
NoSQL Databases

CPS352: Database Systems

Simon Miner

Gordon College

Last Revised: 4/22/15

Agenda

• Check-in

• NoSQL Databases

• Aggregate databases – Key-value, document, and column family

• Graph databases

• Related Topics

• Distributed Databases and Consistency with NoSQL

• Version Stamps

• Map-Reduce Pattern

• Schema Migrations

• Polyglot Persistence

• When (not) to use NoSQL

• Homework 7

Check-in

NoSQL Databases

Aggregate Databases: Key-value, Document, Column Family

Graph Databases

https://www.youtube.com/watch?v=qI_g07C_Q5I
https://www.youtube.com/watch?v=qI_g07C_Q5I
https://www.youtube.com/watch?v=qI_g07C_Q5I
https://www.youtube.com/watch?v=qI_g07C_Q5I
https://www.youtube.com/watch?v=qI_g07C_Q5I

Aggregate Data Models

• Aggregate – a collection of related objects treated as a unit

• Particularly for data manipulation and consistency management

• Aggregate-oriented database – a database comprised of aggregate data
structures

• Supports atomic manipulation of a single aggregate at a time

• Good for use in clustered storage systems (scaling out)

• Aggregates make natural units for replication and fragmentation/sharding

• Aggregates match up nicely with in-memory data structures

• Use a key or ID to look up an aggregate record

• An aggregate-ignorant data model has no concept of how its components
can aggregate together

• Good when data will be queried in multiple ways

• Not so good for clusters

• Need to minimize data accesses, and including aggregates in the data helps with
this

Aggregate Database Example:

An Initial Relational Model

Aggregate Database Example:

An Aggregate Data Model

Aggregate Database Example:

Another Aggregate Model

Aggregate-Oriented Databases

• Key-value databases

• Stores data that is opaque to the database

• The database cannot see the structure of records, just has a key to access a record

• Application needs to deal with this

• Allows flexibility regarding what is stored (i.e. text or binary data)

• Document databases

• Stores data whose structure is visible to the database

• Imposes limitations on what can be stored

• Allows more flexible access to data (i.e. partial records) via querying

• Both key-value and document databases consist of aggregate records accessed by ID
values

• Column-family databases

• Two levels of access to aggregates (and hence, two pars to the “key” to access an aggregate’s data)

• ID – to look up aggregate record

• Column name – either a label for a value (name) or a key to a list entry (order id)

• Columns are grouped into column families

Key-Value Databases

• Key-value store is a simple hash table

• Records access via key (ID)

• Akin to a primary key for relational database records

• Quickest (or only) way to access a record

• Values can be of any type -- database does not care

• Like blob data type in relational database

• Bucket – namespace used to segment keys

• Shows up as (sometimes implicit) prefix or suffix to key

• Operations

• Get a value for a given key

• Set (or overwrite or append) a value for a given key

• Delete a key and its associated value

Key-Value Database Features

• Consistency only applies in the context of a single key/value pair

• Need strategy to handle distributed key-value pairs – i.e. newest write

wins, all writes reported and client resolves the conflict

• No ACID transactions because of performance requirements over

distributed cluster

• Weaker transaction consistency can be asserted by requiring that a

certain number of nodes (quorum) get the write

• Scale by both fragmentation and replication

• Shard by key values (using a uniform function)

• Replicas should be available in case a shard fails

• Otherwise all reads and writes to the unavailable shard fail

Interacting with Key-Value

Databases
• Applications can only query by key, not by values in the data

• Design of key is important

• Must be unique across the entire database

• Bucket can provide an implicit top-level namespace

• How and what data gets stored is managed entirely at the application level

• Single key for related data structures

• Key incorporates identification data (i.e. user_<sessionID>)

• Data can include various nested data structures (i.e. user data including session, profile, cart
info)

• All data is set and retrieved at once

• Different kinds of aggregates all stored in one bucket

• Increases chance of key conflicts (i.e. profile and session data with same ID)

• Multiple keys for related data structures

• Key incorporates name of object being stored (i.e. user_<sessionID>_profile

• Multiple targeted fetches needed to retrieve related data

• Decreases chance of key conflicts (aggregates have their own specific namespaces)

• Expiration times can be assigned to key-value pairs (good for storing transient data)

Key-Value Aggregate

Examples

Using Key-Value Databases

• Use key-value databases for…

• Data accessed via a unique key (i.e. session, user profile,

shopping cart, etc.)

