File Structures and
Indexing

CPS352: Database Systems

Simon Miner
Gordon College
Last Revised: 3/4/15

Agenda

Check-in
Database File Structures
Indexing

Database Design Tips

Check-1n

Database File Structures

File System Performance

» Often the major factor in DBMS performance

- Response time — time between 1ssuing a command and
seeing its results

* Want to minimize this
* Throughput — number of operations per unit of time
* Want to maximize this

* Especially important for a system with many users (i.e.
large scale web site)

Physical Storage

Primary storage (memory)
Fast
Volatile
» Lost on power or hardware failure

Secondary storage (disk)
Slower (online storage) flash memory

* 100,000 : 1 ratio compared with N
memory R

Non-volatile mignetic disk

Tertiary storage (tape) optical disk

Not immediately available (offline) N

.. . V
Capacities of each have | magnetic tapes

increased exponentially
Speeds have not - continues to be point of contention

Disk Access Time

 How long it takes to read or write data to disk

* Includes
» Seek time - time needed to to position the disk head to the correct track
(4-10 ms)
* Rotation latency - time needed to rotate the disk so that the desired

information starts to pass under the head (4-11 ms for typical disks
5400 — 15000 rpm)

» Data-transfer rate - time needed to transfer information

* ~1% of total time

» To optimize this process, data on disk 1s organized into blocks

* Chunks of contiguous information
+ System reads or writes entire blocks, not individual bytes

How a DBMS Minimizes Disk
Access

» Keep all data needed for a particular operation in a
single block

* Only one disk access needed

« Keeping copies of recently used information in
memory

» Disk access needed for initial operation, but repeated or
similar operations can use In-memory copy

* Parallelism -- spread data across multiple disks
» Data access happens on several disks at the same time

RAID: Redundant Arrays of
Independent Disks

« Disk organization technigues that manage a large
numbers of disks, providing a view of a single disk

Striping - high capacity and high speed by using multiple
disks in parallel (RAID 0)

« Parallelize large accesses to reduce response time.

Mirroring - high reliability by storing data redundantly, so
that data can be recovered even if a disk fails (RAID 1)

« Reads can happen on any disk
Load balance multiple small accesses to increase throughput

« Writes slower because they must be carried out on all
disks

« The chance that a single disk will fail in a large system
Increases as the number of disks goes up

e.g., a system with 100 disks, each with MTTF of 100,000
hours (approx. 11 years), will have a system MTTF of
1000 hours (approx. 41 days)

Common RAID Levels

« RAID 1+ 0 (RAID 10) —mirroring with striping on top

* Combines RAID 1 (mirroring) with RAID 0 (striping) —
order is important here

» Adds speed and redundancy at the cost of capacity
* Good write performance

 RAID 5 —block interleaved distributed parity

* Stores parity blocks on same disks as data
 Parity data enables error detection and recovery

» Allow parallel writes of data and parity if they are on
separate disks

* Adds capacity at the cost of speed

» Serious performance penalties in degraded state (when disk
fails) because of parity data calculations for recovery

Database -
System
Structure T

Database System Structure:
Data Components

 Database itself is stored as one or more files on disk

* As a collection of files — 1.e. one for each table (MySQL)

* A single large file on the operating system in which the
DBMS builds its own file system (DB2)

* Hybrid of these approaches (Oracle — tablespace files)

e (lassifications of data

« User data

* Systems data
* Data dictionary or system catalog
» User access control data
 Statistical data about data access
Index data
Logging data

Database System Structure:
Memory Components

* Main memory buffer pools

* Stores most recently accessed block from disk for each
table (at a minimum)

 Often, retains data that has been used once and 1s likely
to be used again

* Logic needed to manage what data is kept in the pool

* Since memory 1s usually smaller than the entire database

Database System Structure:
Software Components

Buffer manager — manages the memory pool
Query parser -- accepts and translates queries
Strategy selector — plans the best way to carry out queries

Crash recovery manager — restores data to a consistent
state after an unexpected failure

» Uses a log of changes made to the database

Concurrency controller — prevents inconsistencies from
simultaneous changes to same data by multiple users

File Organization Approaches

* Fixed-length records

* Variable-length records

Fixed-Length Records

Every record 1s allocated the same amount of space

* Records of the same type can reside in a single file (or
portion of a file

* Record offset = (relative position — 1) * record size

Space from deleted records can be reused

Move all records after the deleted one back one slot
(expensive)

Move the last record into the empty slot (less expensive)
Link free slots together in a free list
» Address of first free (deleted) stored 1n file header

