to access databases

from anywhere

• Avoid the need for downloading/installing specialized

code, while providing a good graphical user interface

• Javascript, Flash and other scripting languages run in

browser, but are downloaded transparently

• Available on both desktop and mobile platforms

• Examples: banks, airline and rental car reservations,

university course registration and grading, an so on.

The World Wide Web

• The Web is a distributed information system based on
hypertext.

• Most modern web documents are comprised of:

• HTML (HyperText Markup Language) documents containing a
page’s content

• Text, images, semantic tags, links to other pages, forms

• CSS (Cascading Style Sheets) to format the page’s layout

• Color, size, positioning and layout, basic animation

• JavaScript functions to facilitate the behavior of the page

• User interactions, inline HTTP requests for resources

• Separation of concerns

• Content vs. layout vs. behavior

• HTML, CSS, and JavaScript can/should be kept in separate files

• Frameworks have arisen to facilitate the development of complex
web applications (i.e. jQuery, Angular)

• SPA – single page application

An Example Web Page

Search for:
Name:

Student

submit

The Page Content in HTML

<html>
<head><link href=“styles.css” rel=“styleshet” type=“text/css”></head>

<body>

 <table class=“students”>
<tr> <th>ID</th> <th>Name</th> <th>Department</th> </tr>
<tr> <td>00128</td> <td>Zhang</td> <td>Comp. Sci.</td> </tr>
….

 </table>

 <form id=“student-search” action="PersonQuery" method=get>
Search for:
 <select name="persontype">
 <option value="student" selected>Student </option>
 <option value="instructor"> Instructor </option>
 </select>

Name: <input type=text size=20 name="name” />
<input type=submit value="submit” />

 </form>

</body> </html>

The Page Layout in CSS

styles.css

body {
background-color: #ffffff;
}

.students {
border-width: 1px;
border-style: solid;
}

.students td {
background-color: aquamarine;
border: 1px solid;
padding: 5px
}

#student-search {
display: inline;
}

Uniform Resource Locators

(URLs)
• In the Web, functionality of pointers is provided by Uniform

Resource Locators (URLs).

• URL example: http://www.acm.org/sigmod
• The first part indicates how the document is to be accessed

• “http” indicates that the document is to be accessed using the
Hyper Text Transfer Protocol.

• The second part gives the unique name of a machine on the
Internet (domain).

• The rest of the URL identifies the document within the
machine (path and query string).

• The local identification can be:
• The path name of a file on the machine, or

• An identifier (path name) of a program, plus arguments to be
passed to the program
• e.g., http://www.google.com/search?q=silberschatz

• Indicator to front-end JavaScript as to how to execute functionality
or update the page

http://a/
http://www.google.com/search?q=silberschatz
http://www.google.com/search?q=silberschatz

HTTP

• HyperText Transfer Protocol (HTTP) used for

communication with the Web server

• HTTPS – secure version of the protocol which

encrypts request and response content

transferred between the client (i.e browsser) and

web server

Web Servers

• A Web server can serve as an intermediary to provide access to a
variety of information services

• i.e. files, databases, other web servers (via APIs), etc.

• The document name (path) in a URL may identify an executable
program, that, when run, generates a HTML document.

• When an HTTP server receives a request for such a document, it
executes the program, and sends back the HTML document that is
generated.

• The Web client can pass extra arguments with the name of the
document.

• To install a new service on the web server, one needs to create
and install an executable that provides that service.

• The web browser provides a graphical user interface to the information
service.

• Common Gateway Interface (CGI): a standard interface between
web and application server

HTTP and Sessions

• The HTTP protocol is stateless

• That is, once the server replies to a request, the server closes the
connection with the client, and forgets all about the request

• In contrast, Unix logins and database connections stay connected
until the client disconnects

• retaining user authentication and other information

• Motivation: reduces load on server

• operating systems have tight limits on number of open connections on
a machine

• Information services need session information

• e.g., user authentication should be done only once per session

• Solution: use a cookie

• Or some other state-preserving mechanism (i.e. embedding state in the
URL)

Sessions and Cookies

• A cookie is a small piece of text containing identifying
information
• Sent by server to browser

• Sent on first interaction, to identify session

• Sent by browser to the server that created the cookie on
further interactions

• part of the HTTP protocol

• Server saves information about cookies it issued, and can
use it when serving a request

• e.g., authentication information, and user preferences

• Cookies can be stored permanently or for a limited
time on the browser

Java Servlets

• Java Servlet specification defines an API for
communication between the Web/application
server and application program running in the
server

• e.g., methods to get parameter values from Web
forms, and to send HTML text back to client

