
Database Architectures

CPS352: Database Systems

Simon Miner

Gordon College

Last Revised: 4/15/15

Agenda

• Check-in

• Parallelism and Distributed Databases

• Technology Research Project

• Introduction to NoSQL

• Homework 6

Check-in

Parallelism

We Need More Power!

• Parallelism brought on by the success of the client-
server model

• Servers need to support more clients with more
demanding operations

• Alternative to acquiring bigger faster more expensive
hardware

• Bottlenecks which can be parallelized

• CPU

• Disk

More Speed for More Stuff!

• Speed-up – make individual transactions process faster

• Multiple CPUs cooperate to complete a single (expensive)

transaction

• Scale-up – handle more work in the same amount of time

• Batch scale-up – increase the size of transactions (as database

grows)

• CPUs cooperate to complete (larger) transactions

• Transaction scale-up – increase the volume of transactions

• Each CPU handles its own transaction, but more can be processed at

the same time

Shared Resources that Enable

Parallelism

• Shared memory – multiple CPUs sharing common

memory (while also having their own cache/private

local memory)

• Shared disk (cluster) – multiple CPUs share a disk

system

• Shared nothing – each CPU has its own memory

and disk

I/O Parallelism
• Reduce the time required to retrieve relations from disk by partitioning the relations on multiple

disks.

• Horizontal partitioning – tuples of a relation are divided among many disks such that each
tuple resides on one disk.

• Partitioning techniques (number of disks = n):

• Round-robin: Send the Ith tuple inserted in the relation to disk i mod n.

• Good for sequential reads of entire table

• Even distribution of data over disks

• Range queries are expensive

• Hash partitioning: Choose one or more partitioning attribute(s) and apply a hashing
function to their values that produces a value within the range of 0…n – 1 disks

• Good for sequential or point queries based on partition attribute(s)

• Range queries are expensive

• Range partitioning: Choose a partitioning attribute, and divide its values into ranges,
tuples that match a given range go in the corresponding partition

• Clusters data by partition value (i.e. by date range)

• Good for sequential access and point queries on partitioning attribute

• Supports range queries on partitioning attribute

• Skew – non-uniform distribution of database records

Distributed Databases

One Database, Multiple

Locations

• Distributed database is stored on several computers

located at multiple physical sites

• Types of distributed database

• Homogeneous – all systems run the same brand of

DBMS software on the same OS and hardware

• Coordination is easier in this setup

• Heterogeneous – system run different DBMS on

potentially different OS and hardware

Advantages of Distributed

Systems
• Sharing of data generated at different sites

• Local control and autonomy at each site

• Reliability and availability

• If one site fails, there may be a performance reduction and some
data may become unavailable, but processing can continue

• Contrast with a failure of a centralized system

• Potentially faster query response times

• For locally stored data – don’t need to go to a central store

• Multiple sites can potentially work on the same query in parallel

• Incremental system maintenance and upgrades

Disadvantages of Distributed

Systems

• Cost and time required to communicate between

sites

• Operations involving multiple sites are slower because

data must be transferred between them

• Increased complexity

• Difficult to debug

Fragmentation

• Splitting a table up between sites

• Also called sharding

• Horizontal fragmentation

• Vertical Fragmentation

• Fragmentation in both directions

Horizontal Fragmentation

• Store different records (rows) at distinct sites

• Records most pertinent to each site (i.e. store, plant,
branch)

• Specified by relational algebra selection operation

• Entire table can be reconstructed by a union of
records at all sites

• Queries to local rows are inexpensive, but queries
involving remote records have high communication
cost

Vertical fragmentation

• Store different columns at distinct sites

• Give access only to data that is needed at site

• Restrict access to sensitive or unnecessary data at sites

• Selectively replicate portions of a table

• Replicate columns frequently used at remote sites for quicker access

• Specified by projection operation

• Entire table can be reconstructed by a natural join on the

fragments

• Requires (primary) key to be present in each fragment

• Or some system-generated row id (not used by end users)

Fragmentation Example

Replication

• Storing the same data at different locations

• Improves performance – local access to replicated data is more
efficient than working with a remote copy

• Improves availability – if the local copy fails, the system may
still be able to use a remote copy

• Can be combined with fragmentation

• Issues from data redundancy

• Requires extra storage

• Updates to multiple copies of data

• Update strategy must ensure that an inconsistent replica is not used
to update other copies, but rather is itself restored to a consistent state

Choosing whether to

Fragment and/or Replicate

• Use replication for small relations needed at multiple
sites

• Use fragmentation for large relations when multiple
sites need to access a static set of column

• Use centralization for large relations when there is
no fixed set of columns which multiple sites need
access to

• In this case, communication costs would be higher for
fragmentation

• Queries would have to access numerous remote sites
instead of just the central site

Data Transparency

• Degree to which a user is unaware of how and where data is
stored in distributed system

• Types of data transparency

• Fragmentation transparency

• Replication transparency

• Location transparency

• Advantages

• Allows data to be moved without user needing to know

• Allows query planner to determine the most efficient way to get data

• Allows access of replicated data from another site if local copy is
unavailable

Names of Data Items

• Criteria – Each data item in a distributed system should be

• Uniquely named

• Efficient to find

• Easy to relocate

• Each site should be able to create new items autonomously

• Approaches

• Centralized naming server

• Keeps item names unique, easy to find, easy to move (via lookup)

• Names cannot be created locally -- high communication cost to get new names

• What happens if the naming server goes down?

