
Transactions and Crash

Recovery

CPS352: Database Systems

Simon Miner

Gordon College

Last Revised: 4//15

Agenda

• Check-in

• Transactions

• Design Project Presentations

• Crash Recovery

Check-in

Ensuring Data Integrity

• Issues related to preserving data integrity

• Concurrency control

• Crash control

• Transactions are a key concept at the heart of these
matters

• Database is in a consistent state if there are no
contradictions between the data within it

• Temporary inconsistencies occur by necessity, but must not
be allowed to persist

• Example: transfer of funds between bank accounts

Transactions

Transactions are Atomic and

Preserve Consistency.

• A transaction is an atomic operation (unit of work)

involving a series of processing steps including:

• One or more reads from the database (one read per item)

• One or more writes to the database (one write per item)

• Data computations can happen during a transaction, but the

database is mostly concerned with reads and writes

• If the database is in a consistent state at the start of the

transaction, it will be in a consistent state at the end of

the transaction

ACID

• Atomicity – either all of the transaction completes, or
none of it completes

• If any part of the transaction fails, all effects of it must be
removed from the database

• Consistency – database ends the transaction in a
consistent state (provided it started that way)

• Isolation – concurrently executing transactions must be
unaware of each other (as if they ran serially)

• It should look to one as if the other has not started or has
already completed

• Durability – a transaction’s effects must persist in the
database after it completes

Explicit vs. Implicit

Transactions in SQL

• Explicit (within application code)

• begin transaction (txn)

• end transaction (txn)

• Implicit (more common)

• Commit – complete a transaction / write its results to the database

• Rollback – back out all effects of the transaction

• Transaction implicitly begins when a program or database session starts

• Commit or rollback end this transaction and (implicitly start another one)

• If part of a transaction fails, it must be explicitly rolled back in the code

• Autocommit – each (DML) SQL statement in the program / session

treated as an individual transaction and committed upon completion

Transaction States

• Active – from the time a transaction
starts until it fails or reach its
last statement

• Partially committed –
last statement executed, but
changes to database are not
yet permanent (SQL commit)

• Committed – changes to database have
been made permanent

• Failed – logic error or user abort has precluded completion, and
transaction’s changes must be undone (SQL rollback)

• Aborted – all effects of the transaction have been removed

Schedules

• Transaction consists of a set of read and write operations

• Other computations as well, but reads and writes are critical, since they
are the means that one transaction interacts with another

• For two or more concurrent transactions, the relative sequence of
their read and write operations constitutes a schedule

• Example: simultaneous $50 deposit to and $100 withdrawal from a
checking account

• In SQL, these two transactions might look like this

• update checking_account
set balance = balance + 50
where account_no = :acct

• update checking_account
set balance = balance – 100
where account_no = :acct

• Each update statement actually consists of a read and a write operation

Possible Schedules (1)

Schedule Deposit (T1) Withdrawal (T2) Final Balance

S1 read(1000)

write(1050)

read(1050)

write(950)

950

S2 read(1000)

write(1050)

read(1000)

write(900)

900

S3 read(1000)

write(1050)

read(1000)

write(900)

1050

Possible Schedules (2)

Schedule Deposit (T1) Withdrawal (T2) Final Balance

S4

read(900)

write(950)

read(1000)

write(900)

950

S5

read(1000)

write(1050)

read(1000)

write(900)

1050

S6

read(1000)

write(1050)

read(1000)

write(900)

900

We Want Serial or Serializable

Schedules!

