Database Architectures

CPS352: Database Systems

Simon Miner
Gordon College
Last Revised: 4/15/15

Agenda

Check-in

Parallelism and Distributed Databases
Technology Research Project
Introduction to NoSQL

Homework 6

Check-1n

Parallelism

We Need More Power!

» Parallelism brought on by the success of the client-
server model

 Servers need to support more clients with more
demanding operations

Alternative to acquiring bigger faster more expensive
hardware

Bottlenecks which can be parallelized
- CPU
» Disk

More Speed for More Stuft!

Speed-up — make individual transactions process faster

» Multiple CPUs cooperate to complete a single (expensive)
transaction

Scale-up — handle more work 1n the same amount of time

* Batch scale-up — increase the size of transactions (as database
grows)

* CPUs cooperate to complete (larger) transactions
* Transaction scale-up — increase the volume of transactions

* Each CPU handles its own transaction, but more can be processed at
the same time

Shared Resources that Enable
Parallelism

* Shared memory — multiple CPUs sharing common
memory (while also having their own cache/private
local memory)

Shared disk (cluster) — multiple CPUs share a disk
system

Shared nothing — each CPU has its own memory
and disk

I/0 Parallelism

« Reduce the time required to retrieve relations from disk by partitioning the relations on multiple
disks.

Horizontal partitioning — tuples of a relation are divided among many disks such that each
tuple resides on one disk.

» Partitioning techniques (number of disks = n):
Round-robin: Send the I'" tuple inserted in the relation to disk i mod n.
» Good for sequential reads of entire table
» Even distribution of data over disks
* Range queries are expensive

Hash partitioning: Choose one or more partitioning attribute(s) and apply a hashing
function to their values that produces a value within the range of 0...n — 1 disks

» Good for sequential or point queries based on partition attribute(s)
* Range queries are expensive

Range partitioning: Choose a partitioning attribute, and divide its values into ranges,
tuples that match a given range go in the corresponding partition

» Clusters data by partition value (i.e. by date range)
« Good for sequential access and point queries on partitioning attribute
* Supports range queries on partitioning attribute

« Skew —non-uniform distribution of database records

Distributed Databases

One Database, Multiple
Locations

* Distributed database 1s stored on several computers
located at multiple physical sites

Types of distributed database

- Homogeneous — all systems run the same brand of
DBMS software on the same OS and hardware

* Coordination is easier in this setup

- Heterogeneous — system run different DBMS on
potentially different OS and hardware

Advantages of Distributed
Systems

Sharing of data generated at different sites

Local control and autonomy at each site

Reliability and availability

If one site fails, there may be a performance reduction and some
data may become unavailable, but processing can continue

Contrast with a failure of a centralized system

Potentially faster query response times
For locally stored data — don’t need to go to a central store
Multiple sites can potentially work on the same query in parallel

Incremental system maintenance and upgrades

Disadvantages of Distributed
Systems

Cost and time required to communicate between
sites

* Operations involving multiple sites are slower because
data must be transferred between them

Increased complexity

Difficult to debug

Fragmentation

Splitting a table up between sites
 Also called sharding

Horizontal fragmentation
Vertical Fragmentation

Fragmentation 1n both directions

Horizontal Fragmentation

Store different records (rows) at distinct sites

* Records most pertinent to each site (i.e. store, plant,
branch)

Specified by relational algebra selection operation

Entire table can be reconstructed by a union of
records at all sites

Queries to local rows are inexpensive, but queries
involving remote records have high communication
cost

Vertical fragmentation

Store different columns at distinct sites
* Give access only to data that i1s needed at site
* Restrict access to sensitive or unnecessary data at sites

 Selectively replicate portions of a table

* Replicate columns frequently used at remote sites for quicker access
Specified by projection operation

Entire table can be reconstructed by a natural join on the
fragments

* Requires (primary) key to be present in each fragment
* Or some system-generated row id (not used by end users)