• Transient data

• Caching

• Don’t use key-value databases for…

• Relationships among data

• Multi-operation transactions

• Querying by data (value instead of key)

• Operations on sets of records

Document Databases

• Store of documents with keys to access them

• Similar to key-value databases except…

• Can see and dynamically manipulate the structure of the documents

• Often structured as JSON (textual) data

• Each document can have its own structure (non-uniform)

• Each document is (automatically) assigned an ID value (_id)

• Consistency and transactions apply to single documents

• Replication and sharding are by document

• Queries to documents can be formatted as JSON

• Able to return partial documents

Document Database Example

SQL Document Database Query

select * from order db.order.find()

select * from order

 where customerId = 12345

db.order.find({

 “customerId”:12345

})

select orderId, orderDate

 from order

 where customerId = 12345

db.order.find(

 {“customerId”:12345},

 {“orderId”:1,”orderDate”:1}

)

select *

 from order o

 join orderItem oi on o.orderId =

oi.orderID

 join product p on oi.productId = p.Id

 where p.name like ‘%Refactoring%’

db.order.find({

 “items.product.name”:

 ”/Refactoring/”

})

// in order collection

{

 “customerId”:12345,

 “orderId”:67890,

 “orderDate:”2012-12-06”,

 “items”:[{

 “product”:{

 “id”:112233,

 “name”:”Refactoring”,

 “price”:”15.99”

 },

 “discount”:”10%”

 },

 {

 “product”:{

 “id”:223344,

 “name”:”NoSQL Distilled”,

 “price”:”24.99”

 },

 “discount”:”3.00”,

 “promo-code”:”cybermonday”

 },

],

 …

}

Using Document Databases

• Use document databases for…

• Event logging – central store for different kinds of

events with various attributes

• Content management or blogging platforms

• Web analytics stores

• E-commerce applications

• Do not use document databases for…

• Transactions across multiple documents (records)

• Ad hoc cross-document queries

Column Family Databases

• Structure of data records

• Each record indexed by a key

• Columns grouped into column families (like RDBMS tables)

• Additional mechanisms to assist with data management

• Key space – top-level container for a certain kind of data (kind of like a
schema in RDBMS)

• Configuration parameters and operations can apply to a key space

• i.e. number of replicas, data repair operations

• Columns are specified when a key space is created, but new ones can be
added at any time, to only those rows they pertain to

• Data access

• Get, set, delete operations

• Query language (i.e. CQL – Cassandra Query Language

Column-Family Database

Example

Column Family Database

Example

CREATE COLUMNFAMILY Customer (
 KEY varchar PRIMARY KEY,
 name varchar,
 city varchar,
 web varchar);

INSERT INTO Customer (KEY,name,city,web)
 VALUES ('mfowler',
 'Martin Fowler',
 'Boston',
 'www.martinfowler.com');

SELECT * FROM Customer;

SELECT name,web FROM Customer WHERE city='Boston’

Using Column Family

Databases

• Use column family databases for…

• Event logging

• Content management and blogging platforms

• Counters

• Expiring data

• Do not use column family databases for…

• Systems requiring ACID transactions

• Systems requiring ad-hoc aggregate queries

Relationships in Aggregate

Databases
• Aggregates contain ID attributes to related aggregates

• Require multiple database accesses to traverse relationships

• One to lookup ID(s) of related aggregate(s) in main aggregate

• One to retrieve each of the related aggregates

• Many NoSQL databases provide mechanisms to make relationships
visible to the database (to make link-walking easier)

• Updates to relationships require the application to maintain
consistency since atomicity is limited to each aggregate

• Aggregate databases become awkward when it is necessary to
navigate around many aggregates

• Graph databases – small nodes connected by many edges

• Make navigating complex relationships fast

• Linking nodes is done at time of insert, and not at query time

Data Management Scale with

Aggregate Databases
• Different aggregate data models have differing data management

capabilities

• Key-value databases

• Opaque data store

• Almost no database involvement with managing data

• Document databases

• Transparent data store

• Some facilities in databases to administer data (partial record queries,
indexes)

• Column family databases

• Transparent data store and dynamic schema

• Data management constructs (key spaces, query languages)

• Relational databases

• Static uniform schema

• Database manages the data (integrity constraints, security, etc.)