• The schedules which yield the correct result are both serial

• One transaction is executed in its entirety before the other starts

• Serial schedules always lead to consistent results

• Non-serial schedules can sometimes also yield consistent results, but

determining this is not always algorithmically feasible

• To preserve data integrity, ensure that a schedule of concurrent

operations is serializable – equivalent to some serial schedule

Equivalence of Schedules

• Two schedules are considered equivalent if operations in

one schedule can be rearranged into another schedule

• Without altering the resulting computation

• Example:

• S1 can be converted to S2

• Swap write(A) and read(B)

operations

• Note that operations in the

same schedule cannot be

reordered

• Could lead to changes in transaction’s computation

Schedule T1 T2

S1 read A

write A

read B

write B

S2 read A

write A

read B

write B

Conflicting Operations

between Transactions
• Two operations in two different transactions conflict if

• They access the same data item (same column value in a single record)

• Not same column in different records

• Not different columns in same record

• At least one of the operations is a
write

• Changing the relative order of two
conflicting operations can result in
different final outcomes

• Examples:

• Schedules 1, 2, and 3 have conflicting
operations – reordering operations
would lead to different outcomes

• Schedules 4 and 5 do not have
operations in conflict – no writes

Schedule T1 T2

S1 write A

read A

S2 read A

write A

S3 write A

write A

S4 read A

read A

S5

read A

read A

Conflict Equivalence

• Two schedules S1 and S2 on the
same set of transactions are
conflict equivalent if one can be
transformed into the other by a
series of interchanges of
non-conflicting operations

• Examples

• S1 and S2 are conflict equivalent

• Access different data items

• S3 and S4 are not conflict equivalent

• A schedule is conflict serializable if
there is a serial schedule to which it
is equivalent

Schedule T1 T2

S1 read A

write A

read B

write B

S2 read A

write A

read B

write B

S3 read A

write A

read A

write B

S4 read A

write A

read A

write B

View Equivalence

• Two schedules S1 and S2 on the same set of transactions are view equivalent
if

• Some transaction in both schedules reads the initial value of the same data
item

• If in S1 some transaction reads a data item that was written by another
transaction, the same holds for the two transactions in S2

• If a transaction does the last write to some data item in S1, it also does the
last write to the same data item in S2

• This is less strict than conflict equivalence

• Requires that two schedules have the same outcome, but don’t necessarily
get there the same way (conflict equivalent)

• Conflict equivalence implies view equivalence, but not vice versa

• A schedule is view serializable if it is view equivalent to some serial
schedule

Equivalence ≠

Producing the Same Result
• Two equivalent schedules (by either standard) will always

produce the same final results

• But not vice versa

• Example: from account deposit and withdrawal schedules

• S1 and S2 produce same result, but are not equivalent

Schedule Deposit (T1) Withdrawal (T2) Final Balance

S1 read(1000)

write (1050)

read(1050)

write(950)

950

S4

read(900)

write(950)

read(1000)

write(900)

950

Testing for Serializability

Ensures Consistency

• To ensure correctness of concurrent operations,

ensure that the schedule followed is serializable

• Want to test a schedule for serializability

• Can be very expensive to test for view serializability,

• More feasible to test for conflict serializability

Precedence Graph

• Construct a precedence graph of a schedule to test it for conflict
serializability

• Each transaction is a node on the precedence graph

• There is a directed edge between two transactions if there are conflicting
operations between them – that is, at least one of the following occurs

• T1 reads an item before T2 writes it

• T1 writes an item before T2 reads it

• T1 writes an item before T2 writes it

• If the resulting graph contains a cycle, the schedule is not conflict
serializable

• If there are no cycles, then any topological sorting of the precedence
graph will give an equivalent serial schedule

Precedence Graph Example 1

• Consider S2 from the deposit/withdrawal schedules

• T1 must do its read before T2 does its write

• T2 must do its read before T1 does its write

• Yields a cyclical

precedence graph

• S2 is not serializable

Schedule Deposit (T1) Withdrawal (T2) Final Balance

S2 read(1000)

write(1050)

read(1000)

write(900)

900

Precedence Graph Example 2

• Consider a transfer of $50 from a savings account (with a $2000

starting balance) to a checking account that occurs at the same time

as a $100 checking account withdrawal via the following schedule

• Note the following conflicting operations in this schedule

• T2 must do its (checking) read before T1 does its (checking) write

• T1 reads the (checking) value written by T2

Transfer (T1) Withdrawal (T2) Final Balances

read savings (2000)

write savings (1950)

read checking (900)

write checking (950)

read checking (1000)

write checking (900)

