
DB2®

Developing Java Applications

DB2 Version 9

for Linux, UNIX, and Windows

SC10-4233-00

���

DB2®

Developing Java Applications

DB2 Version 9

for Linux, UNIX, and Windows

SC10-4233-00

���

Before using this information and the product it supports, be sure to read the general information under Notices.

Edition Notice

This document contains proprietary information of IBM. It is provided under a license agreement and is protected

by copyright law. The information contained in this publication does not include any product warranties, and any

statements provided in this manual should not be interpreted as such.

You can order IBM publications online or through your local IBM representative.

v To order publications online, go to the IBM Publications Center at www.ibm.com/shop/publications/order

v To find your local IBM representative, go to the IBM Directory of Worldwide Contacts at www.ibm.com/
planetwide

To order DB2 publications from DB2 Marketing and Sales in the United States or Canada, call 1-800-IBM-4YOU

(426-4968).

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any

way it believes appropriate without incurring any obligation to you.

© Copyright International Business Machines Corporation 2006. All rights reserved.

US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract

with IBM Corp.

http://www.ibm.com/shop/publications/order
http://www.ibm.com/planetwide
http://www.ibm.com/planetwide

Contents

Chapter 1. Introduction 1

Introduction to Java application development for DB2 1

Supported drivers for JDBC and SQLJ 1

Supported Java application development software . . 3

Setting up the DB2 JDBC and SQLJ development

environment 4

Installing the IBM DB2 Driver for JDBC and SQLJ 4

DB2Binder utility 8

DB2LobTableCreator utility 10

IBM DB2 Driver for JDBC and SQLJ

configuration properties customization 11

Special setup for accessing DB2 for z/OS servers

from Java programs 15

DB2T4XAIndoubtUtil for distributed transactions

with DB2 UDB for OS/390 and z/OS Version 7

servers 16

Special setup for running Java routines in the

HP-UX environment 19

Chapter 2. Programming JDBC

applications 21

Basic steps in writing a JDBC application 21

Connecting to database servers in JDBC applications 24

How JDBC applications connect to a data source 24

How DB2 applications connect to a data source

using the DriverManager interface with the DB2

JDBC Type 2 Driver 25

Connecting to a data source using the

DriverManager interface with the IBM DB2

Driver for JDBC and SQLJ 27

Connecting to a data source using the

DataSource interface 30

How to determine which type of IBM DB2

Driver for JDBC and SQLJ connectivity to use . . 32

JDBC connection objects 33

Creating and deploying DataSource objects . . . 33

Java packages for JDBC support 35

Learning about a data source using

DatabaseMetaData methods 35

Variables in JDBC applications 37

Executing SQL statements in JDBC applications . . 38

JDBC interfaces for executing SQL 38

Updating DB2 tables in JDBC applications . . . 39

Retrieving data from DB2 tables in JDBC

applications 44

Calling stored procedures in JDBC applications 52

Working with LOBs in JDBC applications . . . 57

ROWIDs in JDBC with the IBM DB2 Driver for

JDBC and SQLJ 61

Distinct types in JDBC applications 61

Savepoints in JDBC applications 62

Retrieving identity column values in JDBC

applications 63

Providing extended client information to the DB2

server with the IBM DB2 Driver for JDBC and

SQLJ 66

Working with XML data in JDBC applications . . . 68

XML data in JDBC applications 68

XML column updates in JDBC applications . . . 68

XML data retrieval in JDBC applications 70

Invocation of routines with XML parameters in

Java applications 72

Java support for XML schema registration and

removal 74

Transaction control in JDBC applications 76

Setting the isolation level for a JDBC transaction 76

Committing or rolling back JDBC transactions . . 76

Handling errors and warnings in JDBC applications 77

Handling an SQLException under the IBM DB2

Driver for JDBC and SQLJ 77

Handling an SQLWarning under the IBM DB2

Driver for JDBC and SQLJ 81

Retrieving information from a

BatchUpdateException 82

Handling an SQLException under the DB2 JDBC

Type 2 Driver 84

Handling an SQLWarning under the DB2 JDBC

Type 2 Driver 85

IBM DB2 Driver for JDBC and SQLJ client reroute

support 86

Disconnecting from database servers in JDBC

applications 88

