NoSQL Databases

CPS352: Database Systems

Simon Miner
Gordon College
Last Revised: 4/22/15

Agenda

Check-1n
NoSQL Databases

« Aggregate databases — Key-value, document, and column family
* Graph databases

Related Topics
Distributed Databases and Consistency with NoSQL
Version Stamps
Map-Reduce Pattern
Schema Migrations
Polyglot Persistence
When (not) to use NoSQL

Homework 7

Check-1n

NoSQL Databases

Aggregate Databases: Key-value, Document, Column Family
Graph Databases

https://www.youtube.com/watch?v=qI_g07C_Q5I
https://www.youtube.com/watch?v=qI_g07C_Q5I
https://www.youtube.com/watch?v=qI_g07C_Q5I
https://www.youtube.com/watch?v=qI_g07C_Q5I
https://www.youtube.com/watch?v=qI_g07C_Q5I

Aggregate Data Models

Aggregate — a collection of related objects treated as a unit
Particularly for data manipulation and consistency management

Aggregate-oriented database — a database comprised of aggregate data
structures

Supports atomic manipulation of a single aggregate at a time

Good for use in clustered storage systems (scaling out)

» Aggregates make natural units for replication and fragmentation/sharding
Aggregates match up nicely with in-memory data structures

Use a key or ID to look up an aggregate record

An aggregate-ignorant data model has no concept of how its components
can aggregate together

Good when data will be queried in multiple ways

Not so good for clusters

* Need to minimize data accesses, and including aggregates in the data helps with
this

Aggregate Database Example:
An Initial Relational Model

Customer

1

Order

name

Y
1

% *

Order Payment
Billing
Address cardNumber
txnid
—————————

1

Address
street
city
state]

post code shipping Address
S

Figure 2.1. Data model oriented around a relational database (using UML
notation [Fowler UML])

Aggregate Database Example:
An Aggregate Data Model

// in customers

{
"idU:l,

L1 LI L] 1 "
name":"Martin
name !

Customer

"billingAddress":[{ "city" :"Chicago"}]
1

billing Address | #
Address

// in orders

{
% | order payment

"id":99,
street 1 Order Iltem Payment "customerId”:1,
city

2 "orderItems":[
post code txnid "productId":27,
- "price": 32.45,
1| billing Address ; "productName": "NoSQL Distilled"
}

Product 1,

name "shippingAddress":[{ "city":"Chicago"}]
| "orderPayment" :[

{

Figure 2.3. An aggregate data model "ecinfo":"1000-1000-1000-1000%,
"txnId":"abelifg79rft",
"pillingAddress": {"city": "Chicago"}

Aggregate Database Example:
Another Aggregate Model

Customer {.-";" in customers

name "customer": |
' lfid“ H 1 ’
"name": "Martin",
"billingAddress": [{ "city": "Chicago"}],
"orders": [

{

"id":98,

"customerId™:1,

billing Address | %

Address

"orderItems":[
street 1 {
city shipping Address "productId":27,

state " i m. 32.45
post code #* % | order payment pricen: o

_— "productName": "NoSQL Distilled"
Order Item Payment
billing Address — y }

price ceinfo 1y

txnid "shippingAddress":[{ "city":"Chicago"}]
* "orderPayment" :[

{

"cecinfo":"1000-1000-1000-1000",
"txnId":"abelif879rft",
"pillingAddress": { "city": "Chicagao"}
1,

Figure 2.4. Embed all the objects for customer and the customer’s orders !
}

Aggregate-Oriented Databases

Key-value databases

+ Stores data that is opaque to the database
« The database cannot see the structure of records, just has a key to access a record
» Application needs to deal with this

+ Allows flexibility regarding what is stored (i.e. text or binary data)

Document databases
+ Stores data whose structure is visible to the database
* Imposes limitations on what can be stored
» Allows more flexible access to data (i.e. partial records) via querying

Both key-value and document databases consist of aggregate records accessed by 1D
values

Column-family databases

« Two levels of access to aggregates (and hence, two pars to the “key” to access an aggregate’s data)
« ID —to look up aggregate record
* Column name — either a label for a value (name) or a key to a list entry (order id)

* Columns are grouped into column families

Key-Value Databases

» Key-value store 1s a simple hash table

* Records access via key (ID)
« Akin to a primary key for relational database records
* Quickest (or only) way to access a record