• Application program (also called a servlet) is
loaded into the server

• Each request spawns a new thread in the server

• thread is closed once the request is serviced

Example Servlet Code
 import java.io.*;

import javax.servlet.*;
import javax.servlet.http.*;

public class PersonQueryServlet extends HttpServlet {

 public void doGet (HttpServletRequest request, HttpServletResponse response)
 throws ServletException, IOException {

 response.setContentType("text/html");
 PrintWriter out = response.getWriter();
 out.println("<HEAD><TITLE> Query Result</TITLE></HEAD>");
 out.println("<BODY>");

 ….. BODY OF SERVLET (next slide) …

 out.println("</BODY>");
 out.close();
 }

}

Example Servlet Code

(Continued)
 String persontype = request.getParameter("persontype");

String number = request.getParameter("name");

if(persontype.equals("student")) {

 .. code to find students with the specified name …
 ... using JDBC to communicate with the database ..

 out.println("<table BORDER COLS=3>");
 out.println(" <tr> <td>ID</td> <td>Name: </td>" + " <td>Department</td> </tr>");

 for(... each result ...){

 ... retrieve ID, name and dept name
 ... into variables ID, name and deptname

 out.println("<tr> <td>" + ID + "</td>" + "<td>" + name + "</td>" + "<td>" +
deptname
 + "</td></tr>");
 }
 out.println("</table>");
} else {

 ... as above, but for instructors …

}

Server-Side Scripting

• Server-side scripting simplifies the task of connecting a
database to the Web

• Define an HTML document with embedded executable
code/SQL queries.

• Input values from HTML forms can be used directly in the
embedded code/SQL queries.

• When the document is requested, the Web server executes
the embedded code/SQL queries to generate the actual
HTML document.

• Numerous server-side scripting languages

• JSP, PHP

• General purpose scripting languages: VBScript, Perl, Python

Java Server Pages (JSP)

• A JSP page with embedded Java code
 <html>
 <head> <title> Hello </title> </head>
 <body>

• <% if (request.getParameter(“name”) == null)
 { out.println(“Hello World”); }
 else { out.println(“Hello, “ + request.getParameter(“name”)); }
 %>

 </body>
 </html>

• JSP is compiled into Java + Servlets

• JSP allows new tags to be defined, in tag libraries
• such tags are like library functions, can are used for example to build rich

user interfaces such as paginated display of large datasets

PHP

• PHP is widely used for Web server scripting

• Extensive libraries including for database access using ODBC

 <html>
 <head> <title> Hello </title> </head>
 <body>

 <?php if (!isset($_REQUEST[‘name’]))
 { echo “Hello World”; }
 else { echo “Hello, ” + $_REQUEST[‘name’]; }
 ?>

 </body>
</html>

Client Side Scripting

• Browsers can fetch certain scripts (client-side scripts) or
programs along with documents, and execute them in “safe
mode” at the client site

• Javascript

• Adobe Flash

• Java Applets

• Client-side scripts/programs allow documents to be active

• e.g., animation by executing programs at the local site

• e.g., ensure that values entered by users satisfy some
correctness checks

• Permit flexible interaction with the user.

• Executing programs at the client site speeds up interaction by
avoiding many round trips to server

Javascript

• Javascript very widely used
• forms basis of new generation of Web applications (called

Web 2.0 applications) offering rich user interfaces

• Javascript functions can
• check input for validity
• modify the displayed Web page, by altering the underling

document object model (DOM) tree representation of the
displayed HTML text

• communicate with a Web server to fetch data and modify the
current page using fetched data, without needing to
reload/refresh the page
• forms basis of AJAX technology used widely in Web 2.0

applications

• e.g. on selecting a country in a drop-down menu, the list of states
in that country is automatically populated in a linked drop-down
menu

Javascript Example

• Example of Javascript used to validate form input
<html> <head>

<script type="text/javascript">
 function validate() {
 var credits=document.getElementById("credits").value;
 if (isNaN(credits)|| credits<=0 || credits>=16) {
 alert("Credits must be a number greater than 0 and less than 16");
 return false
 }
 }
</script>

</head> <body>
<form action="createCourse" onsubmit="return validate()">
 Title: <input type="text" id="title" size="20” />

 Credits: <input type="text" id="credits" size="2” />

 <Input type="submit" value="Submit” />
</form>

</body> </html>

Web Interfaces to Databases

• Dynamic generation of documents

• Limitations of static HTML documents

• Cannot customize fixed Web documents for individual users.

• Problematic to update Web documents, especially if multiple
Web documents replicate data.

• Solution: Generate Web documents dynamically from data
stored in a database.

• Can tailor the display based on user information stored in the
database.

• e.g., customized ads, local news weather, …

• Displayed information is up-to-date, unlike the static Web
pages

• e.g., Lane menus, stock market information, ..