• Incorporate site ID into names

• Meets criteria, but at the cost of location transparency

• Maintain a set of aliases at each site mapping local to actual names

• i.e. customer => site17.customer

Querying Distributed Data

• Queries and transactions can be either

• Local – all data is stored at current site

• Global – it needs data from one or more remote sites

• Transaction might originate locally and need data from
elsewhere

• Transaction might originate elsewhere, and need data
stored locally

• Planning strategies for global queries is difficult

• Minimize data transferred between sites

• Use statistical information to assist

Global Query Strategies

• Execute data reducing operations before transferring data between
sites

• Produce results smaller than starting data

• Selection, projection, intersection, aggregation (count, sum, etc.)

• Sometimes natural and theta join, union

• Execute data expanding operations after transferring data between
sites

• Produce results larger than starting data

• Cartesian join, natural and theta join (sometimes)

• Semijoin -- |X

• r1 |X r2 = π R1 (r1 |X| r2)

• Transfer only those tuples in r1 which match in the natural join with r2
between sites

Global Query Library

Example
• Given

• checkout relation stored locally

• (Large) book_info relation (call_no, title, etc.) stored centrally

• Find details (including book titles) of all local checkouts that have
just gone overdue

• Strategies

• Copy entire book_info relation to the local site and do the join there

• Not optimal – copying a very large relation for only a few matching
tuples

• Send local site only those book tuples relevant to the query

• Semijoin -- book_info |X checkout

• Data reducing operations at local and central sites

Where’s that Epistle?
Colossians 4:15-18

Modifying Distributed Data

can be Complicated.
• Challenges related to updating data in a distributed system

• Ensure that updates to data stored at multiple sites get committed
or rolled back on each site

• Avoid one site committing an update and another aborting it

• Ensure that replicated data is consistently updated on all replicas

• Updates to different replicas do not occur at the same time

• Avoid inconsistencies arising from data read from a replica that has
not been updated yet

• Partial failure – one or more sites down

• Due to hardware, software, or communication link failure

• What happens when this failure occurs in the middle of an update
operation?

• How to deal with corrupted or lost messages?

Two-Phase Commit Protocol

(2PC)
• Ensure that either all updates commit or none commit

• Here, “updates” = changes to data (inserts, updates, deletes, etc.)

• One site (usually the site originating the update) acts as the
coordinator

• Each site completes work on the transaction, becomes partially
committed, and notifies the coordinator

• Once coordinate receives completion messages from all sites, it
can begin the commit protocol

• If coordinator receives a failure message from one or more sites, it
instructs all sites to abort the transaction

• If the coordinator does not receive any message from a site in a
reasonable amount of time, it instructs all sites to abort the transaction

• Site or communication link might have failed during the transaction

2PC Phase 1: Obtaining a

Decision
• Coordinator writes a <prepare T> entry to its log and forces all log

entries to stable storage

• Coordinator sends a prepare-to-commit message to all participating
sites

• Ideally, each site writes a <ready T> entry to its log, forces all log
entries to stable storage, and sends a ready message to the
coordinator

• If a site needs to abort the transaction, it writes a <no T> entry to its
log, forces all entries to stable storage, and sends an abort message to the
coordinator

• Once a site sends a ready message to the coordinator, it gives up its right
to abort the transaction

• It must commit if/when the coordinator instructs it to

2PC Phase 2: Recording the

Decision
• Coordinator waits for each site to respond to the prepare-to-commit message

• If any site responds negatively or fails to respond, coordinator writes an <abort T> entry
to its log and sends an abort message to all sites

• If all responses are positive, coordinator writes a <commit T> entry to its log and sends a
commit message to all sites

• At this point, the coordinator’s decision is final

• 2PC protocol will work to carry it out even if a site fails

• As each site receives the coordinator’s message, it either commits or aborts the transaction,
makes an appropriate log entry, and sends an acknowledge message back to the
coordinator

• Once the coordinator receives acknowledge messages from all sites, it writes a <complete
T> entry to its log

• If a site fails to send an acknowledge message, the coordinator may resend its message to it

• Ultimately, the site is responsible to find and carry out the coordinator’s decision

2PC: If a Remote Site or

Communication Link Fails…
• …before sending its ready message, the transaction will fail

• When the site comes back up, it may send its ready message, but the
coordinator will ignore this

• Coordinator will send periodic abort messages to site so that it will
eventually acknowledge the failure and return to a consistent state

• Same scenario as above if ready message is lost in transit

• …after the coordinator receives the ready message

• The site must figure out what happened to the transaction once it recovers
(via a message from coordinator or asking some other site) and take
appropriate action

• …after the site receives the coordinator’s final decision

• The site will know what to do after it recovers (from commit or abort entry
in its log)

• Takes appropriate action and sends an acknowledgement message to the
coordinator