* Values can be of any type -- database does not care
» Like blob data type in relational database

* Bucket — namespace used to segment keys
« Shows up as (sometimes implicit) prefix or suffix to key

* Operations
+ Get a value for a given key
 Set (or overwrite or append) a value for a given key
» Delete a key and its associated value

Key-Value Database Features

* (Consistency only applies in the context of a single key/value pair

* Need strategy to handle distributed key-value pairs — 1.e. newest write
wins, all writes reported and client resolves the conflict

* No ACID transactions because of performance requirements over
distributed cluster

* Weaker transaction consistency can be asserted by requiring that a
certain number of nodes (quorum) get the write

* Scale by both fragmentation and replication
 Shard by key values (using a uniform function)
+ Replicas should be available in case a shard fails
* Otherwise all reads and writes to the unavailable shard fail

Interacting with Key-Value
Databases

« Applications can only query by key, not by values in the data

* Design of key is important
Must be unique across the entire database
Bucket can provide an implicit top-level namespace

 How and what data gets stored is managed entirely at the application level
Single key for related data structures

* Key incorporates identification data (i.e. user_<sessionID>)

Data can include various nested data structures (i.e. user data including session, profile, cart
info)

» All data 1s set and retrieved at once

Different kinds of aggregates all stored in one bucket

* Increases chance of key conflicts (i.e. profile and session data with same ID)
Multiple keys for related data structures

» Key incorporates name of object being stored (i.e. user_<sessionID>_profile

* Multiple targeted fetches needed to retrieve related data

» Decreases chance of key conflicts (aggregates have their own specific namespaces)
Expiration times can be assi pairs (good for storing transient data

Key-Value Aggregate
Examples

<Bucket = userData>

<Key = sessionlD>

<Value = Object>

UserProfile <Bucket = userData>

<Key = sessionID_userProfile>

SessionData

<Value = UserProfileObject>

ShoppingCart

Figure 8.2. Change the key design to segment the data in a single bucket.
CartItem

CartItem

Figure 8.1. Storing all the data in a single bucket

Using Key-Value Databases

» Use key-value databases for...

» Data accessed via a unique key (i.e. session, user profile,
shopping cart, etc.)

* Transient data
* Caching

* Don’t use key-value databases for...
* Relationships among data
* Multi-operation transactions
* Querying by data (value instead of key)
* Operations on sets of records

Document Databases

Store of documents with keys to access them

+ Similar to key-value databases except...

* Can see and dynamically manipulate the structure of the documents
* Often structured as JSON (textual) data
« Each document can have its own structure (non-uniform)

Each document 1s (automatically) assigned an ID value (_id)
Consistency and transactions apply to single documents
Replication and sharding are by document

Queries to documents can be formatted as JSON

 Able to return partial documents

Document Database Example

// 1in order collection

{
“customerId”:12345,

“orderId”:67890, SQL Document Database Query

“orderDate:”2012-12-06", select * from order db.order.find()
“items”: [{
“product”: { select * from order db.order.find({
“id7:112233, where customerld = 12345 “customerld”:12345

“name” :”Refactoring”, h
“price”:”15.99” select orderld, orderDate db.order.find(
} from order {“customerld”:12345},
“ clii scount”: 710" where customerld = 12345 {“orderld”:1,”orderDate”:1}
. [e])
b
{ select * db.order.find({

from order o “items.product.name”:

pf ?df ct”: | join orderItem oi on o.orderld = ”/Refactoring/”
1d”:223344, oi.orderID 1)

“name”:”NoSQL Distilled”, join product p on oi.productId = p.Id
“price”:”24.99” where p.name like ‘%Refactoring%’

} 14

“discount”:”73.00",

“promo-code” :”cybermonday”

by

Using Document Databases

 Use document databases for...

