
CS112 Lecture: Inheritance and Polymorphism

Last revised 4/17/06
Objectives:
1. To review the basic concept of inheritance
2. To introduce the notions of abstract methods, abstract classes, and interfaces.
3. To introduce Polymorphism.
4. To introduce issues that arise with subclasses - protected visibility, use of the super()

constructor
5. To discuss the notion of multiple inheritance and Java’s approach to it

 Materials:
1. Dr. Java for demos + file OverrideDemo.java
2. Projectable versions of code snippets
3. Employees demo program - Handout and online demo

I. Review of Basic Concepts

A. Throughout this course, we have been talking about a particular kind of
computer programming - object-oriented programming (or OO). As an
approach to programming, OO is characterized by three key features:

1. Polymorphism

2. Inheritance

3. Encapsulation

B. Although we have not used the term extensively, much of our study so far
has centered on encapsulation.

1. In OO systems, the class is the basic unit of encapsulation. A class
encapsulates data about an object with methods for manipulating the data,
while controlling access to the data and methods from outside the class so
as to ensure consistent behavior.

2. This is really what the visibility modifier “private” is all about. When we
declare something in a class to be private, we are saying that it can only be
accessed by methods defined in that class - that is, it is encapsulated by the
class and is not accessible from outside without going through the
methods that are defined in the class.

1

C. We have also made considerable use of inheritance.
1. Examples:

a) At the start of the course, when working with Karel, we developed
robot classes that inherited from a basic Robot class that provided
certain basic capabilities (e.g. turnLeft(), frontIsClear(), etc.). We
extended that basic class to provide additional capabilities (e.g.
turnRight(), carpet a corridor with beepers, etc.)

b) The Java awt and swing packages which we have just been studying
makes extensive use of inheritance - e.g. various swing classes such as
JButton, JLabel etc. are all extensions of a common base class called
JComponent.

2. Review of basic terminology: If a class B inherits from a class A:
a) We say that B extends A or B is a subclass of A.
b) We say that A is the base class of B or the superclass of B.
c) This notion can be extended to multiple levels - e.g. if C extends B and

B extends A, then we can say not only that C is a subclass of B, but
also that it is a subclass of A. In this case, we sometimes distinguish
between direct subclasses/base class and indirect subclasses/base class.

3. Crucial to inheritance is what is sometimes called the law of substitution:
a) If a class B inherits from (extends) a class A, then an object of class B

must be able to be used anywhere an object of class A is expected - i.e.
you can always substitute a B for an A.

b) This notion is what allows us to call B a subclass of A or A a superclass
of B. The set of all “B” objects is a subset of the set of all “A” objects
- which potentially includes other “A” objects that are not “B” objects
- e.g.

The meaning of “B extends A”

The set of all A objects

The set of all B objects

2

c) This relationship is sometimes expressed by using the phrase “is a” -
we say a B “is a” A.

d) Examples:

(1) In the Java awt/swing, the add() method of a Container is defined to
take a parameter/first parameter of type Component. However, we
never add Components per se to a Container; we always add a
particular subclass of Component - e.g. a JButton or a JLabel or a
JTextField or whatever. We can do this because a JButton or
JLabel or JTextField is a JComponent, which in turn is a
Component.

(2) Again, because a Java awt Container is a Component, we can add a
Container to another Container, allowing us to have Containers
within Containers within Containers ...

e) Remembering the law of substitution will help prevent some common
mistakes that arise from misusing inheritance.

(1) The “is a” relationship is similar to another relationship called the
containment relationship, or “has a”. Sometimes inheritance is
incorrectly used where containment should be used instead.

(2) Example: suppose we were building a software model of the human
body, and we wanted to create a class Person to model a whole
person, and a class Arm to model a person’s arms. The correct
relationship between Arm and Person is a “has a” relationship - a
Person “has a” Arm (actually two of them), not “is a” - we cannot
say that an Arm is a Person, because we cannot substitute an Arm
everywhere a Person is needed.

D. We have also made use of polymorphism, though we have not formally
defined the concept.

1. In brief, because of the law of substitution, it is possible for a variable that
is declared to refer to an object of a base class to actually refer at run
time to an object of that class or any of its subclasses.