Chapter 3. Programming SQLJ

applications 89

Basic steps in writing an SQLJ application 89

Connecting to a data source using SQLJ 92

Java packages for SQLJ support 97

Variables in SQLJ applications 98

Comments in an SQLJ application 99

Executing SQL statements in SQLJ applications . . 100

SQL statements in an SQLJ application 100

Updating DB2 tables in SQLJ applications . . . 101

Retrieving data from DB2 tables in SQLJ

applications 111

Calling stored procedures in SQLJ applications 121

Working with LOBs in SQLJ applications . . . 124

Using SQLJ and JDBC in the same application 127

Controlling the execution of SQL statements in

SQLJ 130

ROWIDs in SQLJ with the IBM DB2 Driver for

JDBC and SQLJ 130

Distinct types in SQLJ applications 131

Savepoints in SQLJ applications 132

Working with XML data in SQLJ applications . . 133

XML data in SQLJ applications 133

XML column updates in SQLJ applications . . 134

XML data retrieval in SQLJ applications . . . 136

© Copyright IBM Corp. 2006 iii

Transaction control in SQLJ applications 137

Setting the isolation level for an SQLJ

transaction 138

Committing or rolling back SQLJ transactions 138

Handling errors and warnings in SQLJ applications 138

Handling SQL errors in an SQLJ application . . 138

Handling SQL warnings in an SQLJ application 139

Closing the connection to a data source in an SQLJ

application 140

Chapter 4. JDBC and SQLJ security 141

Security under the DB2 JDBC Type 2 Driver . . . 141

Security under the IBM DB2 Driver for JDBC and

SQLJ 142

User ID and password security under the IBM DB2

Driver for JDBC and SQLJ 144

User ID-only security under the IBM DB2 Driver

for JDBC and SQLJ 146

Encrypted password security or encrypted user ID

and encrypted password security under the IBM

DB2 Driver for JDBC and SQLJ 146

Kerberos security under the IBM DB2 Driver for

JDBC and SQLJ 148

IBM DB2 Driver for JDBC and SQLJ security

plugin support 151

IBM DB2 Driver for JDBC and SQLJ trusted

context support 153

Security for preparing SQLJ applications with the

IBM DB2 Driver for JDBC and SQLJ 155

Chapter 5. Building Java database

applications 157

Building JDBC applets 157

Building JDBC applications 158

Building JDBC routines 158

Building SQLJ applets 160

Building SQLJ applications 162

Java applet considerations 163

SQLJ application and applet options for UNIX . . 164

SQLJ application and applet options for Windows 164

Building SQLJ routines 165

SQLJ routine options for UNIX 166

SQLJ routine options for Windows 167

Chapter 6. Java sample applications 169

JDBC samples 169

SQLJ samples 174

Java plug-in samples 178

Java WebSphere samples 179

Chapter 7. Diagnosing JDBC and

SQLJ problems 181

Diagnosing JDBC and SQLJ problems under the

IBM DB2 Driver for JDBC and SQLJ 181

JDBC and SQLJ problem diagnosis with the IBM

DB2 Driver for JDBC and SQLJ 181

Example of using configuration properties to

start a JDBC trace 184

Example of a trace program under the IBM DB2

Driver for JDBC and SQLJ 184

System monitoring for the IBM DB2 Driver for

JDBC and SQLJ 189

Diagnosing JDBC and SQLJ problems under the

DB2 JDBC Type 2 Driver 192

CLI/ODBC/JDBC trace facility 192

CLI and JDBC trace files 197

Chapter 8. Java 2 Platform, Enterprise

Edition 207

Java 2 Platform, Enterprise Edition Overview . . 207

Java 2 Platform, Enterprise Edition 207

Java 2 Platform, Enterprise Edition containers . . 208

Java 2 Platform, Enterprise Edition Server 209

Java 2 Platform, Enterprise Edition database

requirements 209

Java Naming and Directory Interface (JNDI) . . . 209

Java transaction management 209

Example of a distributed transaction that uses JTA

methods 210

Enterprise Java Beans 215

Chapter 9. JDBC and SQLJ

connection pooling support 219

Chapter 10. IBM DB2 Driver for JDBC

and SQLJ support for connection

concentrator and Sysplex workload

balancing 221

JDBC connection concentrator and Sysplex

workload balancing 221

Example of enabling the IBM DB2 Driver for JDBC

and SQLJ connection concentrator and Sysplex

workload balancing 222

Techniques for monitoring IBM DB2 Driver for

JDBC and SQLJ connection concentrator and

Sysplex workload balancing 224

Chapter 11. JDBC and SQLJ reference 227

Data types that map to SQL data types in JDBC

applications 227

Properties for the IBM DB2 Driver for JDBC and

SQLJ 232

Driver support for JDBC APIs 247

SQLJ statement reference 265

SQLJ clause 265

SQLJ host-expression 266