Graph Databases

• Excel at modeling relationships between entities

• Terminology

• Node – an entity or record in the database

• Edge – a directed relationship connecting two entities

• Two nodes can have multiple relationships between them

• Property – attribute on a node or edge

• Graphs are queried via traversals

• Traversing multiple nodes and edges is very fast

• Because relationships are determined when data is inserted into the
database

• Relationships (edges) are persisted just like nodes

• Not computed at query time (as in relational databases)

Graph Database Example

Graph Database Example

Graph Database Features

• Transaction support – graph can only be modified within a
transaction

• No “dangling relationships” allowed

• Nodes can only be deleted if they have no edges connected to
them

• Availability via replication

• Scaling via sharding is difficult since the graph relies heavily
on the relationships between its nodes

• Fragmentation can be done using domain knowledge (i.e.
separating relationships by different geographic regions,
categories, time periods, etc. – factors don’t get traversed much)

• Traversal across shards is very expensive

Interacting with Graph

Databases
• Web services / REST APIs exposed by the database

• Language-specific libraries provided by the database vendor
or community
// Find the names of people who like NoSQL Distilled

Node nosqlDistilled = nodeIndex.get("name",

 "NoSQL Distilled").getSingle();

relationships = nosqlDistilled.getRelationships(INCOMING, LIKES);

for (Relationship relationship : relationships) {

 likesNoSQLDistilled.add(relationship.getStartNode());

}

• Query languages – allow for expression of complex queries
on the graph

• Gremlin with Blueprints (JDBC-like) database connectors

• Cypher (for neo4j)

Graph Database Query

Language Example
• A “select” statement in Cypher

START beginingNode = (beginning node specification)

MATCH (relationship, pattern matches)

WHERE (filtering condition: on data in nodes and relationships)

RETURN (What to return: nodes, relationships, properties)

ORDER BY (properties to order by)

SKIP (nodes to skip from top)

LIMIT (limit results)

• Find the names and locations of Barbara’s friends

• Cypher

START barbara = node:nodeIndex(name = "Barbara")

MATCH (barbara)-[:FRIEND]->(friend_node)

RETURN friend_node.name,friend_node.location

• Gremlin

g = new Neo4jGraph(‘/path/to/graph/db’)

barbara = g.idx(T,v)[[name:’Barbara’]]

friends = barbara.out(‘friend’).map

Using Graph Databases

• Use graph databases for…

• Connected data in link-rich domain (i.e. friends,
colleagues, employees, customers, etc.)

• Routing or dispatch applications with location data (i.e.
maps, directions, distances)

• Recommendation engines (i.e. for products, dating
services, etc.)

• Don’t use graph databases for…

• Applications where many or all data entities need to be
updated at once or frequently

• Data that needs lots of partitioning

Schema-less Databases

• Common to all NoSQL databases – also called emergent schemas

• Advantages

• No need to predefine data structure

• Easy to change structure of data as time passes

• Good support for non-uniform data

• Disadvantages

• Potentially inconsistent names and data types for a single value

• Example: quantity, Quantity, QUANTITY, qty, count, quanity …

• Example: 5, 5.0, five, V …

• The database does not enforce these things because it has no knowledge of the implicit
schema

• Management of the implicit schema migrates into the application layer

• Need to look at code to understand what data and structure is present

• No standard location or method for implementing the logic to do this

• What do you do if multiple applications need access to the database?