- Event logging — central store for different kinds of
events with various attributes

- Content management or blogging platforms
» Web analytics stores
* E-commerce applications

* Do not use document databases for...
* Transactions across multiple documents (records)
* Ad hoc cross-document queries

Column Family Databases

Structure of data records
« Each record indexed by a key
* Columns grouped into column families (like RDBMS tables)

Additional mechanisms to assist with data management

+ Key space — top-level container for a certain kind of data (kind of like a
schema in RDBMS)

* Configuration parameters and operations can apply to a key space
* 1.e. number of replicas, data repair operations

* Columns are specified when a key space is created, but new ones can be
added at any time, to only those rows they pertain to

Data access
- QGet, set, delete operations
* Query language (i.e. CQL — Cassandra Query Language

Column-Family Database
Example

column family column key

\ \ GﬂUIlilgl‘I\ue

profile name

bilingAddress

payment

ODR1001

QDR1002

ODR1003

ODR1004

Figure 2.5. Representing customer information in a column-family structure

Column Family Database
Example

event

fc9866e48cab

appName:Atlas eventName:Login appUser:wspirk

Figure 10.2. Event logging with Cassandra

CREATE COLUMNFAMILY Customer (
KEY varchar PRIMARY KEY,
name varchar,
city varchar,
web wvarchar);

INSERT INTO Customer (KEY,name,city,web)
VALUES ('mfowler',
'Martin Fowler',
'Boston',
'www.martinfowler.com') ;

SELECT * FROM Customer;

SELECT name,web FROM Customer WHERE city='Boston’

Using Column Family
Databases

* Use column family databases for...
- Event logging

» Content management and blogging platforms
* Counters

- Expiring data

* Do not use column family databases for...
» Systems requiring ACID transactions
* Systems requiring ad-hoc aggregate queries

Relationships in Aggregate
Databases

Aggregates contain ID attributes to related aggregates
Require multiple database accesses to traverse relationships
* One to lookup ID(s) of related aggregate(s) in main aggregate
* One to retrieve each of the related aggregates

Many NoSQL databases provide mechanisms to make relationships
visible to the database (to make link-walking easier)

Updates to relationships require the application to maintain
consistency since atomicity is limited to each aggregate

Aggregate databases become awkward when it is necessary to
navigate around many aggregates

Graph databases — small nodes connected by many edges
Make navigating complex relationships fast
* Linking nodes is done at time of insert, and not at query time

Data Management Scale with
Aggregate Databases

» Different aggregate data models have differing data management
capabilities
Key-value databases
* Opaque data store
* Almost no database involvement with managing data

Document databases
» Transparent data store

« Some facilities in databases to administer data (partial record queries,
indexes)

Column family databases

* Transparent data store and dynamic schema

« Data management constructs (key spaces, query languages)
Relational databases

« Static uniform schema

* Database manages the data (integrity constraints, security, etc.)

Graph Databases

Excel at modeling relationships between entities

Terminology
* Node— an entity or record in the database
+ FEdge — a directed relationship connecting two entities
* Two nodes can have multiple relationships between them
* Property — attribute on a node or edge

Graphs are queried via traversals

* Traversing multiple nodes and edges is very fast

* Because relationships are determined when data is inserted into the
database

 Relationships (edges) are persisted just like nodes
« Not computed at query time (as in relational databases)

Graph Database Example

friend

employee
employee

friend | Barbara
friend g
"y b
n Databases
Or.
Refactoring ¥
\ catetory

NoSQL
Distilled

Database
Refactoring

Figure 3.1. An example graph structure

Graph Database Example

—>
friend
since=2005

Barbara | Elizabeth
friend

since=1989
share=[books,movies, tweets]

Figure 11.2. Relationships with properties

Graph Database Features

Transaction support — graph can only be modified within a
transaction

No “dangling relationships” allowed

Nodes can only be deleted if they have no edges connected to
them

Auvailability via replication

Scaling via sharding is difficult since the graph relies heavily
on the relationships between its nodes
Fragmentation can be done using domain knowledge (i.e.

separating relationships by different geographic regions,
categories, time periods, etc. — factors don’t get traversed much)

 Traversal across shards is very expensive

Interacting with Graph

Databases
* Web services / REST APIs exposed by the database

* Language-specific libraries provided by the database vendor
Oor community

// Find the names of people who like NoSQL Distilled
Node nosglDistilled = nodelIndex.get ("name",

"NoSQL Distilled") .getSingle();
relationships = nosqglDistilled.getRelationships (INCOMING, LIKES) ;
for (Relationship relationship : relationships) {

likesNoSQLDistilled.add(relationship.getStartNode ()) ;
}

* Query languages — allow for expression of complex queries
on the graph

Gremlin with Blueprints (JDBC-like) database connectors
Cypher (for neo4j)