SQLJ implements-clause 266

SQLJ with-clause 267

SQLJ connection-declaration-clause 269

SQLJ iterator-declaration-clause 269

SQLJ executable-clause 271

SQLJ context-clause 272

SQLJ statement-clause 272

SQLJ SET-TRANSACTION-clause 274

SQLJ assignment-clause 275

SQLJ iterator-conversion-clause 275

sqlj.runtime reference 276

Summary of interfaces and classes in the

sqlj.runtime package 276

iv Developing Java Applications

sqlj.runtime.ConnectionContext interface . . . 277

sqlj.runtime.ForUpdate interface 282

sqlj.runtime.NamedIterator interface 282

sqlj.runtime.PositionedIterator interface 283

sqlj.runtime.ResultSetIterator interface 283

sqlj.runtime.Scrollable interface 286

sqlj.runtime.AsciiStream class 288

sqlj.runtime.BinaryStream class 289

sqlj.runtime.CharacterStream class 290

sqlj.runtime.ExecutionContext class 291

sqlj.runtime.SQLNullException class 298

sqlj.runtime.StreamWrapper class 299

sqlj.runtime.UnicodeStream class 300

IBM DB2 Driver for JDBC and SQLJ reference

information 300

DB2-only classes and interfaces 301

JDBC differences between the IBM DB2 Driver

for JDBC and SQLJ and other DB2 JDBC drivers 335

SQLJ differences between the IBM DB2 Driver

for JDBC and SQLJ and other DB2 JDBC drivers 342

Error codes issued by the IBM DB2 Driver for

JDBC and SQLJ 344

SQLSTATEs issued by the IBM DB2 Driver for

JDBC and SQLJ 345

How to find IBM DB2 Driver for JDBC and

SQLJ version and environment information . . 346

Commands for SQLJ program preparation 347

sqlj - SQLJ translator 348

db2sqljcustomize - SQLJ profile customizer . . 351

db2sqljbind - SQLJ profile binder 361

db2sqljprint - SQLJ profile printer 367

Appendix A. DB2 Database technical

information 369

Overview of the DB2 technical information . . . 369

Documentation feedback 369

DB2 technical library in hardcopy or PDF format 370

Ordering printed DB2 books 372

Displaying SQL state help from the command line

processor 373

Accessing different versions of the DB2

Information Center 374

Displaying topics in your preferred language in the

DB2 Information Center 374

Updating the DB2 Information Center installed on

your computer or intranet server 375

DB2 tutorials 377

DB2 troubleshooting information 377

Terms and Conditions 378

Appendix B. Notices 379

Trademarks 381

Index 383

Contacting IBM 389

Contents v

vi Developing Java Applications

Chapter 1. Introduction

The following topics introduce Java application support for the DB2 database

system and explain how to configure Java application support.

v “Introduction to Java application development for DB2”

v “Supported drivers for JDBC and SQLJ”

v “Supported Java application development software” on page 3

v “Setting up the DB2 JDBC and SQLJ development environment” on page 4

Introduction to Java application development for DB2

 The DB2® database system provides driver support for client applications and

applets that are written in Java™ using JDBC, and for embedded SQL for Java

(SQLJ).

JDBC is an application programming interface (API) that Java applications use to

access relational databases. DB2 support for JDBC lets you write Java applications

that access local DB2 data or remote relational data on a server that supports

DRDA®.

SQLJ provides support for embedded static SQL in Java applications. SQLJ was

initially developed by IBM®, Oracle, and Tandem to complement the dynamic SQL

JDBC model with a static SQL model.

In general, Java applications use JDBC for dynamic SQL and SQLJ for static SQL.

However, because SQLJ can inter-operate with JDBC, an application program can

use JDBC and SQLJ within the same unit of work.

 Related concepts:

v “Supported drivers for JDBC and SQLJ” on page 1

v “Supported Java application development software” on page 3

Supported drivers for JDBC and SQLJ

 According to the JDBC specification, there are four types of JDBC driver

architectures:

Type 1

Drivers that implement the JDBC API as a mapping to another data access API,

such as Open Database Connectivity (ODBC). Drivers of this type are generally

dependent on a native library, which limits their portability. The DB2 database

system does not support a type 1 driver.

Type 2

Drivers that are written partly in the Java programming language and partly in

native code. The drivers use a native client library specific to the data source to

which they connect. Because of the native code, their portability is limited.

