Physical properties

Organic Chemistry Chapter 2, part b

What holds stuff together?

What holds stuff together?

Opposites attract! Electrostatic potential energy

$$|q_1q_2|$$

$$|F| = k \xrightarrow{r^2}$$

- attraction depends on amount of charge, q
- distance between charges, r

Not all attractions are alike!

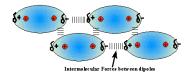
ion-ion: STRONG (large q)

What makes things melt?

And why?

A whole lotta shaking goin' on...

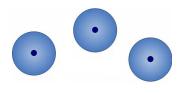
Not all attractions are alike!


ion-ion: STRONG (large q)

Not all attractions are alike!

ion-ion

dipole-dipole: moderate (smaller q)

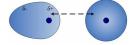


Not all attractions are alike!

ion-ion

dipole-dipole

van der Waals' attraction: weakest

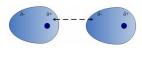


Not all attractions are alike!

ion-ion

dipole-dipole

van der Waals' attraction: weakest instantaneous dipole (temporary)

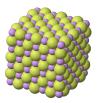

Not all attractions are alike!

ion-ion

dipole-dipole

van der Waals' attraction: weakest

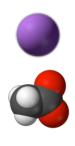
induced dipole



http://www.chemprofessor.com/imf_files/image003.jpg

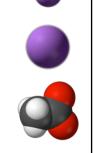
Sodium fluoride

- · Very strong attractions
- Electrostatic potential energy


$$|\mathbf{F}| = k_e \frac{|q_1 q_2|}{r^2}$$

"Effective" charge of attraction

- Sodium fluoride STRONG
- Sodium iodide medium
- Sodium acetate smaller

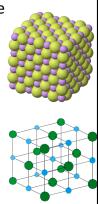

	mp (K)	bp ⁷⁶⁰ (K)
Na fluoride	1266	1977
Na iodide		
Na acetate		

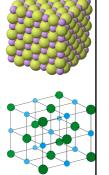
"Effective" charge of attraction

- Sodium fluoride STRONG
- Sodium iodide medium
- Sodium acetate smaller

	mp (K)	bp ⁷⁶⁰ (K)
Na fluoride	1266	1977
Na iodide	934	1577
NI=+-+-		

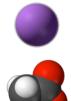
Sodium acetate


- · Not like sodium fluoride
 - anion is much larger than cation; charge is "diluted"


Sodium acetate

- Not like sodium fluoride
 - anion is much larger than cation; charge is "diluted"
 - lonic structure can't form as compactly now

Sodium acetate


- Not like sodium fluoride
 - anion is much larger than cation; charge is "diluted"
 - lonic structure can't form as compactly now
 - smaller q; easier to "shake" apart

"Effective" charge of attraction

- Sodium fluoride STRONG
- Sodium iodide medium
- Sodium acetate smaller

	mp (K)	bp ⁷⁶⁰ (K)
Na fluoride	1266	1977
Na iodide	934	1577
Na acetate	597	1154

Attraction vs. property

- · dipole-dipole
 - H-bonding; O-H or N-H in structure
- van der Waals

Attraction vs. property

- dipole-dipole
 - H-bonding; O-H or N-H in structure
- van der Waals

Attraction vs. property

- dipole-dipole
 - H-bonding; O-H or N-H in structure
- van der Waals

Attraction vs. property

- dipole-dipole
 - H-bonding; O-H or N-H in structure
- van der Waals

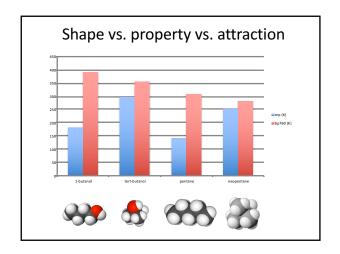
Attraction vs. property

- dipole-dipole
 - H-bonding; O-H or N-H in structure
- van der Waals

Attraction vs. property

- dipole-dipole
 - H-bonding; O-H or N-H in structure
- van der Waals

Boiling vs. Melting


Same attractions
Temperature dependence
Different behavior
Pressure dependent
Boiling point of water...
Where?
Boston: 100 °C

Denver: 95 °C

Size vs. property

van der Waals attractions are weak but they accumulate with size

	mp (K)	bp ⁷⁶⁰ (K)
C-C-C-C	143	309
C ₁₀	243	447
C ₁₅	286	540
C ₂₀	309	616
C ₃₀	339	723
C ₄₀	355	798

Solubility property

- "Like dissolves like"
 - Polar for polar; non-polar for non-polar
- Non-polar solvents:
 - Alkanes
 - Mineral oil
 - fats/oils
- Polar solvents:
 - water
 - alcohol
 - ether

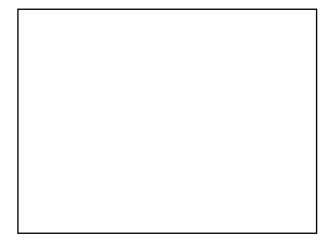
Water Solubility – Rule of Five

Calculate #C / (#N + #O)

- If less than five, water soluble
- The lower, the more soluble

Example:

Water Solubility – Rule of Five


Calculate #C / (#N + #O)

- If less than five, water soluble
- The lower, the more soluble

Example:

acetanilide

extra da	ta – not p	resented in class	
Pe	entane vs.	Neopentane	
	mp (K) bp760 (k	·	
Na fluoride	1266	1977	
Na iodide	934	1577	
Na acetate	597	1154	
Et acetate	190	350	
propanoic acid	252	414	
1-butanol	183	391	
diethyl ether	157	308	
tert-butanol	298	355	
propane	85	231	
pentane	143	309	
neopentane	254	282	
heptane	182	371	
nonane	220	423	
C ₂₀	309	616	