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What follows is a very terse description of an approach to dealing with partial fractions that at

least appears simpler than that taught in many introductory calculus books. In each case a specific
example is used to illustrate the general principle; this is not meant as a exhaustive presentation

of the method.

Recall that to use partial fractions the degree of the polynomial in the numerator must be strictly

less than the degree of the polynomial in the denominator. If it is not then you must first use long

division to obtain a quotient polynomial and a rational function remainder; the remainder will
certainly have a denominator of higher degree than the numerator and so partial fractions can be

used on it.

1. Only linear factors in denominator, no repeated factors

Consider the expansion
g(s)

(s− s0)(s− s1)
=

A

s− s0
+

B

s− s1
.

To find A, cover up the (s−s0) factor in the denominator of the left-hand-side (LHS) (i.e. pretend

it’s not there) and evaluate the LHS at s = s0. Note that this is equivalent to multiplying through
by (s− s0) before setting s = s0.

To find B, cover up the (s − s1) factor in the denominator of the LHS and evaluate the LHS at
s = s1.

If there were more linear factors you would continue in the same fashion.

Example:
7s− 11

(s− 3)(s + 2)
=

A

s− 3
+

B

s + 2
.

Covering up (s − 3) and substituting s = 3 in the LHS gives A = 2. Covering up (s + 2) and

substituting s = −2 gives B = 5. So

7s− 11

(s− 3)(s + 2)
=

2

s− 3
+

5

s + 2
.

2. Only linear factors in denominator, repeated factors

Consider the partial fraction expansion

g(s)

(s− s0)2(s− s1)
=

A

(s− s0)2
+

B

s− s0
+

C

s− s1
.

Start by finding A. Cover up the (s − s0)2 factor in LHS and evaluate at s = s0. Once A is

known, move the term with A to LHS and simplify:

g(s)

(s− s0)2(s− s1)
−

A

(s− s0)2
=

B

s− s0
+

C

s− s1

g(s) −A(s− s1)

(s− s0)2(s− s1)
=

B

s− s0
+

C

s− s1

Now it must be the case that both numerator and denominator of the LHS have (s − s0) as a

factor. Let ḡ(s) be the function obtained by dividing g(s) −A(s− s1) by (s− s0). Then

ḡ(s)

(s− s0)(s− s1)
=

B

s− s0
+

C

s− s1

which reduces to the no repeated factors case.

Example:
3s2 − 16s + 21

(s− 1)2(s + 3)
=

A

(s− 1)2
+

B

s− 1
+

C

s + 3
1



2

Covering up (s− 1)2 in the LHS and evaluating at s = 1 gives A = 2. Moving the A term to the

LHS and simplifying gives

3s2 − 16s + 21

(s− 1)2(s + 3)
−

2

(s− 1)2
=

3s2 − 16s + 21 − 2(s + 3)

(s− 1)2(s + 3)
=

3s2 − 18s + 15

(s− 1)2(s + 3)
so

3s2 − 18s + 15

(s− 1)2(s + 3)
=

B

s− 1
+

C

s + 3
.

It must now be the case that (s − 1) is a factor of both the numerator and the denominator on

the LHS. This can be seen since the right-hand-side (RHS) is the partial fraction expansion of a
rational function with (s− 1)(s+ 3) in the denominator. In any event, dividing the numerator by

(s− 1) leaves 3s− 15 so we have

3s− 15

(s− 1)(s + 3)
=

B

s− 1
+

C

s + 3
.

Now no linear factors in the denominator are repeated so we can quickly find B = −3 and C = 6.
Thus

3s2 − 16s + 21

(s− 1)2(s + 3)
=

2

(s− 1)2
−

3

s− 1
+

6

s + 3
.

3. Linear and quadratic factors in denominator

This can be combined with the above cases to handle a range of different cases.

g(s)

(s2 + ps + q)(s− s0)
=

As + B

s2 + ps + q
+

C

s− s0

Find C first by cover-up method with s = s0 then move C term to the LHS and simplify:

g(s) − C(s2 + ps + q)

(s2 + ps + q)(s− s0)
=

As + B

s2 + ps + q

You will find that g(s)−C(s2 + ps+ q) has a factor of (s− s0). After dividing this factor out you

will obtain

ḡ(s)

(s2 + ps + q)
=

As + B

s2 + ps + q

and A and B can be determined by inspection. Note that if there are multiple quadratic factors
this method will likely not be of much help.

Example:
3s

(s2 + 2)(s− 1)
=

As + B

s2 + 2
+

C

s− 1

By covering up (s − 1) in the LHS and substituting s = 1 we find that C = 1. Now move the C
term to the LHS and simplify

3s

(s2 + 2)(s− 1)
−

1

s− 1
=

3s− s2 − 2

(s2 + 2)(s− 1)
= −

(s− 1)(s− 2)

(s2 + 2)(s− 1)
=

2 − s

s2 + 2
so

2 − s

s2 + 2
=

As + B

s2 + 2
which gives A = −1 and B = 2. Thus

3s

(s2 + 2)(s− 1)
=

2 − s

s2 + 2
+

1

s− 1
.


