Data Analysis and Data Science

CPS352: Database Systems

Simon Miner Gordon College Last Revised: 4/29/15

Agenda

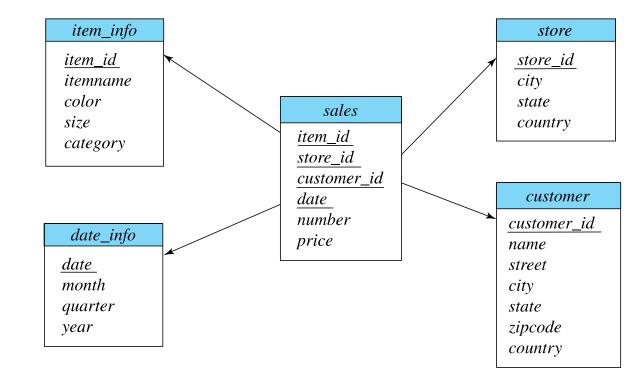
- Check-in
- Online Analytical Processing
- Data Science
- Homework 8

Online Analytical Processing

Online Transaction Processing (OLTP)

- Transactional data database concerned with maintaining single focused end-user interactions
 - Examples
 - Customer placing an order on an e-commerce website
 - Account holder making a deposit at a bank
 - Can be comprised of several rows/records of data
 - Example: An order has records for the order itself, each line item, address, payment method, etc.
 - Lots of data can accumulate quickly for numerous transactions
 - Needed for its own sake (i.e. shipping orders, order history, monthly account statements, etc.
 - Also useful for analysis...
- OLTP databases built and optimized for speed of transactions (both in the ACID and interaction contexts)
 - i.e. Provisioned with smaller block sizes to facilitate more precise (and maybe quicker) read and write operations

Online Analytical Processing (OLAP)


- Decision support systems (DSS) to help organizations determine longer term courses of action
 - Example: Not many orders for a certain product, so adjust product offerings to better match customer desires
 - Work with summaries and aggregations of raw transaction data
- OLAP user needs to have specific queries in mind
 - Example: Give me a cross-tab of item type vs. color ...
- Data mining automated process to reveal patterns in data and system usage
- OLAP databases designed to handle large amounts of data
 - i.e. Provisioned with larger block sizes to store and retrieve more data in read and write operations

Data Warehouse

- Unified repository for an organization's historical OLAP data
 - Supports trending, analysis, and decision making
- Gathered from numerous disparate sources via ETL processes
 - Extract get data from individual source(s) owned or managed by various parties
 - Transform manipulate data so that it fits into the data warehousing schema i.e. de-duplication, summarization
 - Load store the transformed data in the data warehouse
- Data is loaded at regular intervals
 - Slightly out of date, which is fine for analytical tasks the data warehouse is used for

Data Warehouse Schema

- Dimension values are usually encoded using small integers and mapped to full values via dimension tables
- Star schema
- Snowflake schema

A Data Warehouse in the Clouds

"Amazon Redshift is a fast and powerful, fully managed, petabyte-scale data warehouse service in the cloud. Amazon Redshift offers you fast query performance when analyzing virtually any size data set using the same SQL-based tools and business intelligence applications you use today. With a few clicks in the AWS Management Console, you can launch a Redshift cluster, starting with a few hundred gigabytes of data and scaling to a petabyte or more, for under \$1,000 per terabyte per year."

