Query Processing Strategies and Optimization

CPS352: Database Systems

Simon Miner
Gordon College
Last Revised: 3/25/15

Agenda

- Check-in
- Exam 1
- Query Processing
- Homework 4
- Design Project Presentations
- Programming Project

Check-in

Exam 1

Query Processing and Optimization

Different Ways to Execute Queries

- Database creates a plan to get the results for a query
- Not just one way to do this.
- Example : Find the titles of all books written by Korth.
- $\pi_{\text {title }} \boldsymbol{\sigma}_{\text {author }}=$ 'Korth' Book $|X|$ BookAuthor
- $\pi_{\text {title }}$ Book $|\mathrm{X}| \boldsymbol{\sigma}_{\text {author }=\text { 'Korth' }}$ BookAuthor
- Good DBMS will transform queries to make them as efficient as possible
- Minimize disk accesses

Selection Strategies

- Linear search - full table scan
- Cost of potentially accessing each disk block containing the desired data
- Binary search (with B+ tree index)
- Exact matches
- Multiple matches
- Range queries
- Complex queries
- Index often requires disk accesses for the index structure as well as for actual data
- Typically far fewer accesses than linear search
- Index root and first few levels may be kept in buffer pool

Query Type vs. Index Type

Condition	Example	Clustering / Primary Index	Secondary Index	Hashed Index
Exact match on candidate key	id =12345	Great!	Great!	Great!
Exact match on non-key	status = 'Active'	N/A	Find first match (+ potential scan)	Find first match (+ potential scan)
Range query	age between 21 and 65	Find first match + sequential scan	Less helpful	Not useful
Complex query	color = 'blue' or status = 'Inactive'	Not useful	Not useful (multiple or multi-column indexes help)	Not useful

Join Strategies

- Joins are most expensive part of query processing
- Number of tuples examined can approach the product of the number of records in tables being joined
- Example
- $\sigma_{\text {Borrower.lastName }}=$ BookAuthor.authorName Borrower X BookAuthor
- Where BookAuthor has 10 K tuples and Borrower has 2 K tuples
- Cartesian join yields 20 million tuples to process

Nested Loop Join

```
for (int i = 0; i < 2000; i ++)
{
    retrieve Borrower[i];
    for (int j = 0; j < 10000; j ++)
    {
        retrieve BookAuthor[j];
        if (Borrower[i].lastName ==
            BookAuthor[j].authorName)
            construct tuple from Borrower[i] &
            BookAuthor[j];
        }
}
```


Nested Block Join

```
for (int i = 0; i < 2000; i += 20)
{
    retrieve block containing Borrower[i]..Borrower[i+19];
    for (int j = 0; j < 10000; j += 20)
    {
        retrieve block containing BookAuthor[j] ..
                        BookAuthor[j+19];
        for (int k = 0; k < 19; k ++)
            for (int l = 0; l < 20; l ++)
            if (Borrower[i+k].lastName ==
                    BookAuthor.[j+l].authorName)
                construct tuple from Borrower[i+k] &
                    BookAuthor[j+l];
    }
}
```


Buffering an Entire Relation

```
for (int i = 0; i < 2000; i += 20)
    retrieve and buffer block containing
        Borrower[i]..Borrower[i+19];
for (int j = 0; j < 10000; j += 20)
{
    retrieve block containing BookAuthor[j] ..
                        BookAuthor[j+19];
    for (int k = 0; k < 2000; k ++)
        for (int l = 0; l < 20; l ++)
            if (Borrower[k].lastName ==
                            BookAuthor.[j+l].authorName)
                    construct tuple from Borrower[k] &
                        BookAuthor[j+l];
}
```


Using Indexes to Speed Up Joins

- Example: Borrower |X| CheckedOut
- Assume
- 2 K Borrower tuples, 1 K CheckedOut tuples
- 20 records per block (so 100 and 50 blocks for each table, respectively)
- We cannot buffer either table entirely
- Without indexes - nested block join takes 5050 or 5100 disk accesses, depending on which table is in the outer loop
- With index on Borrower.borrowerID - exactly one match (PK)
- Scan all 1000 CheckedOut records (50 blocks) - each matches exactly one Borrower record, which can be looked up in the index
- Requires processing only 2000 tuples
- Not quite as good as it seems
- Each borrower may require a separate disk access (50 + $1000=1050$ accesses)
- Traversing index might take multiple disk accesses (especially B+ Tree indexes)