Proverb Finder
Proverbs 3:1-6 (NIV)

Database Access from

Applications

Ways to Access a Database

from an Application

• JDBC Style (a.k.a. “dynamic” SQL)

• Embedded (“static”) SQL

• Object-relational mapping (ORM)

JDBC Style

• JDBC – Java Database Connectivity

• Communicates with various databases

(i.e. Oracle, MySQL, DB2) via vendor-

specific drivers

• Provides common API to execute SQL

commands and process their output

• Other languages have similar features

• ODBC

• Perl DBI

• PEAR DB in PHP

JDBC Example

Parameterized Queries are More

Efficient, Accurate, and Secure

• A better way to pass variables to SQL

• More efficient – only compiles SQL statement once

• More accurate – no need to worry about special
database characters

• i.e. Literal string delimiter (‘) – student_name = O’Reilly

• More secure – prevent SQL injection

• Also referred to as bind variables

• Use “?” or other placeholder for variables in SQL

• Statement is compiled before it is executed – can be
reused later in the program

• Pass actual variable values to SQL statement

JDBC Example with

Parameterized Query

SQL Injection

• What would happen if a user specified the following
values to the initial (non-parameterized) version of the
query?

courseID = “CPS352”
studentName = “Aardvark’ OR ‘a’ = ‘a”

• Changes the scope of the statement

DELETE FROM ENROLLED_IN
 WHERE ID = ‘CPS352’
 AND NAME = ‘Aardvark’ OR ‘a’ = ‘a’;

• Can be used to steal or destroy data

Bobby Tables

© XKCD http://xkcd.com/327/

http://xkcd.com/327/

Embedded SQL

• SQL(ish) statements are placed directly in the code of a host
language

• DB2 supports this for Java (SQLJ), C/C++, Perl ,etc.

• SQL bracketed in code (i.e. #sql{ … } for SQLJ)

• Host variables allow programs to pass variables to the database via the
SQL statement, or vice versa

• Typically preceded by a colon in the SQL (i.e. :categoryName)

• SQL statement processed when it is encountered in program (even in
conditionals or loops)

• Pre-processor program

• Takes a file containing a mixture of source code and SQL (.sqlj file)

• Emits (at least) two things)

• A program in the host language which can be compiled (.java)

• A SQL module (compiled) which gets bound to the underlying DBMS

SQLJ Example

Object Relational Mapping

(ORM)
• Allows application code to be written on top of object-oriented data

model, while storing data in a traditional relational database
• alternative: implement object-oriented or object-relational database to store

object model
• has not been commercially successful

• Schema designer has to provide a mapping between object data and
relational schema
• e.g. Java class Student mapped to relation student, with corresponding

mapping of attributes

• An object can map to multiple tuples in multiple relations

• Application opens a session, which connects to the database

• Objects can be created and saved to the database using
 session.save(object)
• mapping used to create appropriate tuples in the database

• Query can be run to retrieve objects satisfying specified predicates

Object-Relational Mapping

and Hibernate
• The Hibernate object-relational mapping system (Java) is

widely used

• public domain system, runs on a variety of database systems

• supports a query language (HQL) that can express complex queries
involving joins

• translates queries into SQL queries

• allows relationships to be mapped to sets associated with objects

• e.g. courses taken by a student can be a set in Student object

• see page 394 of Database System Concepts for Hibernate code
example

• The Entity Data Model developed by Microsoft

• provides an entity-relationship model directly to application

• maps data between entity data model and underlying storage, which
can be relational

• Entity SQL language operates directly on Entity Data Model

• DBIx::Class package for Perl and the Perl DBI

Web Application

Architecture

Two-Tier Web Architecture

Three-Tier Web Architecture

Application Layers

• Presentation or user interface

• model-view-controller (MVC) architecture

• model: (calls to) business logic

• view: presentation of data, depends on display device

• controller: receives events, executes actions, and returns a view to the
user

• Business-logic layer

• provides high level view of data and actions on data

• often using an object relational model

• often via web services

• hides details of data storage schema

• Data access layer

• interfaces between business logic layer and the underlying database

• provides mapping from object model of business layer to relational
model of database

• or might consist of just the database itself (with object mappings in
business logic layer)

Application Architecture

Diagram

Business Logic Layer

• Provides abstractions of entities

• e.g. students, instructors, courses, etc.

• Enforces business rules for carrying out actions

• E.g. student can enroll in a class only if she has completed
prerequisites, and has paid her tuition fees

• May support workflows which define how a task involving
multiple participants is to be carried out

• E.g. how to process application by a student applying to a
university

• Sequence of steps to carry out task

• Error handling

• e.g. what to do if recommendation letters not received on time

Web Services

• Allow data on Web to be accessed using remote procedure
call mechanism

• Two approaches are widely used

• Representation State Transfer (REST): allows use of
standard HTTP request to a URL to execute a request and
return data

• returned data is encoded either in XML, or in JavaScript Object
Notation (JSON)

• JSON is lightweight and immediately usable in Javascript

• Big Web Services:

• uses XML representation for sending request data, as well as for
returning results

• standard protocol layer built on top of HTTP

• e.g. SOAP, RPC

• More overhead involved, but also more standardized (?)