* FEach deleted record stores the address of the next deleted
record

Variable-Length Records

* Fixed-width records are not always practical

* Storing arbitrarily long pieces of text (i.e. articles,
documents)

 Storing binary resources (i.€. pictures, videos)
- Storing multiple record types in a single file

* Approaches

* Represent variable-length attributes with a fixed size (offset,

length), and store their actual values after all other data in the
record

+ Store fixed-length record data in one file with pointers to
variable-length data in other files

« Multimedia databases may have pointers to individual files for
variable-length values (“clobs” and “blobs”)

Record Organization

* Sequential — sort records in a table by some column value

Good choice if most/all queries of the table are done using
the sorted criteria

Inserts become problematic — need to retain sort order

* “Buckets” can be used to help address this — all records with
same or similar sort key values go into the same bucket

Reduces cost of preserving sort order

* Multi-table clustering — sometimes data in multiple tables
1s related and queried together

Store related data from each table on the same (set of) disk
block(s)

Good for queries involving related data, not so go for queries
on individual records

Results in variable-length records
NoSQL solutions often use this approach

Buffer Management

How does the DBMS decide which data is tossed from
the buffer when new query results are being loaded?

Policies

* Least Recently Used (LRU) — toss the buffer contents which
have not been used for the longest period of time

« Based on the idea that past query patterns are a good
predictor of the future

Most Recently Used (MRU) — toss the buffer contents which
have been used most recently

* Good when cycling through contents of a table which 1s too
big for memory

Based on frequency of block usage

« Examples: blocks in the data dictionary, root blocks of
indexes

Indexing

Indexing Overview

Indexes (indices) used to efficiently search for row(s) in a table
that match certain criteria

* Find the disk block with the desired data with minimal disk
accesses

Index trade-off
- Improved search efficiency vs.

* Cost of maintaining the index
» Disk space required for index

Search key
- Attribute(s) used to do lookups on an index

+ Multiple indexes can be created on a table with different search
keys

Index Considerations

What will the index be used for?

* Find rows which match exact values

* Range queries (1.e. values between, greater, or less than some
bounds)

+ Sequential access of all rows in the table

How frequently is the underlying data modified?

+ Lots of inserts, updates, and deletes mean more index
maintenance

* Read-only / read-mostly data can use indexes that facilitate
faster data access but are expensive to maintain

Is the search key a superkey (or the primary key)?

Can multiple rows share a single key value?

Ordered vs. Hashed Indexes

* Ordered indexes keep index entries in the order of
the search key

» Facilitates range queries and accessing all rows 1n
search key order

» Typically structured as B+ trees

» Hashed indexes use a hashing function to evenly
distribute index entries among blocks

» Offers more efficient access and maintenance

Clustering Index

Actual data 1s stored in the order dictated by the index
> Only applies to ordered indexes
A given file can have at most one clustering index

Advantages

* Makes range queries easier — only need to locate first row in the
range, and then read subsequent rows

* Makes accessing rows with the same search key value easier, as
they will be adjacent

Disadvantage

* Hard to maintain — inserts, updates, and deletes all require
moving data

Sometimes called a primary index (or an index organized table)
» Other indexes can be referred to as non-clustering or secondary

Dense vs. Sparse Indexes

* Dense index has one index entry for each distinct
search key value

* Sparse index does not
* Only a clustering index can be sparse — index 1s used to
locate the starting point for a search of the actual data
» Using the largest entry <= desired value

* Sparse index typically contains one entry for each data

block in the file (the smallest search key value in the
block)

Sparse Index Example

Data

aardvark
buffalo
dog

fox
gopher

iguana
aardvark 9

fox
jackal
penguin

jackal
mouse
osprey

penguin
zebra

Multilevel Index

If primary index does not fit in memory, access becomes
expensive.

Solution: treat primary index kept on disk as a sequential file
and construct a sparse index on it.

+ outer index — a sparse index of primary index
* Inner index — the primary index file

If even outer index is too large to fit in main memory, yet
another level of index can be created, and so on.

Indices at all levels must be updated on insertion or deletion
from the file.