Temporary Indexes

- Indexes created and buffered for the purpose of a single query and then discarded
- Example: neither Borrower nor CheckedOut is indexed
- Borrower |X| CheckedOut might cause a temporary index to be built on Borrower.borrowerID
- If each (dense) index entry takes ~ 10 bytes, entire index will be $\sim 20 \mathrm{~K}$
- Index construction requires reading all 2 K borrowers $=100$ disk accesses
- Join itself costs up to 1050 disk accesses (see previous slide)
- Total of 1150 disk accesses

Merge Join

```
get first tuple from Borrower;
get first tuple from CheckedOut
while (we still have valid tuples from both relations)
{
    if (Borrower.borrowerID == CheckedOut.borrowerID)
    {
        output one tuple to the result;
        get next tuple from CheckedOut
        // We might have more checkouts for this borrower,
        // so keep current borrower tuple
    }
    else if (Borrower.borrowerID < CheckedOut.borrowerID)
        get next tuple from Borrower;
    else
        get next tuple from CheckedOut;
}
```


Order of Joins

- For multiple joins, performance can be greatly impacted by the order in which the joins are done
- Example
- $\pi_{\text {last, first, authorName }}$ Borrower $|X|$ BookAuthor $|X|$ CheckedOut
- Assume 2K borrowers, 1K CheckedOut records, and 10K authors
- Each book has an average of 2 authors
- 3 ways to do the (binary commutative) join operations
- (Borrower|X| BookAuthor) |X| CheckedOut
- (BookAuthor |X| CheckedOut) |X| Borrower
- (Borrower |X| CheckedOut) $\backslash X \mid$ BookAuthor
- Final number of tuples is the same, but intermediate joins create temporary tables which are then joined with the remaining table
- Which way is most efficient in light of this?

Rules of Equivalence

- Two formulations of a query are equivalent if the produce the same set of results
- Not necessarily in the same order
- Example : Find the titles of all books written by Korth.
- select title
from Book natural join BookAuthor where authorName = 'Korth';
- Equivalent relational algebra queries
- $\pi_{\text {title }} \boldsymbol{\sigma}_{\text {author }=\text { 'Korth’ }}$ Book $|\mathrm{X}|$ BookAuthor
- $\pi_{\text {title }}$ Book $|\mathrm{X}| \boldsymbol{\sigma}_{\text {author }=\text { 'Korth' }}$ BookAuthor
- Equivalent, but not the same in terms of performance

Equivalence Rules

1. Conjunctive selection operations can be deconstructed into a sequence of individual selections.
$\left.{ }_{1}(E)={ }_{1}(E)\right)$
2. Selection operations are commutative.

$$
(\quad(E))={ }_{2}(\quad(E))
$$

3. Only the last in a sequence of projection operations is needed, the others can be omitted.

$$
\Pi_{L_{1}}\left(\Pi_{L_{2}}\left(\ldots\left(\Pi_{L n}(E)\right) \ldots\right)\right)=\Pi_{L_{1}}(E)
$$

4. Selections can be combined with Cartesian products and theta joins.

$$
\begin{aligned}
& \text { a. } \sigma_{\theta}\left(E_{1} \times E_{2}\right)=E_{1} \bowtie_{\theta} E_{2} \\
& \text { b. } \sigma_{\theta 1}\left(E_{1} \bowtie{ }_{\theta 2} E_{2}\right)=E_{1} \bowtie_{\theta 1 \wedge \theta 2} E_{2}
\end{aligned}
$$

Equivalence Rules (Cont.)

5. Theta-join operations (and natural joins) are commutative.

$$
E_{1} \bowtie_{\theta} E_{2}=E_{2} \bowtie_{\theta} E_{1}
$$

6. (a) Natural join operations are associative:

$$
\left(E_{1} \bowtie E_{2}\right) \bowtie E_{3}=E_{1} \bowtie\left(E_{2} \bowtie E_{3}\right)
$$

(b) Theta joins are associative in the following manner:
$\left(E_{1} \bowtie_{\theta 1} E_{2}\right) \bowtie_{\theta 2 \wedge \theta 3} E_{3}=E_{1} \bowtie_{\theta 1 \wedge \theta 3}\left(E_{2} \bowtie_{\theta 2} E_{3}\right)$
where θ_{2} involves attributes from only E_{2} and E_{3}.

Equivalence Rules (Cont.)