1950 (savings)

950 (checking)

Precedence Graph Example 2

(Continued)
• Yields this precedence graph

• Acyclic – indicates a

serializable schedule

• T2 can be done before T1

• Leads to the following conflict equivalent serial schedule

Transfer (T1) Withdrawal (T2) Final Balances

read savings (2000)

write savings (1950)

read checking (900)

write checking (950)

read checking (1000)

write checking (900)

1950 (savings)

950 (checking)

Transaction Recoverability

• Schedules must not only serializable, but recoverable

• Unrecoverable schedules can lead to inconsistencies

• A transaction T2 must not commit until any transaction T1 which
produces data used by T2 commits

• If T1 fails, then T2 must also fail

• Avoid cascading rollback – possibility of chain of failed transactions

• T2 reads data from T1, T3 reads data from T2 T4 reads data from T3

• If T1 fails – T2, T3, and T4 must also fail

• Producing only cascadeless schedules is desirable

• No transaction T2 is allowed to read a value written by another
transaction T1 until T1 has fully committed

• T2 must wait until T1 commits or fails (in which the previous value of the
uncommitted item is used)

Design Project

Presentations

Crash Recovery

Causes of Data Corruption

• Logical errors related to incoming data

• Aborted operations (both programmatic and interactive)

• Transaction failures (i.e. from rollback, deadlock, etc.)

• System crashes

• Power failure

• Hardware failure (i.e. failed CPU)

• Software failure (i.e. operating system crash)

• Network communication failure

• Human error

• Security breach or cyber-attack

• Disk failures that destroy the medium storing the data

• External catastrophes (i.e. fire, flood, etc.)

Storage Types and Data Loss

• Volatile storage – main memory

• Subject to data loss at any time from many factors (i.e.

power, hardware, software failure, etc.)

• Non-volatile storage – disk

• Not as prone to data corruption

• Still susceptible to power failures during writes, disk

failures, and external catastrophes

• “Stable” storage – approaches immunity to data loss

• Write-once media (i.e. CDs, DVDs, etc.)

• Duplication of data (i.e. RAID, remote backup)

Approaches to Data

Protection
• Regular system backups

• Protect data against non-volatile storage failure and some inadvertent
data erasure (i.e. human error)

• Fairly rare occurrences

• System backups are essential but not enough

• Need fast restoration of changes since the last backup

• Crash Recovery Measures

• Restore the system to a consistent state after an aborted operation or
crash that does not involve non-volatile media failure

• Ensure the durability property of transactions – that commits “stick”

• Each transaction assigned a unique identifier (i.e. serial number)

• Keep some record of incoming transactions

• Deal with in-process transactions when the system failed

Transaction Processing Log

• Keeps track of what each transaction is doing

• Transaction start

• Details of changes the transaction makes to the database

• Transaction end messages

• Commit entry indicates successful completion of a transaction – all of its
changes to the database should persist

• Abort entry indicates the transaction failed – none of its changes should
be allowed to remain

• Neither a commit nor an abort entry will be present in the log if the
system crashes while a transaction is in process

• No changes that the transaction has made to the database should persist when
the crash recovery is complete

• If possible, the transaction can be restarted once the database is restored to a
consistent state

• Can also be used for database replication

Protect the Log!
• The transaction processing log needs to be protected against

corruption

• Writing it to stable storage

• Keep multiple copies of the log in different locations

• Ensure the log data is written before the actual changes are written
to the database

• System typically buffers log entries until a block of them can be written

• Actual database updates written after the log buffer is flushed

• Sometimes it might be necessary to write out data block before the
logging block is full

• This leads to a forced write of a partial log buffer

• Ensure that a crash that occurs while the log block is being written
does not corrupt previous log entries

Crash Control Schemes

• Incremental Log with Deferred Updates

• No changes are made to the database until after the transaction
commits and the commit entry is written to the log

• Incremental Log with Immediate Updates

• Changes are made to the database during the transaction, but
only after a log entry is written that includes the initial values of
the things changed (so they can be recovered if necessary

• Shadow Paging

• Two copies of the relevant database data are kept during the
transaction – both original and modified values. Once the
transaction commits, the modified values permanently replace the
original ones. (No log required.)

