Query Processing
Strategies and
Optimization

CPS352: Database Systems

Simon Miner
Gordon College
Last Revised: 3/25/15

Agenda

Check-in

Exam 1

Query Processing
Homework 4

Design Project Presentations

Programming Project

Check-1n

Query Processing and
Optimization

Different Ways to Execute
Queries

» Database creates a plan to get the results for a query
* Not just one way to do this.

« Example : Find the titles of all books written by
Korth.

* T e O xorty BOOK | X| BookAuthor

author =
T e BOOK | X | 6 L uinor = kor BOOKAuUthor

* Good DBMS will transform queries to make them
as efficient as possible

* Minimize disk accesses

Selection Strategies

Linear search — full table scan

* Cost of potentially accessing each disk block containing the
desired data

Binary search (with B+ tree index)
- Exact matches

* Multiple matches

- Range queries

» Complex queries

Index often requires disk accesses for the index structure
as well as for actual data

+ Typically far fewer accesses than linear search
+ Index root and first few levels may be kept in buffer pool

Query Type vs. Index Type

Condition Example Clustering / Secondary Hashed Index
Primary Index | Index

Exact match 1d = 12345 Great! Great! Great!
on candidate
key

Exact match status = Find first Find first
on non-key ‘Active’ match (+ match (+
potential scan) potential scan)

Range query age between 21 Find first Less helpful Not useful
and 65 match +
sequential scan

Complex query color = ‘blue’ Not useful Not useful Not useful
or status = (multiple or
‘Inactive’ multi-column
indexes help)

Join Strategies

Joins are most expensive part of query processing

* Number of tuples examined can approach the product of the
number of records in tables being joined

Example

" O Borrower.lastName = BookAuthor.authorName Borrower X BookAuthor
 Where BookAuthor has 10K tuples and Borrower has 2K tuples
 Cartesian join yields 20 million tuples to process

Nested Loop Join

for (int 1 = 0; 1 < 2000; 1 ++)
{
retrieve Borrower[1i];
for (int J = 0; J < 10000; J ++)
{
retrieve BookAuthor[j];
1f (Borrower[i1].lastName ==
BookAuthor[7].authorName)
construct tuple from Borrower[1] &
BookAuthor[j];

Nested Block Join

for (int 1 = 0; 1 < 2000; 1 += 20)
{
retrieve block containing Borrower[1]..Borrower[1+19];
for (int 7 = 0; J < 10000; j += 20)
{
retrieve block containing BookAuthor[j] ..
BookAuthor[j+19];
for (int k = 0; k < 19; k ++)
for (int 1 =0; 1 <20; 1 ++)
1f (Borrower[1+k].lastName ==
BookAuthor. [J+1].authorName)
construct tuple from Borrower[1+k] &
BookAuthor[j+1];

Buffering an Entire Relation

for (int 1 = 0; 1 < 2000; 1 += 20)
retrieve and buffer block containing
Borrower[1]..Borrower[1+19];

for (int] = 0;] < 10000;] += 20)
{

retrieve block containing BookAuthor[j] ..
BookAuthor[j+19];
for (int k = @; k < 2000; k ++)
for (int 1 =0; 1 < 20; 1 ++)
1f (Borrower[k].lastName ==
BookAuthor. [J+1].authorName)
construct tuple from Borrower[k] &
BookAuthor[j+1];

Using Indexes to Speed Up

Joins

« Example: Borrower | X | CheckedOut
Assume
« 2K Borrower tuples, 1K CheckedOut tuples
* 20 records per block (so 100 and 50 blocks for each table, respectively)
* We cannot buffer either table entirely

Without indexes — nested block join takes 5050 or 5100 disk accesses,
depending on which table is in the outer loop

With index on Borrower.borrowerID — exactly one match (PK)

* Scan all 1000 CheckedOut records (50 blocks) — each matches exactly one
Borrower record, which can be looked up in the index

Requires processing only 2000 tuples

* Not quite as good as it seems
Each borrower may require a separate disk access (50 + 1000 = 1050 accesses)
Traversing index might take multiple disk accesses (especially B+ Tree indexes)

Temporary Indexes

Indexes created and buffered for the purpose of a single
query and then discarded

Example: neither Borrower nor CheckedOut is indexed

Borrower | X| CheckedOut might cause a temporary index
to be built on Borrower.borrowerID