OLAP Concepts

- Attribute types
 - Dimension attribute values to analyze on
 - Explicit color, size, price, customer type, etc.
 - Derived age (computed from DOB), ranges (years of experience)
 - Measurement attribute value summarized or aggregated over various dimensions (sum, count, average, etc.)
- Cross-tab (pivot table) tool allowing easy analysis of data along various dimensions
 - Available in tools like spreadsheets
 - Basic SQL is not an effective tool to produce this kind of structure (lots of dynamic "group by" queries needed)

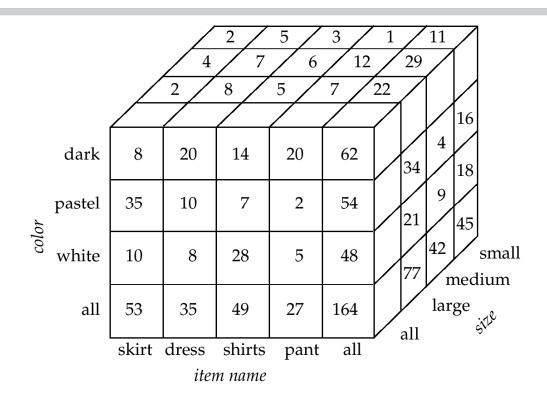
Cross Tabulation of sales by item-name and color

size: all						
	color					
item-name		dark	pastel	white	Total	
	skirt	8	35	10	53	
	dress	20	10	5	35	
	shirt	14	7	28	49	
	pant	20	2	5	27	
	Total	62	54	48	164	

The table above is an example of a cross-tabulation (cross-tab), also referred to as a plvot-table.

- Values for one of the dimension attributes form the row headers
- Values for another dimension attribute form the column headers
- Other dimension attributes are listed on top
- Values in individual cells are (aggregates of) the values of the dimension attributes that specify the cell.

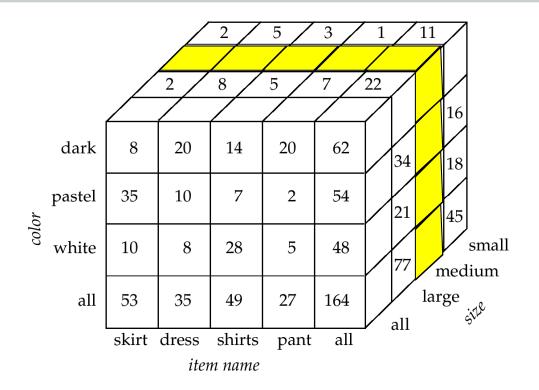
Figure 18.1 in book


OLAP Operations

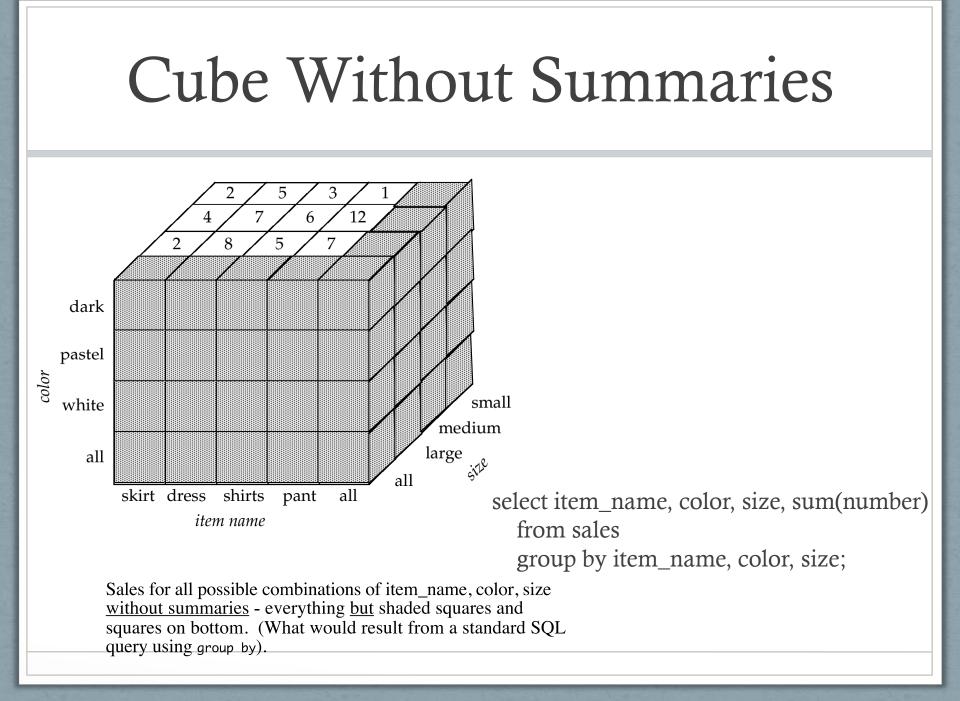
- Basic SQL
 - Aggregate functions, like sum(), count(), average()
 - Group by / having clause
- SQL-99 added support for operations to support analytics processing
 - Cube
 - Rollup
 - Rank / dense rank