• RESTful web services seem to be winning…

Rapid Application

Development

• A lot of effort is required to develop Web application interfaces
• more so, to support rich interaction functionality associated with modern

applications

• Several approaches to speed up application development
• Function library to generate user-interface elements

• Drag-and-drop features in an IDE to create user-interface elements

• Automatically generate code for user interface from a declarative specification

• Above features have been in used as part of rapid application
development (RAD) tools even before advent of Web

• Web application development frameworks
• Java Server Faces (JSF) includes JSP tag library

• Spring Roo (Java)

• Ruby on Rails
• Allows easy creation of simple CRUD (create, read, update and delete)

interfaces by code generation from database schema or object model

• Perl Catalyst, Dancer, and Mojolicious framework

Web Application Performance

Optimization

• Performance is an issue for popular Web sites
• May be accessed by millions of users every day, thousands

of requests per second at peak time

• Caching techniques used to reduce cost of serving pages by
exploiting commonalities between requests
• At the server site:

• Caching of JDBC connections between servlet requests
• a.k.a. connection pooling

• Caching results of database queries
• Cached results must be updated if underlying database changes

• Caching of generated HTML and web service reponses

• At the client’s network
• Caching of pages by Web proxy

• Content delivery network (CDN)

Database Design Tips

The Importance of Good

Names
• Names chosen for database objects (i.e. tables, columns) will probably last a

long time

• Naming guidelines

• Appropriately descriptive (depending on context)

• Consider a table named “transfer_student”

• Potential candidates for name of primary key column

• “transfer_student_id”, “student_id”, “id”

• “Best” choice may depend on how this column will be accessed (i.e. “select transfer_student.id …”

• Succinct yet clear

• Consider the name of a table to hold data on candidates for the US House of
Representatives

• “united_states_house_of_representatives_candidate” vs. “ushrc” – neither is good

• “house_candidate” might be a good balance

• Need to consider DBMS character limit restrictions (i.e. Oracle allows a max of 32
characters for names of database objects)

• Separate words in names with underscores

• Camel case will not work well because some DBMS’s print names in ALL UPPERCASE

Tables

• Table names

• Singular or plural name of stored entity (be consistent)

• May include short (2-5 character) prefix to group related tables within a single schema

• Example: “dlm” = Downloadable Media” (i.e. dlm_product, dlm_vendor)

• Columns every table definition should include

• id – unique integer value used for primary key

• Independent of all other data in the table that may change (including other candidate keys)

• Helps ensure as high a normal form as possible for the table

• Date/time stamp columns

• created and last_modified – for tables whose records might be updated

• timestamp – for tables whose records will never be updated (i.e. page_view)

• status – current state of each record in the table

• i.e. Active, Inactive, Pending

• Provides a way to “turn off ” a record without actually deleting it (logic to check this must be coded
in the database application)

• Break up “wide” tables with too many columns into smaller tables (decomposition)

• Sets of related columns that could form their own table (relation)

• Sparsely populated columns

Columns

• Column names

• Prefer conciseness: i.e. “page_count” over “number_of_pages”

• Phrase columns containing Boolean values as questions

• Examples: is_checked_out, can_merge_into_superrobot

• Value of column should answer the question

• Foreign key columns – foreign_table_name_id

• Boolean vs. enumerated values

• When creating a column to hold a Boolean value, consider if there could ever be a “third” answer
beyond true and false

• Example

• “is_active” column set to true if the record is active and false otherwise

• What happens when a record can be in a pending state

• “status” would be a better name – allows for a short set of enumerated values (Active, Inactive, Pending)

• “Flags in the wind”

• Scenario: want to store many similar pieces of data about a record

• i.e. preference data: fiction, bibles, homeschool, pastor, music, etc.

• Don’t create separate Boolean columns for each flag

• Do create a separate table to store this information via a one- or many-to-many relationship with the
original table

Application Design

• Keep business logic out of the presentation and data
access layers

• Ties you to a given platform or client and DBMS

• If the web server or database ever changes, need to recode
business logic

• If additional clients or databases need to be supported, need
to duplicate business logic

• Avoid triggers and stored procedures – these store business
logic in the data access layer

• Where should business logic go?

• In the model (MVC) – allows reuse throughout the
application

• In the application tier (as web services)

• Allows access from multiple platforms / programming languages

Exam 1