If each (dense) index entry takes ~10 bytes, entire index will
be ~20K

Index construction requires reading all 2K borrowers = 100
disk accesses

Join itself costs up to 1050 disk accesses (see previous slide)
Total of 1150 disk accesses

Merge Join

get first tuple from Borrower;
get first tuple from CheckedOut
while (we still have valid tuples from both relations)
{
1f (Borrower.borrowerID == CheckedOut.borrowerID)
{
output one tuple to the result;
get next tuple from CheckedOut
// We might have more checkouts for this borrower,
// so keep current borrower tuple
¥
else 1f (Borrower.borrowerID < CheckedOut.borrowerID)
get next tuple from Borrower;
else

get next tuple from CheckedOut;

Order of Joins

For multiple joins, performance can be greatly impacted by the order
in which the joins are done

Example

* T last, first, authorName DOTTOWeEr | X| BookAuthor | X| CheckedOut
* Assume 2K borrowers, 1K CheckedOut records, and 10K authors
* Each book has an average of 2 authors
* 3 ways to do the (binary commutative) join operations
* (Borrower| X | BookAuthor) | X| CheckedOut
e (BookAuthor | X| CheckedOut) | X| Borrower
* (Borrower | X| CheckedOut) \X| BookAuthor

- Final number of tuples 1s the same, but intermediate joins create
temporary tables which are then joined with the remaining table

* Which way is most efficient in light of this?

Rules of Equivalence

Two formulations of a query are equivalent if the
produce the same set of results

* Not necessarily in the same order

Example : Find the titles of all books written by Korth.

* select title
from Book natural join BookAuthor
where authorName = ‘Korth’;

Equivalent relational algebra queries
* T e O author = ‘Korty DOOK | X | BookAuthor

T e BOOK | X | 6 Luihor = ‘kory BOOKAuthor

* Equivalent, but not the same in terms of performance

- Equivalence Rules

1. Conjunctive selection operations can be deconstructed into a
sequence of individual selections.

Squp (E) =5, (s, (E))
2. Selection operations are commutative.

Sq4(5,(E)=5,(5,(E))

3. Only the last in a sequence of projection operations is
needed, the others can be omitted.

M, (T, (... (T, (E))..)) =TT, (E)

4. Selections can be combined with Cartesian products and
theta joins.

op(Ey X Ep) = By M By
1(E1X 02 Eo) = Ex MW g1, 62 Es

Database System Concepts - 6t Edition 1.18 ©Silberschatz, Korth and Sudarshan

Equivalence Rules (Cont.)

5. Theta-join operations (and natural joins) are commutative.
E, Xy E,=E, X, E,

6. (a) Natural join operations are associative:
(Ey XE,) XE; = E; X(E, X Ey)

(b) Theta joins are associative in the following manner:

(BE1 X 91 E2) W g2, 03 Bz = BE1 X 914 93 (B2 X g2 E3)

where 0, involves attributes from only E, and E;.

Database System Concepts - 6t Edition 1.19 ©Silberschatz, Korth and Sudarshan

g Equivalence Rules (Cont.)

7. The selection operation distributes over the theta join operation
under the following two conditions:

(a) When all the attributes in 6, involve only the attributes of one
of the expressions (E,) being joined.

Goo(E1 X g Ey) = (ogo(E))X ¢ E,

(b) When 6 ; involves only the attributes of E; and 6, involves
only the attributes of E,.

G102 (E1X g By) = (041(E1)) X (00, (E))

Database System Concepts - 6t Edition 1.20 ©Silberschatz, Korth and Sudarshan

g Equivalence Rules (Cont.)

8. The projection operation distributes over the theta join operation
as follows:

(a) if 0 involves only attributes from L; U L,:

HLluLz (EsMyEy) = (HL1 (E1)) M@(HLZ (E2))

(b) Consider a join E; X, E..

Let L, and L, be sets of attributes from E; and E,,
respectively.

Let L, be attributes of E, that are involved in join condition 6,
but are notin L; U L,, and

let L, be attributes of E, that are involved in join condition 6,
but are notin L; U L,.

HLluLz (Ey XpE;) = HL1UL2 ((HL1UL3 (E0) X, (H L,UL, (Ez)))

Database System Concepts - 6t Edition 1.21 ©Silberschatz, Korth and Sudarshan

Equivalence Rules (Cont.)