Graph Database Query
Language Example

* A “select” statement in Cypher

START beginingNode = (beginning node specification)

MATCH (relationship, pattern matches)

WHERE (filtering condition: on data in nodes and relationships)
RETURN (What to return: nodes, relationships, properties)

ORDER BY (properties to order by)

SKIP (nodes to skip from top)

LIMIT (limit results)

Find the names and locations of Barbara’s friends

* Cypher

START barbara = node:nodelIndex(name = "Barbara')
MATCH (barbara)-[:FRIEND]->(friend node)
RETURN friend node.name, friend node.location

* Gremlin

= new Neod4djGraph(‘'/path/to/graph/db’)
barbara = g.idx(T,v) [[name:’"Barbara’]]
friends = barbara.out (‘friend’) .map

Using Graph Databases

» Use graph databases for...

* Connected data in link-rich domain (i.e. friends,
colleagues, employees, customers, etc.)

* Routing or dispatch applications with location data (1.e.
maps, directions, distances)

* Recommendation engines (1.e. for products, dating
services, etc.)

* Don’t use graph databases for...

* Applications where many or all data entities need to be
updated at once or frequently

+ Data that needs lots of partitioning

Schema-less Databases

« Common to all NoSQL databases — also called emergent schemas

* Advantages
* No need to predefine data structure
+ Easy to change structure of data as time passes
* Good support for non-uniform data

* Disadvantages

+ Potentially inconsistent names and data types for a single value
« Example: quantity, Quantity, QUANTITY, qty, count, quanity ...
« Example: 5, 5.0, five, V ...

» The database does not enforce these things because it has no knowledge of the implicit
schema

* Management of the implicit schema migrates into the application layer
* Need to look at code to understand what data and structure is present
* No standard location or method for implementing the logic to do this
« What do you do if multiple applications need access to the database?

Related Issues

Distributed Databases and Consistency with NoSQOL
Version Stamps
Map-Reduce Pattern

https://www.youtube.com/watch?v=qI_g07C_Q5I
https://www.youtube.com/watch?v=qI_g07C_Q5I
https://www.youtube.com/watch?v=qI_g07C_Q5I
https://www.youtube.com/watch?v=qI_g07C_Q5I
https://www.youtube.com/watch?v=qI_g07C_Q5I

Distribution Models

Single server — simplest model, everything on one machine (or zode)

Sharding (fragmentation) — storing data (aggregates) across multiple
nodes

Auto-sharding -- some NoSQL databases handle the logistics of sharding
so that the application does not have to

Replication — duplicate data (aggregates) over multiple nodes

Master-slave (primary copy) replication -- one master responsible for
updates, one or more slaves to support reads

Peer-to-peer (multi-master) replication
* Each node does reads and writes, and communicates its changes to other
nodes
Eliminates any one master as a single point of failure
* Drawbacks include complex synchronization system and inconsistency
1ssues

Write-write conflicts — when two users update the same data item on separate
nodes

Consistency

» Update consistency — ensuring serial database changes
* Pessimistic approach — prevents conflicts from occurring (i.e. locking)
* Optimistic approach — detects conflicts and sorts them out (i.e. validation)

» Conditional update — just before update, check to see if the value has
changed since last read

« Write-write conflict resolution — automatically or manually merge the
updates

Trade-off between safety and “liveness” (responsiveness)

* Read consistency — ensuring users read the same value for data at a
given time

* Logical consistency Vs. replication consistency

* Sticky sessions (session affinity) — assign a session to a given database node
for all of 1ts work to ensure read-your-writes consistency

Diluting the ACID

 Relaxed consistency

* CAP Theorem — pick two of these three
* Consistency
* Auvailability — ability to read and write data to a node in the cluster

* Partition tolerance — cluster can survive network breakage that separates it into
multiple isolated partitions

« If there is a network partition, need to trade off availability of data vs.
consistency

* Depending on the domain, it can be beneficial to balance consistency with latency
(performance)

* BASE — Basically Available, Soft state, Eventual consistency

« Relaxed durability

+ Replication durability — what happens if a replica is not available to receive
updates, but still servicing traffic?

* Do not necessarily need to contact all replicas to preserve strong consistency
with replication; just a large enough quorum.