Missionary Journeys into NoSQL
Acts 13-14

Related Issues

Distributed Databases and Consistency with NoSQL

Version Stamps

Map-Reduce Pattern

https://www.youtube.com/watch?v=qI_g07C_Q5I
https://www.youtube.com/watch?v=qI_g07C_Q5I
https://www.youtube.com/watch?v=qI_g07C_Q5I
https://www.youtube.com/watch?v=qI_g07C_Q5I
https://www.youtube.com/watch?v=qI_g07C_Q5I

Distribution Models

• Single server – simplest model, everything on one machine (or node)

• Sharding (fragmentation) – storing data (aggregates) across multiple
nodes

• Auto-sharding -- some NoSQL databases handle the logistics of sharding
so that the application does not have to

• Replication – duplicate data (aggregates) over multiple nodes

• Master-slave (primary copy) replication -- one master responsible for
updates, one or more slaves to support reads

• Peer-to-peer (multi-master) replication

• Each node does reads and writes, and communicates its changes to other
nodes

• Eliminates any one master as a single point of failure

• Drawbacks include complex synchronization system and inconsistency
issues

• Write-write conflicts – when two users update the same data item on separate
nodes

Consistency

• Update consistency – ensuring serial database changes

• Pessimistic approach – prevents conflicts from occurring (i.e. locking)

• Optimistic approach – detects conflicts and sorts them out (i.e. validation)

• Conditional update – just before update, check to see if the value has
changed since last read

• Write-write conflict resolution – automatically or manually merge the
updates

• Trade-off between safety and “liveness” (responsiveness)

• Read consistency – ensuring users read the same value for data at a
given time

• Logical consistency vs. replication consistency

• Sticky sessions (session affinity) – assign a session to a given database node
for all of its work to ensure read-your-writes consistency

Diluting the ACID
• Relaxed consistency

• CAP Theorem – pick two of these three

• Consistency

• Availability – ability to read and write data to a node in the cluster

• Partition tolerance – cluster can survive network breakage that separates it into
multiple isolated partitions

• If there is a network partition, need to trade off availability of data vs.
consistency

• Depending on the domain, it can be beneficial to balance consistency with latency
(performance)

• BASE – Basically Available, Soft state, Eventual consistency

• Relaxed durability

• Replication durability – what happens if a replica is not available to receive
updates, but still servicing traffic?

• Do not necessarily need to contact all replicas to preserve strong consistency
with replication; just a large enough quorum.

Version Stamps

• Provide a means of detecting concurrency conflicts

• Each data item has a version stamp which gets incremented each time the
item is updated

• Before updating a data item, a process can check its version stamp to see if
it has been updated since it was last read

• Implementation methods

• Counter – requires a single master to “own” the counter

• GUID (Guaranteed Unique ID) – can be computed by any node, but are
large and cannot be compared directly

• Hash the contents of a resource

• Timestamp of last update – node clocks must be synchronized

• Vector stamp – set of version stamps for all nodes in a distributed
system

• Allows detection of conflicting updates on different nodes

Map-Reduce
• Design pattern to take advantage of clustered machines to do processing in parallel

• While keeping as much work and data as possible local to a single machine

• Map function

• Takes a single aggregate record as input

• Outputs a set of relevant key-value pairs

• Values can be data structures

• Each instance of the map function is independent from all others

• Safely parallelizable

• Reduce function

• Takes multiple map outputs with the same key as input

• Summarizes (or reduces) there values to a single output

• Map-reduce framework

• Arranges for map function to be applied to pertinent documents on all nodes

• Moves data to the location of the reduce function

• Collects all values for a single pair and calls the reduce function on the key and value collection

• Programmers only need to supply the map and reduce functions

Map-Reduce Example (Map)

Map-Reduce Example

(Reduce)

Partitioning, Combining, and

Composing
• Reduce operations use values from a single key

• Partitioning by key allows for parallel reduce work

• Combinable reducer -- Reducers that have the same form for input and
output can be combined into pipelines

• Further improves parallelism and reduces the amount of data to be
transferred

• Map-reduce compositions

• Can be composed into pipelines in which the output of one reduce is the
input to another map