B+ Tree Indexes

Alternative to clustered indexes

May be used both primary and secondary indexes

* As primary index, the tree can contain both index data
and the actual records in the table

* As secondary index, the tree only contains index data

Advantage of B*-tree index files:

* Automatically reorganizes itself with small local changes
when inserts, updates, and deletes occur

- Reorganization of entire file is not required to maintain
performance

B+ Tree Example

|| Mozart | | [e Root node

| l|Srinivasan| l| | | | |

| , | Einstein |

:,'-‘-- Internal nodes

Leaf nodes-

Y
|Caliﬁeri| |Crick|-|—>| |Einstein| |E1 Saidl |

|-|—>| | Gold | | Katz | | Kiml-l—»'llMozartlll Singh | | |-|->| |Srinivasan|||Wu | |

N

Srinivasan

Comp. Sci.

Wu

Finance

Mozart

Music

Einstein

Physics

El Said

History

Gold

Physics

Katz

Comp. Sci.

Califieri

History

Singh

Finance

Crick

Biology

Y YYYYY YYYYYY

Brandt

Comp. Sci.

Kim

Elec. Eng.

B+ Tree Structure

e Multi-leveled with all leaf nodes on the same
level

* The order (n) of a B+ tree is determined by the
size of a node and the size of a key-value pair

* Components
* Root (with at least 2 children)
* Internal (non-leaf) nodes
* Leaf nodes

Internal (Non-leaf) Nodes

Contain index data — pairs of search key values and
pointers to other nodes on the next level of the tree

* Form a multi-level sparse index on leaf nodes

Can hold between [(n-1)/20] and n-1 keys

Has between | n/2 | and n children
* A node with k keys has k+1 children
- Key values separate pointers to nodes or records on next level

Keys in a node are ordered

Py K1 Py

Leat Nodes

* Comprised of one of the following

 Index data -- pairs of search key values with pointers to actual
records

» Contain between | (n-1)/2 | and n-1 search key values

 Last pointer in an indexing leaf node points to next leaf node
(instead of a record)

* Actual records
* In primary index

* Number of records in a leaf depends on the size of each record
(separate from order of the B+ tree)

* May also include pointer to next leaf

An Order 7 B+ Tree

penguin

snake
unicorn
xerus

aardvark aaron
buffalo boris
cat charlene

gopher george
horse horace
iguana 1ignatius...

mouse mortimer
newt nate
osprey oscar

snake semantha
turtle tommy

Xerus xavier
yak yolande
zebra zelda

A /

\ /

A /

dog donna
elephant emily
fox frederick

jackal jolene
kangaroo karl
1lama 1larry

penguin polly
quail quentin
raccoon radlph

unicorn ursula
vixen vanessa
wren warren

Searching the B+ Tree

« Algorithm
« Start at the root
* while at an internal node:

« if the value being sought is less than the smallest key stored in the node
* go to the leftmost child
* else

+ go to the child corresponding to the largest stored key that is <= the desired
value

« where the second child corresponds to the first key
* When we reach a leaf node, the desired value will either
* Be contained in the leaf (found by a sequential search within the node)
» Not exist in the tree

B+ Tree

Search for buffalo

* Search for hippo

Search Exam

penguin

snake
unicorn
Xerus

aardvark aaron
buffalo boris
cat charlene

gopher george
horse horace
iguana ignatius...

mouse mortimer
newt nate
osprey oscar

snake semantha
turtle tommy

xerus xavier
yak yolande
zebra zelda

A /

A /

A /

dog donna
elephant emily
fox frederick

jackal jolene
kangaroo karl
1lama larry

penguin polly
quail quentin
raccoon ralph

unicorn ursula
vixen vanessa
wren warren

Inserting into the B+ Tree

« Algorithm
» Use search procedure to find node where it would be if it was present.
* 1f there is room,
* put it there.
° else
divide the keys in two
create a new right block to contain half the keys

“promote” the first key in the right block. Insert this key, plus a pointer to the
new right block, in the parent

* This may cause the parent to split
* In this case, create a new internal node and promote the “split key” to
the parent
* Root may actually split as well
+ Create new root with halves of original root as its children

B+ Tree Insert

Insert terrance tortoise

Insert donald duck
* (present in example)

penguin

dog
elephant
gopher
jackal
guse

aardvark aaron
buffalo boris
cat charlene

gopher george
horse horace

mouse mortimer
newt nate

snake semantha
turtle tommy

Xxerus xavier
yak yolande

iguana

ignatius. ..

osprey oscar

zebra zelda

\

\

dog donna .
duck donald

elephant emily
fox frederick

jackal jolene
kangaroo karl
1lama larry

penguin polly
quail quentin
raccoon ralph

unicorn ursula
vixen vanessa
wren warren

Hashing

« Alternate index structure facilitating fast access
* Search key hashed to look up records (primary index)

* Search key hashed to look up record pointers
(secondary index)

* Records (or record pointers) reside in one of several
buckets

A hashing function on the search key determines which
bucket a record/pointer goes in

Hashing Functions

Worst hash function maps all search-key values to the same
bucket; this makes access time proportional to the number of
search-key values in the file.