Cube

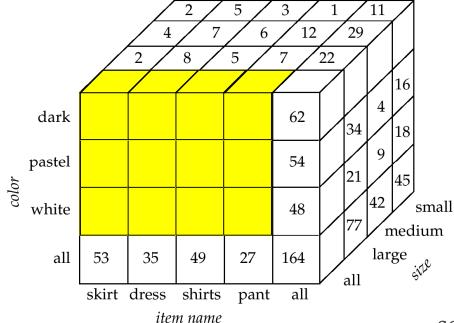
- Structure to aggregate a single measurement attribute across numerous dimensions
 - Includes all possible combinations of dimension values
 - Number of cube dimensions = number of dimensional attributes
 - Each dimension "row" includes a summary value for the aggregate of all possible values of that dimension
- User slices cube for specific dimension values


Cube Example

Cube showing sales for various combinations of item_name, color and size - including summaries for all item_names, colors, and/or sizes

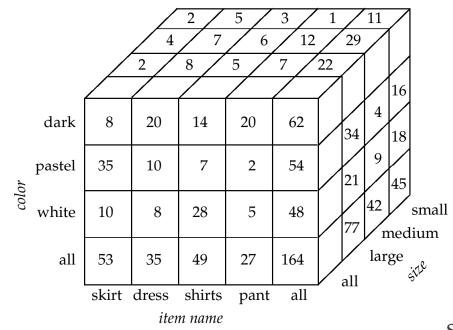

Figure 18.3 in book

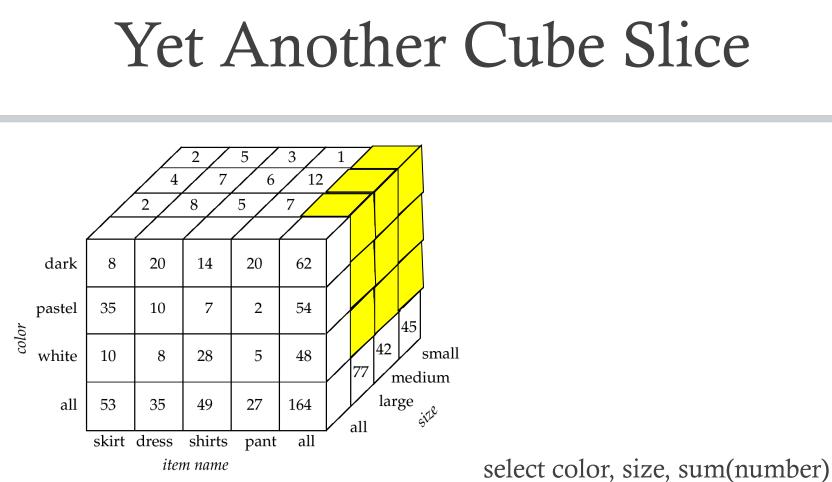
Cube Slice Example



Slice showing sales for various combinations of item_name and color for size = medium