Example: Given the following declarations (DEMO with Dr. Java - file
OverrideDemos.java)

3

class A
{

public void saySomething(int i)
{ System.out.println(i); }

}

class B extends A
{

public void saySomething(int i)
{ System.out.println(4); }

}

(Load OverrideDemo.java, compile, then issue type the following at the
interactions window)

A someA;
B someB;

all of the following are legal

someA = new A();
someA = new B();
someB = new B();
someA = someB;

However, the following are not legal:

someB = new A(); // Illegal!
someB = someA; // Illegal! (Dr. Java doesn’t

// catch!)

2. Further, when a message is sent to an object, the method used to handle
the message depends on the actual type of the object, not its declared
type.

Example: To continue the above, suppose that we did the assignment

someA = new A();

And now performed the the test

someA instanceof B

4

the instanceof test would fail (An A is not necessarily a B, though the
reverse is true) and no output would be printed.

However, if we did the assignment

someA = new B();

and then performed the same test, the test would succeed because
instanceof looks at the actual class of the object referred to, which may be
the declared class or one of its subclasses.

By the way - in both cases the test

if (someA instance of A)

would succeed, because a B is an A.

likewise, if we did

someB = new B();

someB instanceof A would succeed since a B is an A.

3. A consequence of this is that a class can override a method of its base
class, and the method that is used depends on the actual type of the
receiver of a message.
Example
someA = new B();
someA.saySomething(-1);
What will the output be?
ASK

42 - since someA actually belongs to class B, the class B version of
saySomething() is the one that is used.

a) When a class has a method with the same name and signature as an
inherited method in its base class, we say that the inherited method is
overridden.

b) Note that overridden methods must have the same signature as the
inherited method they override - otherwise we have an overload, not
an override.

5

EXAMPLE: Suppose, in the above, I instead defined subclass C with a
method called saySomething(short i), instead of the method whose
parameter is of type int..
class C extends A
{

public void saySomething(short i)
{ System.out.println(42); }

}

What I actually have in this case is an overload rather than an override,
Now suppose I write
new C().saySomething(-1);
What will the output be?
ASK
-1

However, I would get the other method method (hence output of 42) if
I used new C().saySomething((short) -1)

c) When a base class method is overridden in a subclass, the base class
method becomes invisible unless we use a special syntax to call it:
super.<methodname> (<parameters>)
EXAMPLE: Suppose I include a method in B like the following:

public void speak()
{ saySomething(0); }

Then issued the command

new B().speak();

what will the output be?

ASK

42 - Since we use the B version of saySomething(). To get the A
version, I could code the body as

super.saySomething(0);

6

II. Abstract Methods, Abstract Classes, and Interfaces

A. We have already seen that, when B is a subclass of A, B inherits all the
methods of A.

1. Much of the power of inheritance comes from the fact that B ordinarily
inherits A’s implementation of these methods, so B does not have to
implement them itself.
Example: All of the Robot classes we defined early in the course inherited
the implementation of the primitive methods such as turnLeft(), so we
didn’t have to provide an implementation for them ourselves. (Indeed, if
we did have to do so, we would have been stuck!)

2. Sometimes, though, B needs to replace A’s implementation of some
method with a version of its own. In this case, we say that B’s method
overrides A’s.
Example: Suppose we were developing a payroll system for a company
where all the employees are paid based on the number of hours worked
each week. We might develop an Employee class like the following:

PROJECT

public class Employee
{
 public Employee(String name, String ssn, double hourlyRate)
 {
 ...
 this.hourlyRate = hourlyRate;
 }
 public String getName()
 ...
 public String getSSN()
 ...
 public double weeklyPay()
 {
 // Pop up a dialog box asking for hours worked this week
 return hoursWorked * hourlyRate;
 // Actually should reflect possible overtime in above!
 }
 ...
 private String name;
 private String ssn;
 private double hourlyRate;
}

Now suppose we add a few employees who are paid a fixed salary.

a) We could create a new class SalariedEmployee that overrides the
weeklyPay() method, as follows: (PROJECT)

7

class SalariedEmployee extends Employee
{
 public SalariedEmployee(String name,String ssn,double annualSalary)
 ...
 public double weeklyPay()
 { return annualSalary / 52; }
 ...
 private double annualSalary;
}

b) It would now be possible to create an array of Employee objects, some
of whom would actually be SalariedEmployees - e.g. (PROJECT)

Employee [] employees = new Employee[10];
employees[0]=new SalariedEmployee(“Big Boss”,“999-99-9999”,100000.00);
employees[1]=new Employee(“Lowly Peon”, “111-11-1111”, 4.75);
...

c) Further, we could iterate through the array and call the weeklyPay()
method of each, without regard to which type of employee each
represents, and the correct version would be called: (PROJECT)

for (int i = 0; i < employees.length; i ++)
printCheck(employees[i].getName, employees[i].weeklyPay());

Note that, in each case, the appropriate version of weeklyPay() is called
- e.g. for Big Boss, the SalariedEmployee version is called and a check
for 1923.08 is printed; for Lowly Peon a dialog is popped up asking for
hours worked and the appropriate amount is calculated based on a rate
of 4.75 per hour. This is another example of polymorphism.