An ideal hash function is uniform, i.e., each bucket is assigned
the same number of search-key values from the set of all
possible values.

Ideal hash function is random, so each bucket will have the
same number of records assigned to it irrespective of the actual
distribution of search-key values in the file.

Typical hash functions perform computation on the internal
binary representation of the search-key.

For example, for a string search-key, the binary representations of
all the characters in the string could be added and the sum modulo
the number of buckets could be returned

Hashing
Example

« Hashing function

* Sum of ASCII codes in first name

larry 1llama

* modulo 11
° -|- 1

emily elephant
tommy turtle

george gopher
warren wren
xavier xerus

* Sequential scan needed of bucket
pointed to by the hash function

 Examples

* Look up tommy

* Look up terrance s gsana

jolene jackal
polly penguin

Hashing Challenges

* What happens when a bucket runs out of room?
* Because of an insufficient number of buckets

* Because multiple records have the same search key (and
hence, hash value)

* Because the hashing function 1s non-uniform

* Possibilities
* Overflow buckets
* Reorganize the file with a new hashing function

- Extendable hashing — dynamically modify the number
of buckets

Comparison of Ordered and
Hashed Indexes

Hashed indexes

- Allow fast access for exact match queries— usually 1 or

2 disk accesses (for primary and secondary indexes,
respectively)

» Do not support range queries or sequential access of
entire table

Ordered Indexes

 Slower access — potentially several disk accesses as you
work through the B+ tree levels

* Supports more types of queries

Creating Indexes

* Database automatically creates indexes for:
* Primary keys
» Columns with unique constraints

* (Sometimes) temporary indexes used for single queries

* (Create index SQL statement

mysql

CREATE [UNIQUE |FULLTEXT|SPATIAL] INDEX index name
[USING index type]
ON tbl name (index col name,...)

DB2 Create Index Statement
Syntax

»—CREATE INDEX—index-name
’—_I.II'IIIJLIE:I

(1) K ASC—
table-name —(—"—column-nome)
(2) LDESC—I l—SPEEIFICﬁTIDﬂ ON L‘l'J

icknome——

L
(3) ' J
IHELUDE—(LGIW-HUN&]

[

(—"~constant-expression—

ELUSTER
XTEND USING—index-extension-name L J
—)

|—PCTFREE 16— DISALLOW REVERSE SCANS—

Coct ., T
FREE—integer— INPCTUSED—integer ALLOW REVERSE SCANS——

LEI]LLEET STMTISTI{ZSJ

ﬁnET&ILEDJ
SAMPLE

Database Design Tips

What to Index

Primary key (automatic)
Columns with unique constraints (automatic)

Foreign key columns

Fixed-width columns — Boolean, numeric, (fixed-width) character, date/time

fields

Any column appearing in a “where” clause

+ Especially a “where” clause in a program (likely to be executed multiple times)
* Including variable-width character fields

Efficient function results
- Indexes are bypassed if a where clause contains null
- Example:
* “where export_date is null” — null bypasses index, will scan entire table
« ‘“where nvl(export_date, to_date(‘19000101’ ‘yyyymmdd’) = ‘19000101°”

* Create an index on the nvl(...) function result for a more efficient query

Don’t Index. ..

* Small tables (< 100 records) that will stay small
* 1.e. list of states and their capitals

Columns containing binary (blob) or large text (clob)
data

Columns containing data that may be fetched or
updated, but will never appear in a "where” clause

* Long-1sh variable width text fields (i.e. product
descriptions, review text, comments)

Index Names

» Explicitly name your indexes
* Don’t let the database make up names for you

* Index naming conventions
* Begin with 2-5 letter prefix of table name or abbreviation

* Column name(s) or abbreviation(s) that comprise the index’s
search key

- End with a date stamp (i.e. 20121011)

* Gives the index a unique name

* Helpful when you need to rebuild the index or copy the table
 Prefix or suffix the following indexes

* Primary keys — “pk”

* Foreign keys — “fk”

* Unique constraints — “uniq

The Proverbial Database Files and Indexes
Proverbs 1:1-7 (NIV)

See you 1n 2 weeks!

Don’t forget to finish your design project and prepare your final
presentation on it for our next class.