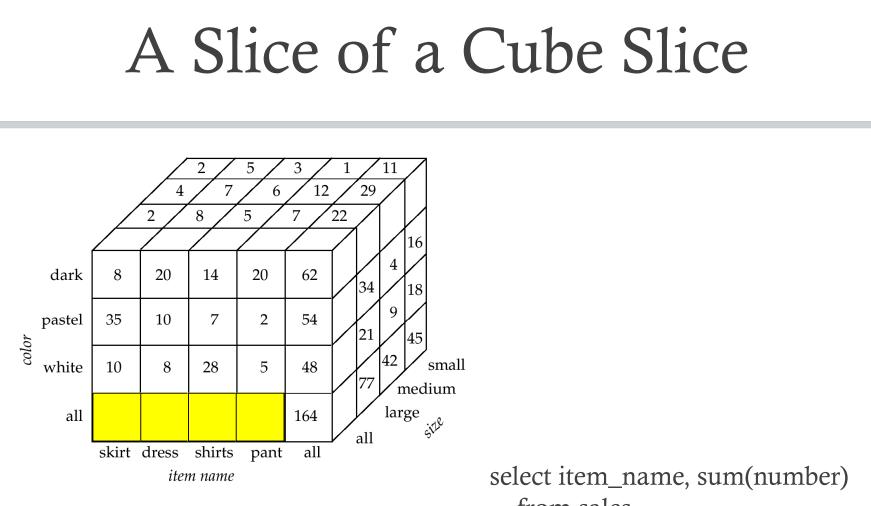
Slice from figure 18.3 in book


Another Cube Slice


Sales by item_name and color - for all sizes

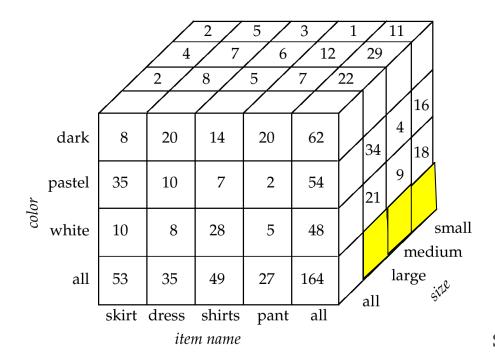
select item_name, color, sum(number)
from sales
group by item_name, color;

Still Another Cube Slice



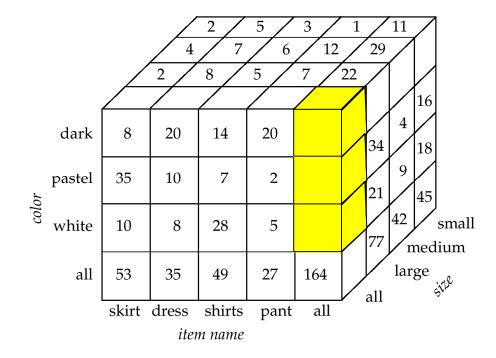
Sales by item_name and size - for all colors (not visible - all cells on bottom of cube, except front and right side) select item_name, size, sum(number) from sales group by item_name, size;

Sales by color and size - for all item_names


select color, size, sum(number) from sales group by color, size;

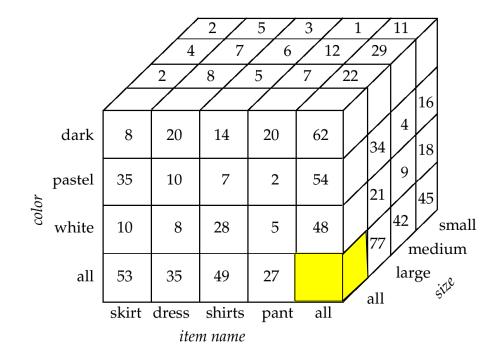
Sales by item_name - for all colors and sizes

elect item_name, sum(number) from sales group by item_name;


How About a Slice with Your Slice of Cube?