7. The selection operation distributes over the theta join operation under the following two conditions:
(a) When all the attributes in θ_{0} involve only the attributes of one of the expressions $\left(E_{1}\right)$ being joined.

$$
\sigma_{\theta 0}\left(E_{1} \bowtie_{\theta} E_{2}\right)=\left(\sigma_{\theta 0}\left(E_{1}\right)\right) \bowtie_{\theta} E_{2}
$$

(b) When θ_{1} involves only the attributes of E_{1} and θ_{2} involves only the attributes of E_{2}.

$$
\sigma_{\theta 1} \wedge_{\theta 2}\left(\mathrm{E}_{1} \bowtie_{\theta} \mathrm{E}_{2}\right)=\left(\sigma_{\theta 1}\left(\mathrm{E}_{1}\right)\right) \bowtie_{\theta}\left(\sigma_{\theta 2}\left(\mathrm{E}_{2}\right)\right)
$$

Equivalence Rules (Cont.)

8. The projection operation distributes over the theta join operation as follows:
(a) if θ involves only attributes from $L_{1} \cup L_{2}$:

$$
\prod_{L_{1} \cup L_{2}}\left(E_{1} \bowtie_{\theta} E_{2}\right)=\left(\prod_{L_{1}}\left(E_{1}\right)\right) \bowtie_{\theta}\left(\prod_{L_{2}}\left(E_{2}\right)\right)
$$

(b) Consider a join $E_{1} \bowtie_{\theta} E_{2}$.

Let L_{1} and L_{2} be sets of attributes from E_{1} and E_{2}, respectively.
। Let L_{3} be attributes of E_{1} that are involved in join condition θ, but are not in $L_{1} \cup L_{2}$, and
let L_{4} be attributes of E_{2} that are involved in join condition θ, but are not in $L_{1} \cup L_{2}$.

$$
\Pi_{L_{1} \cup L_{2}}\left(E_{1} \bowtie_{\theta} E_{2}\right)=\Pi_{L_{1} \cup L_{2}}\left(\left(\Pi_{L_{1} \cup L_{3}}\left(E_{1}\right)\right) \bowtie_{\theta}\left(\Pi_{L_{2} \cup L_{4}}\left(E_{2}\right)\right)\right)
$$

Equivalence Rules (Cont.)

9. The set operations union and intersection are commutative

$$
\begin{aligned}
& E_{1} \cup E_{2}=E_{2} \cup E_{1} \\
& E_{1} \cap E_{2}=E_{2} \cap E_{1}
\end{aligned}
$$

n (set difference is not commutative).
10. Set union and intersection are associative.

$$
\begin{aligned}
& \left(E_{1} \cup E_{2}\right) \cup E_{3}=E_{1} \cup\left(E_{2} \cup E_{3}\right) \\
& \left(E_{1} \cap E_{2}\right) \cap E_{3}=E_{1} \cap\left(E_{2} \cap E_{3}\right)
\end{aligned}
$$

11. The selection operation distributes over \cup, \cap and - .

$$
\sigma_{\theta}\left(E_{1}-E_{2}\right)=\sigma_{\theta}\left(E_{1}\right)-\sigma_{\theta}\left(E_{2}\right)
$$

and similarly for \cup and \cap in place of -
Also: $\quad \sigma_{\theta}\left(E_{1}-E_{2}\right)=\sigma_{\theta}\left(E_{1}\right)-E_{2}$

$$
\text { and similarly for } \cap \text { in place of }- \text {, but not for } \cup
$$

12. The projection operation distributes over union

$$
\Pi_{\mathrm{L}}\left(E_{1} \cup E_{2}\right)=\left(\Pi_{\mathrm{L}}\left(E_{1}\right)\right) \cup\left(\Pi_{\mathrm{L}}\left(E_{2}\right)\right)
$$

Push Selections Inward

- Do selections as early as possible
- Reduces ("flattens") the number of records in the relation(s) being joined
- Example:
- $\pi_{\text {title }} \boldsymbol{\sigma}_{\text {author }=\text { 'Korth' }}$ Book $|\mathrm{X}|$ BookAuthor
- $\pi_{\text {title }}$ Book $|X| \sigma_{\text {author }}=$ 'Korth' ${ }^{\prime}$ BookAuthor
- Sometimes this is not feasible
- $\sigma_{\text {Borrower.lastName }}=$ BookAuthor.authorName ${ }^{\text {Borrower X BookAuthor }}$
- i.e. when there are no shared attributes
- Alter the structure of the selection itself
- Find late checked out books that cost more than $\$ 20.00$.
- $\sigma_{\text {purchasePrice }}>20 \wedge$ dateDue $<$ today Book $|X|$ CheckedOut
- $\sigma_{\text {purchasePrice }>20}$ Book $|X| \sigma_{\text {dateDue }<\text { today }}$ CheckedOut