Type 3

Drivers that use a pure Java client and communicate with a server using a

© Copyright IBM Corp. 2006 1

database-independent protocol. The server then communicates the client’s

requests to the data source. The DB2 database system does not support a type

3 driver.

Type 4

Drivers that are pure Java and implement the network protocol for a specific

data source. The client connects directly to the data source.

DB2 Version 9.1 supports a driver that combines type 2 and type 4 JDBC

implementations. DB2 Version 9.1 also supports a .type 2 driver, although this

support is deprecated. The DB2 Version 9.1 type 2 driver continues to use the DB2

CLI interface to communicate with DB2 database servers. The drivers that are

supported in DB2 Version 9.1 are:

 DB2 JDBC Type 2 Driver for Linux®, UNIX® and Windows® (DB2 JDBC type 2

driver) (deprecated):

 The DB2 JDBC type 2 driver lets Java applications make calls to DB2 through

JDBC. Calls to the DB2 JDBC type 2 driver are translated to Java native methods.

The Java applications that use this driver must run on a DB2 client, through which

JDBC requests flow to the DB2 server. DB2 Connect™ Version 9.1 must be installed

before the DB2 JDBC application driver can be used to access DB2 UDB for iSeries

data sources or data sources in the DB2 for OS/390® or z/OS® environments.

The DB2 JDBC type 2 driver supports these JDBC and SQLJ functions:

v Most of the methods that are described in the JDBC 1.2 specification, and some

of the methods that are described in the JDBC 2.0 specification. See Comparison

of driver support for JDBC APIs.

v SQLJ statements that perform equivalent functions to all JDBC methods

v Connection pooling

v Distributed transactions

v Java user-defined functions and stored procedures

The DB2 JDBC Type 2 Driver for Linux, UNIX and Windows will not be supported

in future releases of the DB2 database system. You should therefore consider

moving to the IBM DB2 Driver for JDBC and SQLJ.

 IBM DB2 Driver for JDBC and SQLJ (type 2 and type 4):

 The IBM DB2 Driver for JDBC and SQLJ is a single driver that includes JDBC type

2 and JDBC type 4 behavior, as well as SQLJ support. When an application loads

the IBM DB2 Driver for JDBC and SQLJ, a single driver instance is loaded for type

2 and type 4 implementations. The application can make type 2 and type 4

connections using this single driver instance. The type 2 and type 4 connections

can be made concurrently. IBM DB2 Driver for JDBC and SQLJ type 2 driver

behavior is referred to as IBM DB2 Driver for JDBC and SQLJ type 2 connectivity.

IBM DB2 Driver for JDBC and SQLJ type 4 driver behavior is referred to as IBM

DB2 Driver for JDBC and SQLJ type 4 connectivity.

The IBM DB2 Driver for JDBC and SQLJ supports these JDBC and SQLJ functions:

v All of the methods that are described in the JDBC 3.0 specifications. See

Comparison of driver support for JDBC APIs.

v SQLJ statements that perform equivalent functions to most JDBC methods.

v Connections that are enabled for connection pooling. WebSphere® Application

Server or another application server does the connection pooling.

2 Developing Java Applications

v Java user-defined functions and stored procedures (IBM DB2 Driver for JDBC

and SQLJ type 2 connectivity only).

v Global transactions that run under WebSphere Application Server Version 5.0

and above.

v Support for distributed transaction management. This support implements the

Java 2 Platform, Enterprise Edition (J2EE) Java Transaction Service (JTS) and Java

Transaction API (JTA) specifications, which conform to the X/Open standard for

distributed transactions (Distributed Transaction Processing: The XA Specification,

available from http://www.opengroup.org) .

 Related concepts:

v “How JDBC applications connect to a data source” on page 24

v “Security under the IBM DB2 Driver for JDBC and SQLJ” on page 142

 Related reference:

v “Driver support for JDBC APIs” on page 247

v “JDBC differences between the IBM DB2 Driver for JDBC and SQLJ and other

DB2 JDBC drivers” on page 335

v “SQLJ differences between the IBM DB2 Driver for JDBC and SQLJ and other

DB2 JDBC drivers” on page 342

Supported Java application development software

 To develop and deploy Java applications that run against DB2 databases, you need

to use supported development software and operating systems.

When you install the IBM DB2 Driver for JDBC and SQLJ, the driver installation

process does not install a software development kit (SDK) for Java. If the

installation process for the DB2 Database for Linux, UNIX, and Windows product

installs an SDK for Java, that installation process installs the latest SDK for Java

that is available.