Sales by size - for all item_names and colors

select size, sum(number) from sales group by size, color;


Aggregates by the Slice

Sales by color - for all item_names and sizes

select color, sum(number) from sales group by color;

Slice Cubed

Total sales for all item_names, colors, and sizes

select sum(number)
from sales;

Slicing with SQL

- 2ⁿ SQL queries needed to generate all summary representations for a cube (where n = number of dimensions)
 - For item_name, color, and size (3 dimensions), $2^3 = 8$ queries

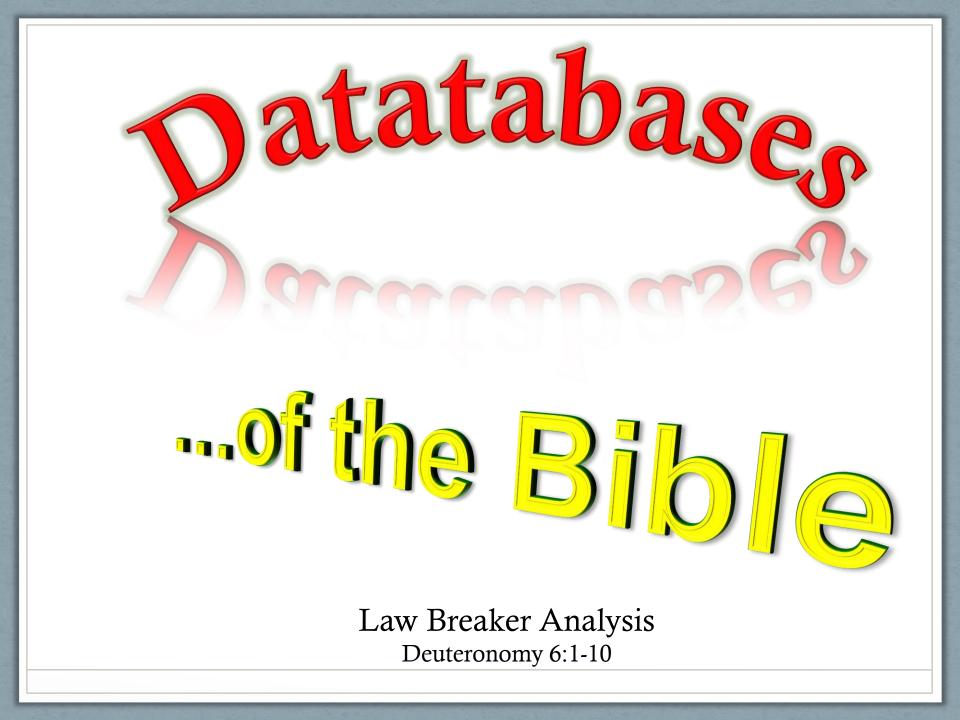
<pre>select item_name, color, size, sum(number) from sales group by item_name, color, size;</pre>	select item_name, color, sum(number) from sales group by item_name, color;
select item_name, size, sum(number)	select color, size, sum(number)
from sales	from sales
group by item_name, size;	group by color, size;
select item_name, sum(number)	select color, sum(number)
from sales	from sales
group by item_name;	group by color;
select size, sum(number) from sales group by size;	select sum(number) from sales;

SQL Cube Function

- cube (*dimension*₁, *dimension*₂, ... *dimension*)
 - Used in the group by clause
 - Produces all summary representations in the cube
- Examples
 - select item_name, color, size, sum(number) from sales group by cube(item_name, color, size)
 - select job, education, sex, avg(salary) from (select job, case when edlevel >= 18 then 'GRADUATE' when edlevel >= 16 then 'COLLEGE' else 'HIGH SCHOOL' end as education, sex, salary from employee) as e group by cube(job, education, sex) order by job, education, sex;
 - Report on average salary based on job, education level, and gender.