Incremental Log with

Deferred Updates
• Example: A transaction to transfer $50 from checking to savings (with

initial balances of $1000 and $2000, respectively.

• Once transaction partially commits (e.g. commit log entry is written, actual
updates to the database occur

• If the transaction fails or aborts, no changes have been made to the database

SQL Log Entries

update checking_accounts

 set balance = balance – 50

 where account_no = 127;

update savings_accounts

 set balance = balance + 50

 where account_no = 253;

T1234 starts

T1234 writes 950 to balance of

 checking_accounts record 127

T1234 writes 2050 to balance of

 savings_accounts record 253

T1234 commits

Deferred Updates and Crash

Recovery
• If the system crashes during a transaction,

• If the crash occurs before the commit log entry is written, it can be restarted
or ignored when the system is restored

• If the crash occurs after the commit log entry is written, each value specified
to the log will be (re)written to the database

• No harm in writing the same values to the database a second time

• This redo log approach has the following recovery algorithm

• for each transaction with a start record in the log

• If its commit record is also in the log

• Write each new value for the transaction in the log to the database

• Checkpoint – periodic automated flush of buffers to disk

• Causes committed transactions to be reflected in non-volatile storage

• DBMS writes a checkpoint to the log

• Only transactions after the checkpoint need to be applied after a crash

Deferred Update Tradeoffs

• Deferred update overhead

• Transaction needs to keep local copy of modified data items

• If a transaction needs to read an item it has written (before

committing), it must read the local copy of the item

• Changes must be committed before they are available to the

database

• Simpler recovery because uncommitted transactions can be

ignored

Incremental Log with

Immediate Update
• Since database updates happen during the course of a transaction,

log entries (written before the updates) must contain both old and
new values

• If the transaction fails or aborts, all database updates must be
undone by writing the original values back to the database

SQL Log Entries

update checking_accounts

 set balance = balance – 50

 where account_no = 127;

update savings_accounts

 set balance = balance + 50

 where account_no = :253;

T1234 starts

T1234 writes 950 to balance of

 checking_accounts record 127

 (old value was 1000)

T1234 writes 2050 to balance of

 savings_accounts record 253

 (old value was 2000)

T1234 commits

Immediate Update and Crash

Recovery
• Redo and undo log approach to crash recovery

• for each transaction with a start record in the log

• if its commit record is also in the log

• write each new value for the transaction in the log to the database
(redo)

• else

• rewrite each old value for the transaction in the log to the database
(undo)

• Order is critical here
• Undo operations must happen first (from newest to oldest)

• Redo operations can happen afterward (from oldest to
newest)

• Checkpoints can be used to minimize undo/redo work

Incremental Update Tradeoffs

• Incremental update has more overhead than deferred update

• Longer log entries – both old and new values stored

• Failed transactions have to be “cleaned up”

• Crash recovery requires processing every transaction, not just
the ones that committed

• Every database write requires the corresponding log entry to be
written to disk/stable storage (not just on commit)

• Allows changes made by transactions to the database to
become visible more quickly

• Useful in bulk writes – can see updates as they occur

• i.e. adding monthly interest to all savings accounts

Shadow Paging

• Maintain two copies of the active portion of the database

• Current version – reflects all changes since start of current

transaction

• Shadow version – state of database before current transaction began

• If transaction fails or aborts, current version is discarded

• If transaction commits, current version replaces shadow version

• Crash recovery is automatic – since changes are only made to

the current version, simply revert to the shadow version