2PC: If the Coordinator

Fails…
• …before it sends a final decision

• Sites that already sent ready messages have to wait for coordinator to
recover before deciding what to do with the transaction

• Can lead to blocking – locked data items unavailable until coordinator
recovers

• Sites that have not sent ready message can time out and abort the
transaction

• …after sending a final decision to at least one site, it will figure out
what to do after it recovers based on its log

• <start T> but no <prepare T>  abort transaction

• <prepare T> but no <commit T>  find out status of sites or abort
transaction

• <abort T> or <commit T>, but no <complete T>  restart sending of
commit/abort messages and waiting for acknowledgements

• Sites may be able to find out what to do from each other when the
coordinator is down

Updating Replicated Data

• All replicas of a given data item must be kept

synchronized when updates occur

• How to do this

• Simultaneous updates of all replicas for each

transaction

• Ensures consistency across replicas

• Slows down update transactions and breaks replication

transparency

• What happens if a replica is unreachable during an

update?

Primary Copy

• Designate a primary copy of the data at some site

• Reads can happen on any replica, but updates happen on primary copy
first

• Primary copy’s site sends updates to replica sites

• Immediately after each update or periodically (if eventual consistency is
OK)

• Resending updates periodically to sites that are down

• Secondary copies might be a little out-of-date, so critical reads
should go to the primary copy

• What happens when the site with the primary copy fails?

• Data becomes unavailable for update until the primary copy site is
recovered

• Or, a secondary copy can become a temporary primary copy

• Could lead to inconsistencies when trying to reactivate the real primary
copy

Concurrency Control with

Distributed Systems

• How to ensure serializable transactions in a distributed
system?

• Locks – need to lock an item at multiple sites before
accessing it

• Centralized lock manager – all locks obtained from this
lock manager on one site

• Transaction needing to lock several replicas at once can get
all of its locks in a single message

• Single source for dealing with deadlock

• Local transactions involving locking incur communication
overhead

• Locking manager becomes a bottleneck and single point of
failure

Distributed Locking

• Each site manages the locks of items stored there

• Local transactions stay local, no single point of failure

• Disadvantages

• More message overhead – need to send lock request, receive
lock granted, and unlock message in addition to the data
involved

• Deadlock detection gets harder

• Further complications to updating replicated data

• How many replica locks are needed to do an update (all of them?
Most of them?)

• Primary copy method helps with this, as only primary copy needs to
be locked

Timestamps for Distributed

Concurrency Control

• Must ensure consistency and uniqueness of timestamps
across sites

• Combine locally generated timestamp and site id into a
transaction’s global timestamp

• Need to ensure that all sites’ clocks are always
synchronized with one another

• If any site receives a request from a transaction originating
elsewhere…

• And that transaction’s timestamp is greater than the current
site’s timestamp clock

• Advance the local timestamp clock to one greater than the
transaction timestamp

Technology Research

Project

NoSQL

Pros and Cons of Relational

Databases

• Advantages

• Data persistence

• Concurrency – ACID, transactions, etc.

• Integration across multiple applications

• (Mostly) Standard Model – tables and SQL

• Disadvantages

• Impedance mismatch

• Integration databases vs. application databases

• Not designed for clustering

Impedance Mismatch

• Different representations of data when it is in the RDBMS vs.

in memory

• In-memory data structures use lists, dictionaries, nested and

hierarchical data structures

• Relational database only stores atomic values

• No lists or nested records

• Translating between these representations can be costly and

confusing

• Limits the productivity of application developers

• Object-relational mapping (ORM) can help with this

• Abstraction can lead to neglect of query performance tuning

Impedance Mismatch

Example

Integration vs. Application

Databases
• Integration databases support multiple applications

• Can be problematic if the applications have very different

needs and are maintained by separate teams

• Who maintains the database?

• SQL can be limiting as the only shared layer

• Web services have become a more flexible alternative

• Application databases are simpler to deal with

• Application is the only thing using the database

• No connections from external sources

• Security and flexibility decrease in priority

The Need for Clusters

• The Internet created the need to store and process huge
amounts of data

• Relational databases can scale “up” (bigger machine) , but not
“out” (many machines) as well

• Disk subsystem remains a single point of failure

• Distributing/fragmenting/sharding data is complicated

• High licensing costs for many database machines and CPUs

• Large web companies began developing their own alternative
technologies to deal with these issues

• Google’s BigTable and Amazon’s Dynamo

• Issues addressed by these solutions have become relevant to
smaller companies wanting to capture and analyze lots of data

The Emergence of NoSQL

• Ironically, the term “NoSQL” was first used as a name for an open source
relational database released in the late 1990’s

• Term as it is used today was a hastily-chosen Twitter hash tag for a
conference meet-up on the topic in 2009

• No official general definition for NoSQL, but common characteristics
include:

• Does not use the relational model (mostly)

• Generally open source projects

• Driven by the need to run on clusters

• Built for the need to run 21st century web properties

• Schema-less

• More of a movement than a technology

• Relational databases are not going away

• Polyglot persistence – use the type of data store most appropriate for the
situation

Homework 6