Version Stamps

Provide a means of detecting concurrency conflicts

Each data item has a version stamp which gets incremented each time the
item 1s updated

Before updating a data item, a process can check its version stamp to see if
it has been updated since 1t was last read

Implementation methods
Counter — requires a single master to “own” the counter

GUID (Guaranteed Unique ID) — can be computed by any node, but are
large and cannot be compared directly

Hash the contents of a resource
Timestamp of last update — node clocks must be synchronized

Vector stamp — set of version stamps for all nodes in a distributed
system

Allows detection of conflicting updates on different nodes

Map-Reduce

Design pattern to take advantage of clustered machines to do processing in parallel
* While keeping as much work and data as possible local to a single machine

Map function

+ Takes a single aggregate record as input
* Outputs a set of relevant key-value pairs
* Values can be data structures

- Each instance of the map function is independent from all others
» Safely parallelizable

Reduce function

+ Takes multiple map outputs with the same key as input
* Summarizes (or reduces) there values to a single output

Map-reduce framework
Arranges for map function to be applied to pertinent documents on all nodes
Moves data to the location of the reduce function

Collects all values for a single pair and calls the reduce function on the key and value collection
Programmers only need to supply the map and reduce functions

Map-Reduce Example (Map)

Figure 7.1. A map function reads records from the database and emits
key-value pairs.

Map-Reduce Example
(Reduce)

price: $26
quantity: 8

price: $36

D ~ reduce ,

price: $44
quantity: 14

Figure 7.2. A reduce function takes several key-value pairs with the same key
and aggregates them into one.

Partitioning, Combining, and
Composing

Reduce operations use values from a single key
Partitioning by key allows for parallel reduce work

Combinable reducer -- Reducers that have the same form for input and
output can be combined into pipelines

Further improves parallelism and reduces the amount of data to be
transferred

Map-reduce compositions

Can be composed into pipelines in which the output of one reduce i1s the
input to another map

Can be useful to store result of widely-used map-reduce calculation

» Saved results can sometimes be updated incrementally

For additive combinable reducers, the existing result can be combined with new
data

Reduce Partitioning Example

Figure 7.3. Partitioning allows reduce functions to run in parallel on different
keys.

Combinable Reducer Example

26
12
36

8

puerh
genmaicha
puerh
genmaicha
puerh
genmaicha
puerh
puerh

16
40
6

ﬂ'

o . e reduce
U

L —

Figure 7.4. Combining reduces data before sending it across the network.

Further Matters

Schema Migrations
Polyglot Persistence
SQL or NoSQL

Schema Migrations

The structure of data changes regardless of what kind of database it
resides in

- System requirements evolve and the supporting database(s) must keep pace

* Transition phase — Period of time in which the old and new schema versions
must be maintained in parallel

Challenges

* Avoid downtime of production database(s)

« Difficult to do for large systems as DDL to alter structure often requires database
object-level locks

- Ensure database remains usable to all applications during transition phase
 Different applications will integrate the schema changes at different times
* Don’t cause errors
* Don’t corrupt or lose data
* Minimize transition phase
 How can all data be migrated as quickly as possible?
* Does all data need to be migrated?

Schema Changes 1n Relational
Databases

* Challenges specific to RDBMS schema changes
Keep database and applications in sync
» Schema changes applied separately to database and applications
Schema changes need to be applied in the correct order
Need to ensure that schema changes can be rolled back if there is a problem
Schema changes need to be applied to all environments in the same fashion
» Development, test, staging, production

* Database migration framework can assist with this
Logic to execute each schema change is stored in a file which contains a version string

* Scripts to generate initial database or take a “snapshot” of the current structure of an
existing database get the 1nitial version (if the database already exists)

May contain logic to upgrade and downgrade the database to/from its version

Migration framework is responsible for applying changes up/down to a certain
version of the database in the right order

Integrated into the project build process so it automatically gets executed in various
environments when a new version of the application is introduced there

Database Migration
Framework Example

¢ 001_Customer.sql

002_Product.sqgl

® 003_Address.sql

2 004_Order_Orderitem.sq|
e

€

P

005_Payment_Payment.sql
006_Billing_Shipping.sql
007_DiscountedPrice.sqgl

Figure 12.3. New change 007_DiscountedPrice.sql applied to the database

AL TER TABLE orderitem ADD discountedprice NUMEBER(18,2) MNULL;
UPDATE orderitem SET discountedprice = price;