Fragmentation Example

Central
Division /

Corporate HQ

General Personnel
Information

Salary
Information

Job History
Information

Eastern Division
Employees -

Stored at Eastern
Division office

Eastern Division
Employees -

Stored at Corporate HQ

Western Division
Employees -

Stored at Westemn
Division office

Western Division
Employees -

Stored at Corporate HQ

All Employees

Stored at
Corporate HQ

Replication

« Storing the same data at different locations

- Improves performance — local access to replicated data 1s more
efficient than working with a remote copy

» Improves availability — if the local copy fails, the system may
still be able to use a remote copy

* Can be combined with fragmentation

* Issues from data redundancy
* Requires extra storage

+ Updates to multiple copies of data

» Update strategy must ensure that an inconsistent replica is not used
to update other copies, but rather is itself restored to a consistent state

Choosing whether to
Fragment and/or Replicate

* Use replication for small relations needed at multiple
sites

Use fragmentation for large relations when multiple
sites need to access a static set of column

Use centralization for large relations when there 1s
no fixed set of columns which multiple sites need
access to

In this case, communication costs would be higher for
fragmentation

* Queries would have to access numerous remote sites
instead of just the central site

Data Transparency

Degree to which a user 1s unaware of how and where data 1s
stored in distributed system

Types of data transparency
- Fragmentation transparency
* Replication transparency

* Location transparency

Advantages
- Allows data to be moved without user needing to know
- Allows query planner to determine the most efficient way to get data

- Allows access of replicated data from another site if local copy is
unavailable

Names of Data Items

e Criteria — Each data item in a distributed system should be
* Uniquely named
- Efficient to find
- Easy to relocate
+ Each site should be able to create new items autonomously

* Approaches
* Centralized naming server

« Keeps item names unique, easy to find, easy to move (via lookup)

« Names cannot be created locally -- high communication cost to get new names
* What happens if the naming server goes down?

* Incorporate site ID into names
* Meets criteria, but at the cost of location transparency

* Maintain a set of aliases at each site mapping local to actual names
* 1.e. customer => sitel7.customer

Querying Distributed Data

Queries and transactions can be either
» Local — all data 1s stored at current site
* Global — 1t needs data from one or more remote sites

» Transaction might originate locally and need data from
elsewhere

* Transaction might originate elsewhere, and need data
stored locally

Planning strategies for global queries 1s difficult
* Minimize data transferred between sites
+ Use statistical information to assist

Global Query Strategies

Execute data reducing operations before transferring data between
sites

* Produce results smaller than starting data

* Selection, projection, intersection, aggregation (count, sum, etc.)
* Sometimes natural and theta join, union

Execute data expanding operations after transferring data between
sites

* Produce results larger than starting data
 (Cartesian join, natural and theta join (sometimes)

Semijoin -- | X
cr X =g (g X[1)

* Transfer only those tuples in r; which match in the natural join with r,
between sites

Global Query Library
Example

Given
* checkout relation stored locally
 (Large) book_info relation (call_no, title, etc.) stored centrally

Find details (including book titles) of all local checkouts that have
just gone overdue

Strategies
» Copy entire book_info relation to the local site and do the join there

« Not optimal — copying a very large relation for only a few matching
tuples

» Send local site only those book tuples relevant to the query
* Semijoin -- book_info | X checkout
« Data reducing operations at local and central sites

Modifying Distributed Data
can be Complicated.

* Challenges related to updating data in a distributed system

Ensure that updates to data stored at multiple sites get committed
or rolled back on each site

* Avoid one site committing an update and another aborting it
Ensure that replicated data 1s consistently updated on all replicas

» Updates to different replicas do not occur at the same time

* Avoid inconsistencies arising from data read from a replica that has
not been updated yet

Partial failure — one or more sites down
* Due to hardware, software, or communication link failure

* What happens when this failure occurs in the middle of an update
operation?

* How to deal with corrupted or lost messages?

Two-Phase Commuit Protocol
(2PC)

Ensure that either all updates commit or none commit
Here, “updates” = changes to data (inserts, updates, deletes, etc.)