Rollup

- Summarize data based on the first listed dimension
 - Similar to cube (which yields 2ⁿ groups) for n dimensions
 - Includes all possible combinations of various dimensions and "all"
 - Yields n+1 groups for n dimensions
 - All the dimensions
 - All dimensions except the last
 - All the dimensions except the last and second to last
- rollup(*dimension*₁, *dimension*₂, ... *dimension*) j --in group by clause
 - "Rolling up" dimensions from right to left...
- Example


```
select job, education, sex, avg(salary)
from (select job, case
    when edlevel >= 18 then 'GRADUATE'
    when edlevel >= 16 then 'COLLEGE'
    else 'HIGH SCHOOL'
    end as education, sex, salary
    from employee) as e
    group by rollup(job, education, sex)
    order by job, education, sex;
```

Rank

- Rank records over dimension attributes
- rank() over (order by dimension sort_direction)
 - Used in select clause
 - Lower numbers mean higher rank (rank = 1 being highest)
- Example
 - select firstnme, lastname, salary, rank() over (order by edlevel desc) as edrank from employee order by edrank;
 - Examine the relationship between salary and educationlevel

Dense Rank

- Ranking function without skipping numbers
- dense_rank() over (order by *dimension sort_direction*)
 - Used in select clause
 - Lower numbers mean higher rank (rank = 1 being highest)
- Example
 - select firstnme, lastname, salary, dense_rank() over (order by edlevel desc) as edrank from employee order by edrank

Data Science

What is Data Science?

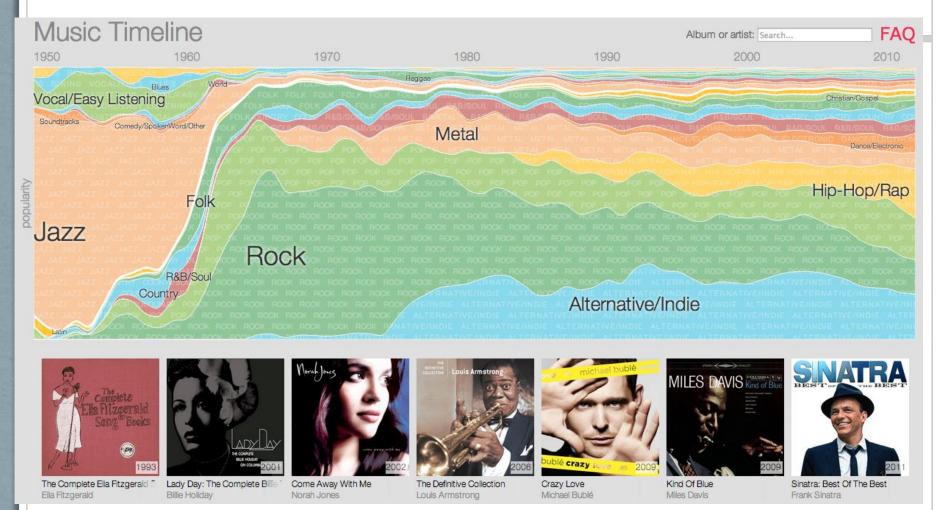
- "The science of systematically discovering patterns in very large data sets to extract useful knowledge and predict something of value." <u>Udacity</u>
- Data scientist has been called <u>"the sexiest job of the 21st</u> <u>century."</u>
- Organizations are producing a tremendous amount of data, and want to analyze and derive value from it.
 - Where to start? What questions to ask? What to look for?
 - Enter "Data Science"

What Does a Data Scientist Do?

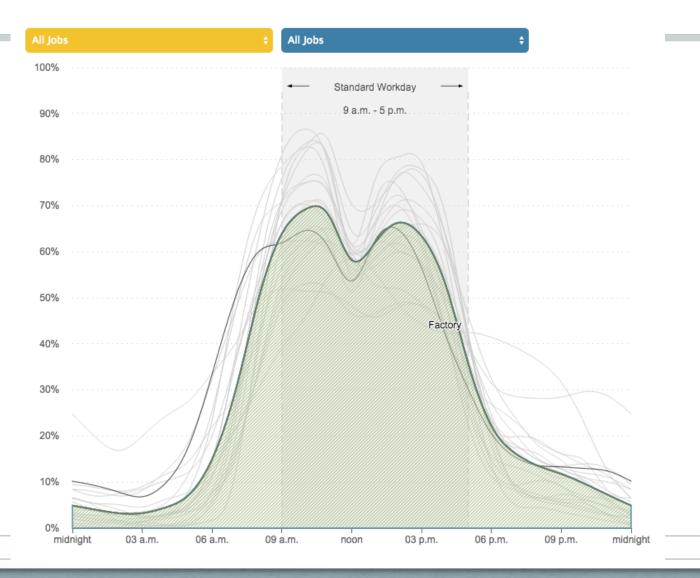
- Data Wrangling/Munging
- Data Analysis
- Communication