ALTER TABLE orderitem MODIFY discountedprice NOT NULL;
ALTER TABLE orderitem RENAME COLUMN price TO fullprice;
—-//BUNDO

ALTER TABLE orderitem RENAME fullprice TO price;

ALTER TABLE orderitem DROP COLUMN discountedprice;

Database Migration Execution
Example

project $>ant dbupgrade
Buildfile: /project/build.xml

init:

dbupgrade:
[dbdeploy] dbdeploy 3.0M3
[dbdeploy] Reading change scripts from directory /project/db/migrations...
[dbdeploy] Changes currently applied to database:
(dbdeploy] 1..6
[dbdeploy] Scripts available:
(dbdeploy] 1..7

[dbdeploy] To be applied:

[dbdeploy] 7

[dbdeploy] Applying #7: 007_DiscountedPrice.sql...
[dbdeploy] -> statement 1 of 4...

[dbdeploy] -> statement 2 of 4...

[dbdeploy] -> statement 3 of 4...

[dbdeploy] =-> statement 4 of 4...

BUILD SUCCESSFUL
Total time: @ seconds
project $>

Figure 12.4. DBDeploy upgrading the database with change number 007

Schema Changes 1n a NoSQL
Store

Implicit schema — the database may be “schema-less”, but the application
still must manage the way data is structured

Incremental migration — read from both schemas and gradually write
changes

* Read methodology:

* Read the data from the new / updated field(s)

 If the data is not in the new field(s), read it from the old ones
* Write methodology:

» Write data only to the new field(s)

* QOld field may be removed
» Some data may never be migrated

Changes to top-level aggregate structures are more difficult

- Example: make nested order records (inside customers) into top-level
aggregates

- Application must work with both old and new structures

Incremental Migration
Example

product

Original

product
price
fullPrice
discountedPrice Transistion

product
fullPrice e
discountedPrice Final Schema

Figure 12.6. Transition period of schema changes

Polyglot Persistence

Pick the best tool for the job

» Different databases are designed specifically for storing and
processing different types of data

Example

* Many e-commerce sites run entirely on a relational database
* Alternatively:
« Keep order processing data in the RDBMS

» Session and shopping cart data could be separated into a key-value
store

* More transient data which can be copied to RDBMS once an order is placed
» Customer social data could reside in a graph database
+ Designed specifically to optimize traversing relationships between data

Polyglot Persistence Example

e=Ccommerce
platform

NN

Shopping cart Inventory Customer
and session and social

data Item Price graph

Completed
Key-Value Orders Graph store

store 4
Document RDBMS
store (Legacy DB)

Figure 13.3. Example implementation of polyglot persistence

Web Service Wrappers for
Data Stores

Advantages over direct access to data store

- Easier and cleaner to integrate the data store with multiple
applications

- Allows database structure to change without needing to update
applications that use it

* Potentially even change the database itself

Drawbacks

* Overhead of another layer

* Sometimes a modified web service actually requires changing
applications as well

* Reduces this likelihood

Web Service Wrapper
Example

e-commerce platform

W

Shopping cart
and session

N\

Inventory

and
Item Price

data

”

Completed
Orders

= Y
Session storage
service

v

Customer
social graph

N,

Inventory and

Key-Value
store

service

Document
store

-

i T = u.
Order persistence Price service

RDBMS
(Legacy DB)

Nedes and
Relations service

[;raph stnfg]

>

Figure 13.5. Using services instead of talking to databases

When to Use NoSQL

» It depends on factors like...

e Programmer productivity (easier to build)
When data is mainly collected or displayed in terms of aggregates
When the data includes complex, nested, or hierarchical structures
When data has a lot of relationships (graph databases)
When the data is non-uniform

When the database logic can be encapsulated into an isolated section of
the project

* Data-access performance (faster)
When data needs to be clustered (fragmented and/or replicated)

When aggregate data would need to be joined from multiple tables in an
RDBMS

When complex relational data needs to be queried (graph databases)

When Not to Use NoSQL

Most of the time

- Relational databases are well-known, mature, and have
lots of tools

When the need for transactional consistency
outweighs performance or productivity concerns

When many different applications (with different
developers/owners) will access the data

When strong security measures are required at the
database level to protect data

Homework 7