B. There are times, though, when defining a method in the base class whose
implementation is inherited by the subclasses is not at all what we want to
do. In such cases, we may want to create an abstract class and method(s).

1. To see why this is so, consider the example we just looked at.

a) The solution we just developed is not really a good one.
Why?
ASK
Because SalariedEmployee inherits from Employee, every
SalariedEmployee has an hourly rate field, even though it is not used.
(The hourlyRate field is private, so it is not inherited in the sense that it
is not accessible from within class SalariedEmployee; however, it does
exist in the object and is initialized by the constructor - so a value must
be supplied to the constructor even though it is not needed!) This can
be seen from the following Class diagram, which uses a language-
independent notation known as UML (Unified Modelling Language)

8

- annualSalary : double

Employee

SalariedEmployee

- name
- ssn
- hourlyRate : double
+Employee(String,
 String, double)
+ getName() : String
+ getSSN(): String
+ weeklyPay(): double

+ SalariedEmployee
 (String,String,double)
+ weeklyPay(): double

(1) Each box stands for a class. The arrow with a triangle at the head
connecting them indicates that the class SalariedEmployee extends
Employee - i.e. a SalariedEmployee “isa” Employee.

(2) Each box has three compartments. The first contains the name of
the class (and potentially certain other information about the class as
we shall see later). The second contains the fields of the class (the
instance and class variables). The third contains the methods.

(a) A subclass inherits all the fields of its superclass. Thus, a
SalariedEmployee object has four fields - name, ssn, and hourly
rate (inherited from Employee) and annualSalary (defined in the
class)

(b) A subclass also inherits all the instance methods of its superclass,
unless it overrides them. Thus, the SalariedEmployee class
inherits the getName() and getSSN() methods from is superclass
and overrides the weeklyPay() method. It does not inherit the
constructor, since this is not an instance method.

(3) Each field and method is preceeded by a visibility specifier. The
possible specifiers are:

(a) + - accessible to any object - this corresponds to Java public

9

(b) - - accessible only to objects of this class - this corresponds to
Java private

(c) # - accessible only to objects of this class or its subclasses - which
corresponds to Java protected (which we haven’t really used
yet.). Note that, in this example, name and ssn are not made
protected - the subclass has access to them through public
methods getName() and getSSN().

(4) Each field has a type specifier, and each method has a return type
specifier.

(5) Each method has type specifiers for its parameters (its signature).

b) What would be a better solution?
ASK
Create a class hierarchy consisting of a base class called Employee and
two subclasses - one called HourlyEmployee and one called
SalariedEmployee. Only HourlyEmployees would have an hourlyRate
field, while SalariedEmployees would have an annualSalary field. This
is expressed by the following diagram:

- hourlyRate: double

SalariedEmployeeHourlyEmployee

+ HourlyEmployee
 (String,String,double)
+ weeklyPay(): double

Employee

- name
- ssn

+Employee(String,
 String)
+ getName() : String
+ getSSN(): String

- annualSalary: double
+ SalariedEmployee
 (String,String,double)
+ weeklyPay(): double

10

Notice that what we have done is to leave in the base class only those
fields and methods which are common to the two subclasses. We have
also eliminated the need for a pay rate parameter in the Employee
constructor - we only specify the name and ssn. We likewise have
eliminated the weeklyPay() method, since this is different for each
subclass, and each implementation uses a field specific to that subclass.

c) However, this solution introduces a new problem. The following code,
which we used above, would no longer work: (PROJECT AGAIN)

Employee [] employees = new Employee[10];
...
for (int i = 0; i < employees.length; i ++)
 printCheck(employees[i].getName, employees[i].weeklyPay());

Why?