9. The set operations union and intersection are commutative
E,VUE, =E, UE;
E,nE, =E,nE;

(set difference is not commutative).
10. Set union and intersection are associative.
(EiVE) UE;=E; U(E, VE)
(E;nE) nEs=E; n(E;NEy)
11. The selection operation distributes over U, n and —.
0y (Ex — Ey) = 0y (Ey) — 0y(Ey)
and similarly for U and m in place of —
Also: Oy (E; — Ey) = 0y(E)) — E;
and similarly for n in place of —, but not for U
12. The projection operation distributes over union

IT, (E, v Ey) = (I1 (Ey)) v (I (EL))

Database System Concepts - 6t Edition 1.22 ©Silberschatz, Korth and Sudarshan

Push Selections Inward

Do selections as early as possible

- Reduces (“flattens”) the number of records in the relation(s) being
joined

Example:

© T title O author = “Korth’ Book | X | BookAuthor
© T title Book | X | G author = ‘Korth’ BookAuthor

Sometimes this is not feasible

Y Borrower.lastName = BookAuthor.authorName Borrower X BookAuthor
* 1.e. when there are no shared attributes

Alter the structure of the selection itself

* Find late checked out books that cost more than $20.00.
Y purchasePrice > 20 A dateDue < today Book | X | CheckedOut
Y purchasePrice > 20 Book | X | O dateDue < today CheckedOut

Push Projections Inward

* Do projections as early as possible
* Reduces (“narrows”) the number of columns in the relation(s)
being joined
 Example:
TT lastName, firstName, title, dateDue Borrower | X | CheckedOut | X | Book

" n lastName, firstName, title, dateDue Borrower | X |
(TC borrowerlID, title, dateDue CheckedOut | X| Book)

* Reduces the number of columns in the temporary table from the
intermediate join

Statistics and Query
Optimization

» Using statistics about database objects can help speed
up queries

* Maintaining statistics as the data in the database
changes is a manageable process

* Types of statistics
» Table statistics
* Column statistics

Table Statistics

On a relation r

n, = number of tuples in the relation

b, = number of blocks used by the relation
1. = size (1n bytes) of a tuple in the relation

f = blocking factor, number of tuples per block

* Note that f. = floor(block size / 1) if tuples do not span
blocks

* Note that b, = ceiling(n, / f,) if tuples in r reside in a single
file and are not clustered with other relations

Column Statistics

e Ona column A

* V(A, r)=number of distinct values in the column
» If A 1s a superkey, then V(A, r) =n,

- If A 1s not a superkey, the number of times each
column value occurs can be estimated byn, / V(A, 1)

» If column A 1s indexed, V(A, r) s relatively easy to
maintain

» Keep track of the count of entries in the index

* May be useful to store a histogram of the relative
frequency of column values in different ranges

Estimating the Size of a Join

« (Cartesian product—r X' s
* Number of tuples in join = n,yx = n, * n,
- Size of each tupleinjoin =1 =1 + 1

 Natural join —r | X| s, where r and s have A in common
* The size of the join can be estimated in two ways
* The n, tuples of s will join withn_/ V(A, r) tuples of r
forn,*n,/ V(A, r) total tuples
* The n, tuples of r will join with n, / V(A, s) tuples of s
forn,*n,/ V(A, s) total tuples
* We want to use the smaller of these estimates
. rr)li)n(nr *n,/ V(A,s),n,*n./ V(A, 1)) =n,*n, / max(V(A, 1), V(A,
S
* Also note that V(A, r | X| s) = min(V(A, 1), V(A, s))

* Some tuples in the relation with the larger number of column values do not join with any
tuples in the other relation

Example Join Estimation

Borrower | X | BookAuthor | X| CheckedOut

n last, first, authorName

* 3 ways to do the join operations — Which 1s most efficient?
(Book | X | BookAuthor) | X| CheckedOut
(BookAuthor | X| CheckedOut) | X | Borrower
(Borrower | X| CheckedOut | X | BookAuthor

o Statistics

Nporower — 2000 V(borrowerID, Borrower) = 2000

Neheckedour — 1000 V(borrower, CheckedOut) = 100

NpookAuthor — 10,000 V(callNo, CheckedOut) = 500
V(callNo, BookAuthor) = 5000

Homework 4

Design Project
Presentations

Programming Project

Milestone I