Data Wrangling/Munging

- Obtain data from potentially disparate sources
 - From files, databases, APIs, spreadsheets, etc...
- Organize data
 - In some (large) storage solution (RDBMS, NoSQL, etc.)
 - So that it's easy to work with
- Clean data
 - Missing or incorrect values
 - Converting information to standard format
 - ETL
- Something of an art from
 - Get the data into a consistent format that lends itself to analysis

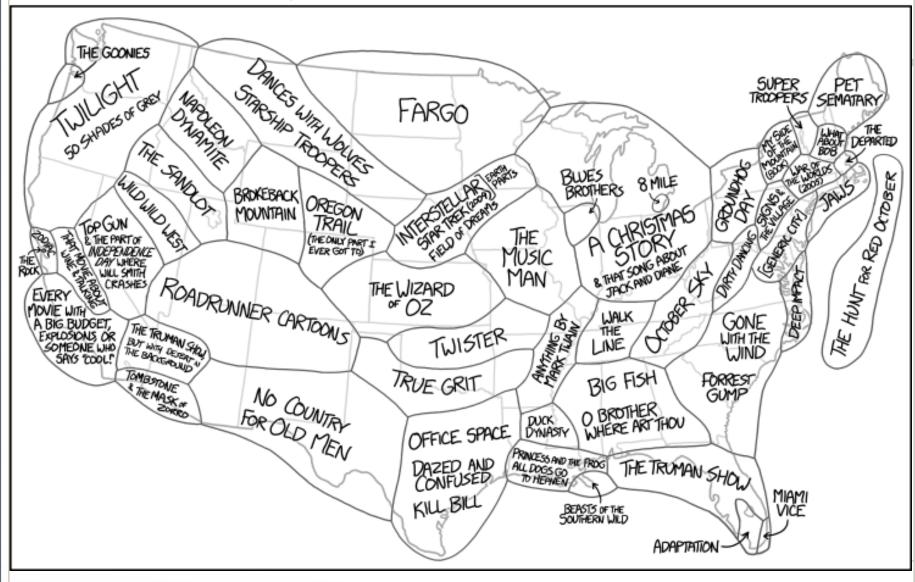

Data Analysis

- Explore and experiment discover patterns in the data
- Create and apply algorithms to the data
 - Multivariate calculus and linear algebra
 - Statistics
 - Machine learning
- Interpret results and make predictions


Communication

- Need to articulate complex findings in straightforward ways
 - Patterns in data
 - Algorithm results and interpretations
 - Recommendations
- Data visualization
 - Reports
 - Charts
 - Infographics

Sample Visualizations



American Workday

A CHEAT SHEET FOR FIGURING OUT WHERE IN THE US YOU ARE BY RECOGNIZING THE BACKGROUND FROM MOVIES

(RR USE BY GEOGUESSR PLAYERS AND (RAGH-LANDED ASTRONAUTS)

R

- Programming language well-suited for manipulating and running computations on large data sets
 - Built-in types include vector, matrix, and data frame (like a spreadsheet)
 - Operations on these data structures are carried out on every data value in them
 - Built in functions to
 - Plot charts, histograms, etc.
 - Do advanced statistical operations (Chi-squared distribution, etc.)

Homework 8