The following table lists the supported levels of the SDK for Java. Only the listed

levels and forward-compatible later versions of the same level are supported. For

example, if only level 1.4.2 is listed for a particular operating system, level 1.4.2

SRn is also supported, but level 5 is not supported. If level 1.4.2 to level 5 is listed,

level 1.4.2 SRn and level 5 SRm are also supported.

Because there are frequent SDK for Java fixes and updates, not all levels and

versions have been tested. If your database application has problems that are

related to the SDK for Java, try the next available version of your SDK for Java at

the given level.

Non-IBM versions of the SDK for Java are supported only for building and

running stand-alone Java applications. For building and running Java stored

procedures and user-defined functions, only the IBM SDK for Java that is included

with the DB2 Database for Linux, UNIX, and Windows product is supported.

 Table 1. SDK for Java by DB2 Database for Linux, UNIX, and Windows

Operating system

31-bit, 32-bit, or 64-bit operating

system Supported levels of the SDK for Java

AIX® 5 32-bit/64-bit 1.4.2 to 5

HP-UX 11i 32-bit/64-bit 1.4.21

Chapter 1. Introduction 3

Table 1. SDK for Java by DB2 Database for Linux, UNIX, and Windows (continued)

Operating system

31-bit, 32-bit, or 64-bit operating

system Supported levels of the SDK for Java

Linux on Intel® x86 32-bit 1.4.2 to 52

Linux on IA64 64-bit 1.4.22,3

Linux on AMD64/EM64T 32-bit/64-bit 1.4.2 to 52

Linux on PowerPC® 32-bit/64-bit 1.4.2 to 5

Linux on zSeries® 31-bit/64-bit 1.4.2 to 5

Solaris 32-bit/64-bit 1.4.22

Windows on Intel x86 32-bit 1.4.2 to 52

Windows on IA64 64-bit 1.4.22,3

Windows on x64 32-bit/64-bit 1.4.2 to 52

Notes:

1. The same levels of the SDK for Java that are available from Hewlett-Packard are supported for building and

running client applications with the IBM DB2 Driver for JDBC and SQLJ.

2. The same levels of the SDK for Java that are available from Sun Microsystems are supported for building and

running client applications with the IBM DB2 Driver for JDBC and SQLJ.

3. A minimum level of SDK for Java 1.4.2 SR3 is required for Montecito processors.

 Related tasks:

v “Installing the IBM DB2 Driver for JDBC and SQLJ” on page 4

Setting up the DB2 JDBC and SQLJ development environment

The following topics contain information on setting up the environment for Java

application programming on DB2 Database for Linux, UNIX, and Windows.

v “Installing the IBM DB2 Driver for JDBC and SQLJ”

v “DB2Binder utility” on page 8

v “DB2LobTableCreator utility” on page 10

v “IBM DB2 Driver for JDBC and SQLJ configuration properties customization” on

page 11

v “Special setup for accessing DB2 for z/OS servers from Java programs” on page

15

v “DB2T4XAIndoubtUtil for distributed transactions with DB2 UDB for OS/390

and z/OS Version 7 servers” on page 16

v “Special setup for running Java routines in the HP-UX environment” on page 19

Installing the IBM DB2 Driver for JDBC and SQLJ

 Follow these steps to install the IBM DB2 Driver for JDBC and SQLJ.

 Prerequisites:

v An SDK for Java, 1.4.2 or later.

For all DB2 products except the DB2 Runtime Client, the installation process

automatically or optionally installs an SDK for Java.

v JVM native threads support

Any JVMs that run Java applications that access DB2 databases must include

native threads support. You can specify native threads as the default thread

support for some JVMs by setting the THREADS_FLAG environment variable to

4 Developing Java Applications

″native″. Refer to the documentation for your Java environment for instructions

on making native threads the default on your system.

v Support for accessing DB2 for z/OS database servers

If you plan to access DB2 for z/OS database servers with your Java applications,

follow the instructions in Special setup for accessing DB2 for z/OS servers from

Java programs.

v Unicode support for iSeries™ servers

If any SQLJ or JDBC programs will use IBM DB2 Driver for JDBC and SQLJ type

4 connectivity to connect to a DB2 UDB for iSeries server, the OS/400® operating

system must support the Unicode UTF-8 encoding scheme. The following table

lists the OS/400 PTFs that you need for Unicode UTF-8 support:

 Table 2. OS/400 PTFs for Unicode UTF-8 support

OS/400 version PTF numbers

V5R3 or later None (support is included)

V5R2 SI06541, SI06796, SI07557, SI07564, SI07565,

SI07566, and SI07567

V5R1 SI06308, SI06300, SI06301, SI06302, SI06305,

SI06307, and SI05872

v Java support for HP-UX clients and servers

HP-UX servers: The IBM DB2 Driver for JDBC and SQLJ does not support

databases that are in the HP-UX default character set, Roman8. Therefore, when

you create a database on an HP-UX server that you plan to access with the IBM

DB2 Driver for JDBC and SQLJ, you need to create the database with a different

character set.