ASK

There is no method called weeklyPay() declared in class Employee,
though there is such a method in its subclasses. Since the array
employees is declared to be of class Employee, the code

employees[i].weeklyPay()

will not compile. (The compiler is not aware of a class’s subclasses
when it compiles code referring to it - and, in general, cannot be aware
of its subclasses since new ones can be added at any time.)

d) How might we solve this problem? Note that the type of the array
has to be Employee, since individual elements can be of either of the
subclasses.
ASK
We could solve this problem by adding a weeklyPay() method to the
Employee class. But what should its definition be? As it turns out, it
doesn’t matter, since we know that it will be overridden in the
subclasses. So we could use a dummy implementation like:
(PROJECT)

public double weeklyPay()
{ return 0; }

However, there are all kinds of problems with this - it is confusing to
the reader, and if we accidentally did create an object directly of class
Employee (which we would be allowed to do), we would get in trouble
with the minimum wage laws!

11

2. To cope with cases like this, Java allows the use of abstract methods and
classes.

a) An abstract method uses the modifier abstract as part of the
declaration, and has no implementation - the prototype is followed by a
semicolon instead. It serves to declare that a given method will be
implemented in every subclass of the class in which it is declared.

Example: We could declare an abstract version of weeklyPay in class
Employee as:

public abstract double weeklyPay();

b) A class that contains one or more abstract methods must itself be
declared as an abstract class. (The compiler enforces this):

(1) Example: (PROJECT)

public abstract class Employee
{

...

(2) An abstract class cannot be instantiated - e.g. the following would
now be flagged as an error by the compiler

new Employee(...)

This is because an abstract class is incomplete - it has methods that
have no implementation, so allowing the creation of an object that is
an instance of an abstract class could lead to an attempt to invoke a
method that cannot be invoked.

(3) A class that contains abstract methods must be declared as abstract.
The reverse is not necessarily true - a class can be declared as
abstract without having any abstract methods. (This is done if it
doesn’t make sense to create a direct instance of the class.)

EXAMPLE: The Java awt classes Component and Container are
both abstract - it does not make sense to create a Component that is
not some particular type of Component (Button, etc.) - ditto a
Container. However, the swing JComponent class is not abstract -
this allows creation of a JComponent to use as a blank canvas for
drawing. (awt has a subclass of Component called Canvas that is
used for this purpose.)

12

c) Note that, in general, an abstract class can contain a mixture of
ordinary, fully-defined methods and abstract methods.

EXAMPLE: The Employee class we have used for examples might
contain methods like getName(), getSSN(), etc. which are common to
all kinds of Employees - saving the need to define each twice, once for
HourlyEmployee and once for Salaried Employee.

d) Note that a subclass of an abstract class must either:

(1) Provide definitions for all of the abstract methods of its base class.

or

(2) Itself be declared as abstract, too.

e) Sometimes, a non-abstract class is called a concrete class.

C. Suppose we take the notion of an abstract class and push it to its limit - i.e. to
the point where all of the methods are abstract - none are defined in the class
itself. Such a class would specify a set of behaviors, without at all defining
how they are to be carried out.

1. In Java, such an entity is called an interface, rather than a class.

a) Its declaration begins

[public] interface Name ...

An interface is always abstract; the use of the word abstract in the
interface declaration is legal, but discouraged.

b) An interface can extend any number of other interfaces, but cannot
extend a class.

c) All of the methods of an interface are implicitly abstract and public;
none can have an implementation. The explicit use of the modifiers
abstract and/or public in declaring the methods is optional, but
discouraged

EXAMPLE: Inside the declaration of an interface, the following are
equivalent

13

public abstract void foo(); // Discouraged style
public void foo(); // Discouraged style
abstract void foo(); // Discouraged
style
void foo();

And the following is illegal:

void foo()
{ anything }

d) Interfaces can also declare static constants. Any variable declared in an
interface is implicitly public, static, and final, and must be initialized at
the point of declaration. The explicit use of the modifiers public, static,
and/or final in declaring a constant is legal, but discouraged.

e) Interfaces cannot have:

(1) Constructors
(2) Instance variables
(3) Non-final class variables
(4) Class (static) methods

2. A Java class can implement any number of interfaces by including the
clause

implements Interface [, Interface]...

in its declaration.

A class that declares that it implements an interface must declare and
implement each of the methods specified by the interface - or must be
declared as abstract - in which case its concrete subclasses must implement
any omitted method(s).

3. Why does Java have interfaces as a separate and distinct kind of entity
from classes?

a) An interfaces is used when one wants to specify that a class inherits a
set of behaviors, without inheriting their implementation.

b) Interfaces provide a way of dealing with the restriction that a class can
extend at most one other class. A class is allowed to extend one class
and implement any number of interfaces.

