
Query Processing

Strategies and

Optimization

CPS352: Database Systems

Simon Miner

Gordon College

Last Revised: 3/25/15

Agenda

• Check-in

• Exam 1

• Query Processing

• Homework 4

• Design Project Presentations

• Programming Project

Check-in

Exam 1

Query Processing and

Optimization

Different Ways to Execute

Queries

• Database creates a plan to get the results for a query

• Not just one way to do this.

• Example : Find the titles of all books written by
Korth.

• π title σ author = ‘Korth’ Book |X| BookAuthor

• π title Book |X| σ author = ‘Korth’ BookAuthor

• Good DBMS will transform queries to make them
as efficient as possible

• Minimize disk accesses

Selection Strategies

• Linear search – full table scan

• Cost of potentially accessing each disk block containing the
desired data

• Binary search (with B+ tree index)

• Exact matches

• Multiple matches

• Range queries

• Complex queries

• Index often requires disk accesses for the index structure
as well as for actual data

• Typically far fewer accesses than linear search

• Index root and first few levels may be kept in buffer pool

Query Type vs. Index Type

Condition Example Clustering /

Primary Index

Secondary

Index

Hashed Index

Exact match

on candidate

key

id = 12345 Great! Great! Great!

Exact match

on non-key

status =

‘Active’

N/A Find first

match (+

potential scan)

Find first

match (+

potential scan)

Range query age between 21

and 65

Find first

match +

sequential scan

Less helpful Not useful

Complex query color = ‘blue’

or status =

‘Inactive’

Not useful Not useful

(multiple or

multi-column

indexes help)

Not useful

Join Strategies

• Joins are most expensive part of query processing

• Number of tuples examined can approach the product of the

number of records in tables being joined

• Example

• σ Borrower.lastName = BookAuthor.authorName Borrower X BookAuthor

• Where BookAuthor has 10K tuples and Borrower has 2K tuples

• Cartesian join yields 20 million tuples to process

Nested Loop Join

Nested Block Join

Buffering an Entire Relation

Using Indexes to Speed Up

Joins
• Example: Borrower |X| CheckedOut

• Assume

• 2K Borrower tuples, 1K CheckedOut tuples

• 20 records per block (so 100 and 50 blocks for each table, respectively)

• We cannot buffer either table entirely

• Without indexes – nested block join takes 5050 or 5100 disk accesses,
depending on which table is in the outer loop

• With index on Borrower.borrowerID – exactly one match (PK)

• Scan all 1000 CheckedOut records (50 blocks) – each matches exactly one
Borrower record, which can be looked up in the index

• Requires processing only 2000 tuples

• Not quite as good as it seems

• Each borrower may require a separate disk access (50 + 1000 = 1050 accesses)

• Traversing index might take multiple disk accesses (especially B+ Tree indexes)

Temporary Indexes

• Indexes created and buffered for the purpose of a single
query and then discarded

• Example: neither Borrower nor CheckedOut is indexed

• Borrower |X| CheckedOut might cause a temporary index
to be built on Borrower.borrowerID

• If each (dense) index entry takes ~10 bytes, entire index will
be ~20K

• Index construction requires reading all 2K borrowers = 100
disk accesses

• Join itself costs up to 1050 disk accesses (see previous slide)

• Total of 1150 disk accesses

Merge Join

Order of Joins

• For multiple joins, performance can be greatly impacted by the order
in which the joins are done

• Example

• π last, first, authorName Borrower |X| BookAuthor |X| CheckedOut

• Assume 2K borrowers, 1K CheckedOut records, and 10K authors

• Each book has an average of 2 authors

• 3 ways to do the (binary commutative) join operations

• (Borrower|X| BookAuthor) |X| CheckedOut

• (BookAuthor |X| CheckedOut) |X| Borrower

• (Borrower |X| CheckedOut) \X| BookAuthor

• Final number of tuples is the same, but intermediate joins create
temporary tables which are then joined with the remaining table

• Which way is most efficient in light of this?

Rules of Equivalence

• Two formulations of a query are equivalent if the
produce the same set of results

• Not necessarily in the same order

• Example : Find the titles of all books written by Korth.

• select title
from Book natural join BookAuthor
where authorName = ‘Korth’;

• Equivalent relational algebra queries

• π title σ author = ‘Korth’ Book |X| BookAuthor

• π title Book |X| σ author = ‘Korth’ BookAuthor

• Equivalent, but not the same in terms of performance

©Silberschatz, Korth and Sudarshan 1.18 Database System Concepts - 6th Edition

Equivalence Rules

1. Conjunctive selection operations can be deconstructed into a

sequence of individual selections.

2. Selection operations are commutative.

3. Only the last in a sequence of projection operations is

needed, the others can be omitted.

4. Selections can be combined with Cartesian products and

theta joins.

a. (E1 X E2) = E1  E2

b. 1(E1 2 E2) = E1 1 2 E2

))(())((
1221
EE qqqq ssss =

))(()(
2121
EE qqqq sss =Ù

)())))((((
121

EE LLnLL  

©Silberschatz, Korth and Sudarshan 1.19 Database System Concepts - 6th Edition

Equivalence Rules (Cont.)

5. Theta-join operations (and natural joins) are commutative.

 E1  E2 = E2  E1

6. (a) Natural join operations are associative:

 (E1 E2) E3 = E1 (E2 E3)

(b) Theta joins are associative in the following manner:

 (E1 1 E2) 2 3 E3 = E1 1 3 (E2 2 E3)

 where 2 involves attributes from only E2 and E3.