Push Projections Inward

- Do projections as early as possible
- Reduces ("narrows") the number of columns in the relation(s) being joined
- Example:
- $\pi_{\text {lastName, firstName, title, dateDue }}$ Borrower $|X|$ CheckedOut $|X|$ Book
- $\pi_{\text {lastName, firstName, title, dateDue }}$ Borrower $|X|$
($\pi_{\text {borrowerID, title, dateDue }}$ CheckedOut $|\mathrm{X}|$ Book)
- Reduces the number of columns in the temporary table from the intermediate join

Statistics and Query Optimization

- Using statistics about database objects can help speed up queries
- Maintaining statistics as the data in the database changes is a manageable process
- Types of statistics
- Table statistics
- Column statistics

Table Statistics

- On a relation r
- $\mathrm{n}_{\mathrm{r}}=$ number of tuples in the relation
- $b_{r}=$ number of blocks used by the relation
- $1_{\mathrm{r}}=$ size (in bytes) of a tuple in the relation
- $f_{r}=$ blocking factor, number of tuples per block
- Note that $\mathrm{f}_{\mathrm{r}}=$ floor(block size $/ 1_{\mathrm{r}}$) if tuples do not span blocks
- Note that $b_{r}=\operatorname{ceiling}\left(n_{r} / f_{r}\right)$ if tuples in r reside in a single file and are not clustered with other relations

Column Statistics

- Ona column A
- $\mathrm{V}(\mathrm{A}, \mathrm{r})=$ number of distinct values in the column
- If A is a superkey, then $V(A, r)=n_{r}$
- If A is not a superkey, the number of times each column value occurs can be estimated by $n_{r} / V(A, r)$
- If column A is indexed, $\mathrm{V}(\mathrm{A}, \mathrm{r}) \mathrm{s}$ relatively easy to maintain
- Keep track of the count of entries in the index
- May be useful to store a histogram of the relative frequency of column values in different ranges

Estimating the Size of a Join

- Cartesian product-r X s
- Number of tuples in join $=n_{r X s}=n_{r}{ }^{*} n_{s}$
- Size of each tuple in join $=1_{\mathrm{rX} \mathrm{s}}=1_{\mathrm{r}}+1_{\mathrm{S}}$
- Natural join $-\mathrm{r}|\mathrm{X}| \mathrm{s}$, where r and s have A in common
- The size of the join can be estimated in two ways
- The n_{s} tuples of s will join with $n_{r} / V(A, r)$ tuples of r for $\mathrm{n}_{\mathrm{s}}{ }^{*} \mathrm{n}_{\mathrm{r}} / \mathrm{V}(\mathrm{A}, \mathrm{r})$ total tuples
- The n_{r} tuples of r will join with $n_{s} / V(A, s)$ tuples of s for $\mathrm{n}_{\mathrm{r}}{ }^{*} \mathrm{n}_{\mathrm{s}} / \mathrm{V}(\mathrm{A}, \mathrm{s})$ total tuples
- We want to use the smaller of these estimates
- min($\left.n_{r} * n_{s} / V(A, s), n_{s} * n_{r} / V(A, r)\right)=n_{s} * n_{r} / \max (V(A, r), V(A$, s))
- Also note that $\mathrm{V}(\mathrm{A}, \mathrm{r}|\mathrm{X}| \mathrm{s})=\min (\mathrm{V}(\mathrm{A}, \mathrm{r}), \mathrm{V}(\mathrm{A}, \mathrm{s}))$
- Some tuples in the relation with the larger number of column values do not join with any tuples in the other relation

Example Join Estimation

- $\pi_{\text {last, first, authorName }}$ Borrower $|X|$ BookAuthor $|X|$ CheckedOut
- 3 ways to do the join operations - Which is most efficient?
- (Book |X| BookAuthor) |X| CheckedOut
- (BookAuthor $|X|$ CheckedOut) $|X|$ Borrower
- (Borrower $|\mathrm{X}|$ CheckedOut $|X|$ BookAuthor
- Statistics

n_{r}	$\mathrm{V}(\mathbf{A}, \mathbf{r})$
$\mathrm{n}_{\text {Borrower }}=2000$	$\mathrm{~V}($ borrowerID, Borrower $)=2000$
$\mathrm{n}_{\text {CheckedOut }}=1000$	$\mathrm{~V}($ borrower, CheckedOut $)=100$
$\mathrm{n}_{\text {BookAuthor }}=10,000$	$\mathrm{~V}($ callNo, CheckedOut $)=500$
	$\mathrm{~V}($ callNo, BookAuthor $)=5000$

Homework 4

Design Project Presentations

Programming Project

Milestone I