One site (usually the site originating the update) acts as the
coordinator

Each site completes work on the transaction, becomes partially
committed, and notifies the coordinator

Once coordinate receives completion messages from all sites, it
can begin the commit protocol

If coordinator receives a failure message from one or more sites, it
instructs all sites to abort the transaction

If the coordinator does not receive any message from a siteina
reasonable amount of time, i1t instructs all sites to abort the transaction

 Site or communication link might have failed during the transaction

2PC Phase 1: Obtaining a
Decision

Coordinator writes a <prepare T> entry to its log and forces all log
entries to stable storage

Coordinator sends a prepare-to-commit message to all participating
sites

Ideally, each site writes a <ready T> entry to its log, forces all log
entries to stable storage, and sends a ready message to the
coordinator

If a site needs to abort the transaction, it writes a <no T> entry to its
log, forces all entries to stable storage, and sends an abort message to the
coordinator

Once a site sends a ready message to the coordinator, it gives up its right
to abort the transaction

e It must commit if/when the coordinator instructs it to

2PC Phase 2: Recording the
Decision

Coordinator waits for each site to respond to the prepare-to-commit message

If any site responds negatively or fails to respond, coordinator writes an <abort T> entry
to its log and sends an abort message to all sites

If all responses are positive, coordinator writes a <commit T> entry to its log and sends a
commit message to all sites

At this point, the coordinator’s decision is final
+ 2PC protocol will work to carry it out even if a site fails

As each site receives the coordinator’s message, it either commits or aborts the transaction,
makes an appropriate log entry, and sends an acknowledge message back to the
coordinator

Once the coordinator receives acknowledge messages from all sites, it writes a <complete
T> entry to its log

If a site fails to send an acknowledge message, the coordinator may resend its message to it
+ Ultimately, the site is responsible to find and carry out the coordinator’s decision

2PC: If a Remote Site or
Communication Link Fails...

..before sending its ready message, the transaction will fail

When the site comes back up, it may send its ready message, but the
coordinator will ignore this

Coordinator will send periodic abort messages to site so that it will
eventually acknowledge the failure and return to a consistent state

Same scenario as above if ready message is lost in transit

..after the coordinator receives the ready message

The site must figure out what happened to the transaction once it recovers
(via a message from coordinator or asking some other site) and take
appropriate action

..after the site receives the coordinator’s final decision

The site will know what to do after it recovers (from commit or abort entry
in its log)

Takes appropriate action and sends an acknowledgement message to the
coordinator

2PC: If the Coordinator
Fails...

..before 1t sends a final decision

Sites that already sent ready messages have to wait for coordinator to
recover before deciding what to do with the transaction

* Can lead to blocking — locked data items unavailable until coordinator

recovers
Sites that have not sent ready message can time out and abort the

transaction

» ...after sending a final decision to at least one site, it will figure out
what to do after it recovers based on its log
<start T> but no <prepare T> - abort transaction
<prepare T> but no <commit T> = find out status of sites or abort

transaction
<abort T> or <commit T>, but no <complete T> = restart sending of
commit/abort messages and waiting for acknowledgements

* Sites may be able to find out what to do from each other when the
coordinator 1s down

Updating Replicated Data

All replicas of a given data item must be kept
synchronized when updates occur

How to do this

» Simultaneous updates of all replicas for each
transaction
* Ensures consistency across replicas

» Slows down update transactions and breaks replication
transparency

* What happens if a replica is unreachable during an
update?

Primary Copy

* Designate a primary copy of the data at some site

- Reads can happen on any replica, but updates happen on primary copy
first

Primary copy'’s site sends updates to replica sites

« Immediately after each update or periodically (if eventual consistency is
OK)

* Resending updates periodically to sites that are down

Secondary copies might be a little out-of-date, so critical reads
should go to the primary copy

What happens when the site with the primary copy fails?

