
Summary Outline on the Critical Section Problem

1. Arises when two or more processes/threads share a variable that they write to.
2. Key features of a solution:

2.1. Ensures mutual exclusion
2.2. Progress: Solution does not give rise to deadlock. (Note that deadlock is still possible

if the processes behave badly - only required that the solution itself does not give rise
to deadlock if processes behave well.)

2.3. BoundedWaiting/Fairness: Solution does not create a situation where a process may
starve: (Note that starvation is still possible if the processes behave badly - only required
that the solution itself does not give rise to starvation if processes behave well.)

3. Low-level solutions
3.1. Pure software
3.2. Special hardware used by software
3.3. Problem in either case: lack of clarity of code when using; potential for error due to

failure to use/misuse because of programmer error or laziness
3.4. Not directly usable for distributed systems

4. Semaphores - primitive proposed by Dijkstra
4.1. Actually implemented on top of lower level solution
4.2. Types

4.2.1. Binary - initial value = 1
Definitions: 	 P(s) ::= atomically do the following: while (s <= 0) ; s --;
	
 	
 V(s) ::= atomically do the following: s ++

4.2.2. Counting - initial value = number of P() operations allowed before a wait is
required.
Definitions: 	 Sane as bubart

4.2.3. Both of the above rely on busy-waiting. A third type allows a process to block on the
semaphore and keeps a list of waiting processes. In this case, if the value of the
semaphore is negative its absolute value is the number of blocked processes.
Definitions: 	 P(s) ::= atomically do the following: s --; if (s < 0) block
	
 	
 V(s) ::= atomically do the following: s ++; if (s <= 0) unblock one waiter

4.2.4. The queue in 4.2.3 is defined as non-FIFO.
4.3. Much clearer, but again, failure to use/misuse easily possible due to programmer error

or laziness
4.4. Not directly usable for distributed systems

5. Message-Passing
5.1. Key idea: shared variable “owned” by a single process; other processes access via

messages to that process; owner ensures mutual exclusion
5.2. Not as prone to misuse since shared variable cannot be accessed directly
5.3. Usable in distributed systems - but requires a fair amount of overhead if used in a

shared memory system (e.g. for threads)
6. Abstract Monitors

6.1. Abstraction implemented on top of lower-level solution. Not implemented in “pure”
form in any major programming language.

6.2. A monitor must be explicitly declared as such.

6.3. When this is done, guarantees mutual exclusion for all entries. When a process is
executing a monitor entry, no other process can execute any entry on the same object.
(If two objects use same monitor “class”, each is independent of the other in terms of
mutual exclusion)

6.4. A monitor can declare any number of conditions. A process using the monitor can wait
on or signal any condition. A signal on a condition that has no waiters is ignored.

6.5. FIFO behavior guaranteed for initial entry and for condition waits if multiple
processes are waiting on the same condition. A condition wait that has been signaled
has priority over an entry from the outside.

7. Java Monitors
7.1. Based on abstract monitors.
7.2. Every object has its own monitor. (Capability inherited from common base class

java.lang.Object)
7.3. To avoid high-overhead of locking, explicit use of synchronized required to get

mutual exclusion.
7.4. A monitor has a single implicit condition. A process using the monitor (i.e. inside a

block declared synchronized) can wait() on or notify() the monitor (which is an
implicit wait/signal on the condition). If there are no waiters, notify() is ignored.

7.5. FIFO behavior is not guaranteed for synchronized or if there are multiple waiters
when a notify() is done. If notify() is done, there is no guarantee that the
awakened waiter will be the next to enter the monitor if others are waiting to enter.

7.6. Two other "Java-isms"
7.6.1. InterruptedException
7.6.2. notifyall().

	

