Organic Chemistry Chemical Data and Calculations

Name:

The following substances will be discussed in the problems be	low
The following substances will be discussed in the problems be	10

Name of substance	Formula of	Density (g/mL)
	substance	
ethanol	CH ₃ CH ₂ OH	0.790
phosphorus	PBr ₃	2.88
tribromide		
ethyl bromide	CH ₃ CH ₂ Br	1.460

1. Compute the formula weight (g/mol) for each of the substances. (hint: use our web site)

a. ______ g/mol, ethanol

b. ______ g/mol, phosphorus tribromide

c. _____ g/mol, ethyl bromide

2. Conversion diversion. Convert each of the following quantities in the units indicated.

a. 21 mL ethanol; convert to moles	mo	<i>i</i> 1
b. 45 mmoles PBr ₃ ; convert to grams (hint: recall 1000 mmol = 1 mol)	g	
c. 500 mg ethyl bromide; convert to mL (hint: recall 1000 mg = 1 g)	mI	<u>,</u>

Questions 3-7 pertain to the unbalanced chemical reaction:

 $CH_3CH_2OH + PBr_3 \longrightarrow CH_3CH_2Br + H_3PO_3$

3. Provide the stoichiometric factors to balance this chemical reaction.

 $\underline{\qquad} CH_3CH_2OH + \underline{\qquad} PBr_3 \longrightarrow \underline{\qquad} CH_3CH_2Br + \underline{\qquad} H_3PO_3$

4. Suppose that we use 6.0 mL of ethanol to perform the reaction. Express this amount in the following units:

a. _____g b. _____mol c. _____mmol

5. How much PBr_3 is required to react completely with 6.0 mL of ethanol? Express your answer in the following units:

a. ____ mmol b. ____ g c. ___ mL

6. Suppose we choose to perform the reaction on a much smaller scale. We will mix 300 μ L of phosphorus tribromide with 600 μ L of ethanol. (Recall that 1000 μ L = 1 mL).

a. Which is the limiting reagent? \Box CH₃CH₂OH \Box PBr₃

b. What is the theoretical (expected) yield of ethyl bromide? Express your answer in the following units:

iv. ____ mL v. ____ μ L

c. In practice, we seldom achieve the theoretical yield. The actual amount of material obtained from a reaction can be compared to the theoretical yield to give the percentage yield:

Percentage yield = Actual amount obtained ÷ Theoretical amount possible x 100%

In this reaction, suppose the actual yield is 0.905 g of ethyl bromide. Compute the percent yield.

7. Suppose we choose to perform the reaction on a scale to obtain 5 g ethyl bromide. Assuming that a normal percentage yield for this reaction is 85%, what minimum quantity of materials will be needed to give the desired product?

_____ mL ethanol

8. Look up the GHS Signal Word, GHS pictograms, GHS H statements, and GHS P statements for phosphorus tribromide. What are they? (see the next page for a summary of GHS pictograms)

9. Consider the following situation. You are asked to neutralize 2 g of sodium hydroxide (NaOH) by adding the correct volume of 6 M HCl solution.

a.	2 g NaOH; convert to moles
b.	2 g NaOH; convert to mmoles
c.	What volume of 6 M HCl is equivalent
	to the number of moles in 2 g NaOH?
	Hint: recall that M is mol/L or mmol/mL
d.	Concentrated HCl is a 12 M solution. Concentrated HCl is a solution of HCl gas
	in water with a concentration of 37% HCl.
	Suppose that there is no bottle of 6 M HCl
	but there is a bottle labelled "10% HCl".
	the number of moles in 2 g NaOH?

GHS Pictograms and their meanings

Health Hazard

- Carcinogen
- Mutagenicity
- Reproductive Toxicity
- Respiratory Sensitizer
- Target Organ Toxicity
- Aspiration Toxicity

Gas Cylinder

Gases Under Pressure

Flame

- Flammables
- Pyrophorics
- Self-Heating
- Emits Flammable Gas
- Self-Reactives
- Organic Peroxides

Corrosion

- Skin Corrosion/Burns
- Eye Damage
- Corrosive to Metals

Exclamation Mark

- Irritant (skin and eye)
- Skin Sensitizer
- Acute Toxicity
- Narcotic Effects
- Respiratory Tract Irritant
- Hazardous to Ozone Layer

Exploding Bomb

- Explosives
- Self-Reactives
- Organic Peroxides

Flame Over Circle

Oxidizers

Environment

Aquatic Toxicity

Skull and Crossbones

• Acute Toxicity (fatal or toxic)

Source: https://www.osha.gov/Publications/HazComm_QuickCard_Pictogram.html