» Data becomes unavailable for update until the primary copy site is
recovered

* Or, a secondary copy can become a temporary primary copy

* Could lead to inconsistencies when trying to reactivate the real primary
copy

Concurrency Control with
Distributed Systems

How to ensure serializable transactions in a distributed
system?

Locks — need to lock an item at multiple sites before
accessing it

Centralized lock manager — all locks obtained from this
lock manager on one site

Transaction needing to lock several replicas at once can get
all of its locks 1n a single message

Single source for dealing with deadlock

Local transactions involving locking incur communication
overhead

Locking manager becomes a bottleneck and single point of
failure

Distributed Locking

Each site manages the locks of items stored there
» Local transactions stay local, no single point of failure

Disadvantages

More message overhead — need to send lock request, receive
lock granted, and unlock message in addition to the data
involved

Deadlock detection gets harder

Further complications to updating replicated data

 How many replica locks are needed to do an update (all of them?
Most of them?)

* Primary copy method helps with this, as only primary copy needs to
be locked

Timestamps for Distributed
Concurrency Control

Must ensure consistency and uniqueness of timestamps
across sites

* Combine locally generated timestamp and site 1d into a
transaction’s global timestamp

Need to ensure that all sites’ clocks are always
synchronized with one another

 If any site receives a request from a transaction originating
elsewhere...

* And that transaction’s timestamp is greater than the current
site’s timestamp clock

* Advance the local timestamp clock to one greater than the
transaction timestamp

Technology Research
Project

Pros and Cons of Relational
Databases

« Advantages
» Data persistence
* Concurrency — ACID, transactions, etc.

+ Integration across multiple applications
> (Mostly) Standard Model — tables and SQL

* Disadvantages
* Impedance mismatch
- Integration databases vs. application databases
» Not designed for clustering

Impedance Mismatch

Different representations of data when it is in the RDBMS vs.
in memory

* In-memory data structures use lists, dictionaries, nested and
hierarchical data structures

* Relational database only stores atomic values

* No lists or nested records

* Translating between these representations can be costly and
confusing

« Limits the productivity of application developers

Object-relational mapping (ORM) can help with this
+ Abstraction can lead to neglect of query performance tuning

Impedance Mismatch
Example

ID:1001 &~ |

customer: Ann

orders

line items:

customers
0321293533

0321601912

i
0131495054 S e

$96
|
$51

payment details:

Card: Amex
CC Number: 12345
expiry: 04/2001 \

= |

Figure 1.1. An order, which looks like a single aggregate structure in the UI, is split into
many rows from many tables in a relational database

Integration vs. Application
Databases

» Integration databases support multiple applications

Can be problematic if the applications have very different
needs and are maintained by separate teams

» Who maintains the database?

* SQL can be limiting as the only shared layer
Web services have become a more flexible alternative

* Application databases are simpler to deal with

Application is the only thing using the database

 No connections from external sources

Security and flexibility decrease in priority

The Need for Clusters

* The Internet created the need to store and process huge
amounts of data

Relational databases can scale “up” (bigger machine) , but not
“out” (many machines) as well

 Disk subsystem remains a single point of failure
 Distributing/fragmenting/sharding data 1s complicated
» High licensing costs for many database machines and CPUs

* Large web companies began developing their own alternative
technologies to deal with these issues

Google’s BigTable and Amazon’s Dynamo

Issues addressed by these solutions have become relevant to
smaller companies wanting to capture and analyze lots of data

The Emergence of NoSQL

Ironically, the term “NoSQL” was first used as a name for an open source
relational database released in the late 1990’s

Term as it is used today was a hastily-chosen Twitter hash tag for a
conference meet-up on the topic in 2009

No official general definition for NoSQL, but common characteristics
include:

* Does not use the relational model (mostly)
Generally open source projects
Driven by the need to run on clusters
Built for the need to run 215 century web properties
Schema-less

More of a movement than a technology
- Relational databases are not going away

*Polyglot persistence — use the type of data store most appropriate for the
situation

Homework 6