• Can be useful to store result of widely-used map-reduce calculation

• Saved results can sometimes be updated incrementally

• For additive combinable reducers, the existing result can be combined with new
data

Reduce Partitioning Example

Combinable Reducer Example

Further Matters

Schema Migrations

Polyglot Persistence

SQL or NoSQL

Schema Migrations
• The structure of data changes regardless of what kind of database it

resides in

• System requirements evolve and the supporting database(s) must keep pace

• Transition phase – Period of time in which the old and new schema versions
must be maintained in parallel

• Challenges

• Avoid downtime of production database(s)

• Difficult to do for large systems as DDL to alter structure often requires database
object-level locks

• Ensure database remains usable to all applications during transition phase

• Different applications will integrate the schema changes at different times

• Don’t cause errors

• Don’t corrupt or lose data

• Minimize transition phase

• How can all data be migrated as quickly as possible?

• Does all data need to be migrated?

Schema Changes in Relational

Databases
• Challenges specific to RDBMS schema changes

• Keep database and applications in sync

• Schema changes applied separately to database and applications

• Schema changes need to be applied in the correct order

• Need to ensure that schema changes can be rolled back if there is a problem

• Schema changes need to be applied to all environments in the same fashion

• Development, test, staging, production

• Database migration framework can assist with this

• Logic to execute each schema change is stored in a file which contains a version string

• Scripts to generate initial database or take a “snapshot” of the current structure of an
existing database get the initial version (if the database already exists)

• May contain logic to upgrade and downgrade the database to/from its version

• Migration framework is responsible for applying changes up/down to a certain
version of the database in the right order

• Integrated into the project build process so it automatically gets executed in various
environments when a new version of the application is introduced there

Database Migration

Framework Example

Database Migration Execution

Example

Schema Changes in a NoSQL

Store
• Implicit schema – the database may be “schema-less”, but the application

still must manage the way data is structured

• Incremental migration – read from both schemas and gradually write
changes

• Read methodology:

• Read the data from the new / updated field(s)

• If the data is not in the new field(s), read it from the old ones

• Write methodology:

• Write data only to the new field(s)

• Old field may be removed

• Some data may never be migrated

• Changes to top-level aggregate structures are more difficult

• Example: make nested order records (inside customers) into top-level
aggregates

• Application must work with both old and new structures

Incremental Migration

Example

Polyglot Persistence

• Pick the best tool for the job

• Different databases are designed specifically for storing and
processing different types of data

• Example

• Many e-commerce sites run entirely on a relational database

• Alternatively:

• Keep order processing data in the RDBMS

• Session and shopping cart data could be separated into a key-value
store

• More transient data which can be copied to RDBMS once an order is placed

• Customer social data could reside in a graph database

• Designed specifically to optimize traversing relationships between data

Polyglot Persistence Example

Web Service Wrappers for

Data Stores
• Advantages over direct access to data store

• Easier and cleaner to integrate the data store with multiple

applications

• Allows database structure to change without needing to update

applications that use it

• Potentially even change the database itself

• Drawbacks

• Overhead of another layer

• Sometimes a modified web service actually requires changing

applications as well

• Reduces this likelihood

Web Service Wrapper

Example

When to Use NoSQL

• It depends on factors like…

• Programmer productivity (easier to build)

• When data is mainly collected or displayed in terms of aggregates

• When the data includes complex, nested, or hierarchical structures

• When data has a lot of relationships (graph databases)

• When the data is non-uniform

• When the database logic can be encapsulated into an isolated section of
the project

• Data-access performance (faster)

• When data needs to be clustered (fragmented and/or replicated)

• When aggregate data would need to be joined from multiple tables in an
RDBMS

• When complex relational data needs to be queried (graph databases)

When Not to Use NoSQL

• Most of the time

• Relational databases are well-known, mature, and have
lots of tools

• When the need for transactional consistency
outweighs performance or productivity concerns

• When many different applications (with different
developers/owners) will access the data

• When strong security measures are required at the
database level to protect data

Homework 7