©Silberschatz, Korth and Sudarshan 1.20 Database System Concepts - 6th Edition

Equivalence Rules (Cont.)

7. The selection operation distributes over the theta join operation

under the following two conditions:

(a) When all the attributes in 0 involve only the attributes of one

 of the expressions (E1) being joined.

 0E1  E2) = (0(E1))  E2

 (b) When  1 involves only the attributes of E1 and 2 involves

 only the attributes of E2.

 1 E1  E2) = (1(E1))  ( (E2))

©Silberschatz, Korth and Sudarshan 1.21 Database System Concepts - 6th Edition

Equivalence Rules (Cont.)

8. The projection operation distributes over the theta join operation

as follows:

 (a) if  involves only attributes from L1  L2:

 (b) Consider a join E1  E2.

l Let L1 and L2 be sets of attributes from E1 and E2,

respectively.

l Let L3 be attributes of E1 that are involved in join condition ,

but are not in L1  L2, and

l let L4 be attributes of E2 that are involved in join condition ,

but are not in L1  L2.

)) (()) (() (2 1 2 1 2 1 2 1
E E E E L L L L       

))) (()) ((() (2 1 2 1 4 2 3 1 2 1 2 1
E E E E L L L L L L L L    

    
 

©Silberschatz, Korth and Sudarshan 1.22 Database System Concepts - 6th Edition

Equivalence Rules (Cont.)

9. The set operations union and intersection are commutative

 E1  E2 = E2  E1

 E1  E2 = E2  E1

n (set difference is not commutative).

10. Set union and intersection are associative.

 (E1  E2)  E3 = E1  (E2  E3)

 (E1  E2)  E3 = E1  (E2  E3)

11. The selection operation distributes over ,  and –.

  (E1 – E2) =  (E1) – (E2)

 and similarly for  and  in place of –

Also:  (E1 – E2) = (E1) – E2

 and similarly for  in place of –, but not for 

12. The projection operation distributes over union

 L(E1  E2) = (L(E1))  (L(E2))

Push Selections Inward

• Do selections as early as possible

• Reduces (“flattens”) the number of records in the relation(s) being
joined

• Example:

• π title σ author = ‘Korth’ Book |X| BookAuthor

• π title Book |X| σ author = ‘Korth’ BookAuthor

• Sometimes this is not feasible

• σ Borrower.lastName = BookAuthor.authorName Borrower X BookAuthor

• i.e. when there are no shared attributes

• Alter the structure of the selection itself

• Find late checked out books that cost more than $20.00.

• σ purchasePrice > 20 ∧ dateDue < today Book |X| CheckedOut

• σ purchasePrice > 20 Book |X|σ dateDue < today CheckedOut

Push Projections Inward

• Do projections as early as possible

• Reduces (“narrows”) the number of columns in the relation(s)

being joined

• Example:

• π lastName, firstName, title, dateDue Borrower|X| CheckedOut |X| Book

• π lastName, firstName, title, dateDue Borrower|X|

 (π borrowerID, title, dateDue CheckedOut |X| Book)

• Reduces the number of columns in the temporary table from the

intermediate join

Statistics and Query

Optimization

• Using statistics about database objects can help speed

up queries

• Maintaining statistics as the data in the database

changes is a manageable process

• Types of statistics

• Table statistics

• Column statistics

Table Statistics

• On a relation r

• nr = number of tuples in the relation

• br = number of blocks used by the relation

• lr = size (in bytes) of a tuple in the relation

• fr = blocking factor, number of tuples per block

• Note that fr = floor(block size / lr) if tuples do not span
blocks

• Note that br = ceiling(nr / fr) if tuples in r reside in a single
file and are not clustered with other relations

Column Statistics

• Ona column A

• V(A, r) = number of distinct values in the column

• If A is a superkey, then V(A, r) = nr

• If A is not a superkey, the number of times each
column value occurs can be estimated by nr / V(A, r)

• If column A is indexed, V(A, r) s relatively easy to
maintain

• Keep track of the count of entries in the index

• May be useful to store a histogram of the relative
frequency of column values in different ranges

Estimating the Size of a Join

• Cartesian product– r X s

• Number of tuples in join = nr X s = nr * ns

• Size of each tuple in join = lr X s = lr + ls

• Natural join – r |X| s, where r and s have A in common

• The size of the join can be estimated in two ways

• The ns tuples of s will join with nr / V(A, r) tuples of r
for ns * nr / V(A, r) total tuples

• The nr tuples of r will join with ns / V(A, s) tuples of s
for nr * ns / V(A, s) total tuples

• We want to use the smaller of these estimates

• min(nr * ns / V(A, s) , ns * nr / V(A, r)) = ns * nr / max(V(A, r), V(A,
s))

• Also note that V(A, r |X| s) = min(V(A, r), V(A, s))
• Some tuples in the relation with the larger number of column values do not join with any

tuples in the other relation

Example Join Estimation

• π last, first, authorName Borrower |X| BookAuthor |X| CheckedOut

• 3 ways to do the join operations – Which is most efficient?

• (Book |X| BookAuthor) |X| CheckedOut

• (BookAuthor |X| CheckedOut) |X| Borrower

• (Borrower |X| CheckedOut |X| BookAuthor

• Statistics

nr V(A, r)

nBorrower = 2000 V(borrowerID, Borrower) = 2000

nCheckedOut = 1000 V(borrower, CheckedOut) = 100

nBookAuthor = 10,000 V(callNo, CheckedOut) = 500

V(callNo, BookAuthor) = 5000

Homework 4

Design Project

Presentations

Programming Project

Milestone I