14

4. Where have we already used interfaces?

ASK

The various types of awt listener are interfaces. An object that wants to
listen for a particular type of event must declare that it implements the
appropriate type of listener. There is no restriction on how many types of
events a given object can be a listener for, nor does being a listener
interfere with an objects ability to extend some class.

EXAMPLE:

A main window that handles action events and window events might be
declared as

class MyWindow extends JFrame implements ActionListener, WindowListener
{

III. Miscellaneous Issues

A. Protected visibility.

1. We have already seen that variables and methods declared within a class
may have different visibilities:

a) private - accessible only to the methods of the class in which they are
declared

b) (default - none specified) - accessible only to the methods of the class in
which they were declared, and other classes in the same package

c) public - accessible to the methods of any class

2. The fourth - and last - visibility specifier is protected, which makes the
item accessible to the methods of the class in which it is declared, any class
in the same package, and any subclass (regardless of whether or not it is in
the same package).

B. The super() constructor.

1. The very first thing that any constructor of a subclass must do is call the
constructor of the immediate base class. This is done by using the
keyword super, followed by a list of arguments that is appropriate to the

15

superclass constructor.

EXAMPLE: Suppose we have a class HourlyEmployee that extends
Employee. Suppose further that the Employee constructor requires
parameters name and ssn. Then an HourlyEmployee constructor might
look like this: (PROJECT)

public HourlyEmployee(String name, String ssn, double hourlyRate)
{

super(name, ssn);
this.hourlyRate = hourlyRate;

}

2. The explicit call to the superclass constructor can be omitted if and only if
the base class has a constructor that takes no arguments. In this case, the
compiler automatically inserts

super();

as the first statement of the constructor.

C. Use of super to access overridden methods

We have already seen that, when a subclass overrides a method of its base
class, it can access the original method via

super.methodName(parameters);

D. The final modifier on methods

1. When a class is going to be extended, it may be that some of its methods
should not be subject to being overridden. In this case, they can be
declared as final.

EXAMPLE: If the class Employee has a getName() method for accessing
the employee’s name that cannot meaningfully be overridden, the method
could be declared as

public final String getName()
{
 return name;
}

2. Declaring a method as final when it cannot be overridden allows the
compiler to perform some optimizations that may result in more efficient
code, so adding final to a method declaration where appropriate is

16

worthwhile.

E. The Final Modifier on classes

1. Just as an individual method can be declared final, so an entire class can be
declared final. (E.g. public final class ...).

2. A final class cannot be extended. This serves to prevent unwanted
extensions to a class - e.g. the class java.lang.System is final.

F. Multiple inheritance.

1. We have talked about a lot of things that Java can do. We now must
consider one capability present in many OO languages that Java does not
support: multiple inheritance.

2. Sometimes, it is meaningful for a given class to have two (or more) direct
base classes. A classic example of this is a system for maintaining
information about students at a college or university, which might have
the following structure:

Person

EmployeeStudent

+ getGPA() : double weeklyPay() : double

Now suppose we wanted to add a new class TA. Such a class would
logically inherit from both Student and Employee, since a TA is both, and
since the methods getGPA and weeklyPay are both applicable. Many OO
languages would allow this - Java does not.

17

3. Multiple inheritance is actually something of a controversial feature in OO.
Allowing it introduces all kinds of subtleties. To cite just one example - if
we did have TA inherit from both Student and Employee, then a TA is a
Person in two different ways. Does this mean that there are two copies
of the Person information stored - one for TA as Student and one for TA
as Employee? It turns out that dealing with issues like this is non-trivial -
one reason why Java opted to not allow multiple inheritance.

4. Note that, although a Java class cannot inherit implementation from more
than one class, it can inherit behavior from more than one class, by means
of interfaces. (One reason for including interfaces as a separate construct
in Java was to allow this sort of limited multiple inheritance.)

IV. Summary

HANDOUT/DEMO Employee program - note:

A. Abstract class - Employee - and method weeklyPay()

B. final methods - getName(), getSSN() in Employee

C. Call to super() constructor in constructors for HourlyEmployee and
SalariedEmployee

D. Overrides of toString() in HourlyEmployee and SalariedEmployee, with
explicit use of superclass version in implementation

E. To Demo: run class EmployeeTester.

18