HP-UX clients and servers: The Java environment on an HP-UX system requires

special setup to run stored procedures under the IBM DB2 Driver for JDBC and

SQLJ.

See Special setup for running Java routines in the HP-UX environment for

details.

 Procedure:

 1. During the DB2 Database for Linux, UNIX, and Windows installation process,

select Java support on UNIX or Linux, or JDBC support on Windows. These

selections are defaults. If you have already installed DB2 Database for Linux,

UNIX, and Windows without JDBC support, you can run the installation

process in Custom mode to add JDBC support.

Selection of Java support or JDBC support causes the installation process to

perform the following actions:

v Install the IBM DB2 Driver for JDBC and SQLJ class files, and to modify the

CLASSPATH to include them.

The files are placed in the sqllib\java directory for Windows systems, or the

sqllib/java directory for Unix or Linux systems.

The files names are db2jcc.jar and sqlj.zip. You need only db2jcc.jar for

preparing and executing JDBC programs. You need db2jcc.jar and sqlj.zip

for preparing and executing SQLJ programs.

v Install IBM DB2 Driver for JDBC and SQLJ license files, and modify the

CLASSPATH to include them.

The files are placed in the sqllib\java directory for Windows systems, or the

sqllib/java directory for Unix or Linux systems. The file names are:

Chapter 1. Introduction 5

Table 3. IBM DB2 Driver for JDBC and SQLJ license files

License file

Server to which license file permits

a connection Product that includes license file

db2jcc_license_c.jar Cloudscape™ Cloudscape Network Server

db2jcc_license_cu.jar Cloudscape

 All DB2 Database for Linux,

UNIX, and Windows servers

All DB2 Database for Linux, UNIX,

and Windows products

db2jcc_license_cisuz.jar Cloudscape

 All DB2 Database for Linux,

UNIX, and Windows servers

 DB2 for z/OS

 DB2 UDB for iSeries

All DB2 Connect products

v Install IBM DB2 Driver for JDBC and SQLJ native libraries for support of

IBM DB2 Driver for JDBC and SQLJ type 2 connectivity.

The files are placed in the sqllib\bin directory for Windows systems, or the

sqllib/lib directory for Unix or Linux systems.

The file names are:

libdb2jcct2.so

For AIX, HP-UX on IPF, Linux, and Solaris

libdb2jcct2.sl

For HP-UX on PA-RISC

db2jcct2.dll

For Windows
 2. Customize the driver-wide configuration properties, if any of the defaults are

inappropriate. See IBM DB2 Driver for JDBC and SQLJ configuration

properties customization for details.

 3. Configure TCP/IP

Servers must be configured for TCP/IP communication in the following cases:

v JDBC or SQLJ applications that use IBM DB2 Driver for JDBC and SQLJ

type 4 connectivity.

v JDBC or SQLJ applications that use IBM DB2 Driver for JDBC and SQLJ

type 2 connectivity, and specify server and port in the connection URL.

Ensure that the TCP/IP listener is running. To activate the TCP/IP listener:

a. Set the environment variable DB2COMM to TCPIP:

 db2set DB2COMM=TCPIP

b. Update the database manager configuration file with the TCP/IP service

name as specified in the services file:

 db2 update dbm cfg using SVCENAME TCP/IP-service-name

You must execute the db2stop and db2start commands for this setting to

take effect.

The port number used for applets and SQLJ programs needs to be the same as

the TCP/IP SVCENAME number used in the database manager configuration

file.

 4. On DB2 Database for Linux, UNIX, and Windows servers on which you plan

to run Java stored procedures or user-defined functions, update the database

manager configuration to include the path where the SDK for Java is located.

You can do this by entering commands similar to these on the server

command line:

6 Developing Java Applications

For database systems on UNIX or Linux:

db2 update dbm cfg using JDK_PATH /home/db2inst/jdk142

/home/db2inst/jdk142 is the path where the SDK for Java is installed.

For database systems on Windows:

db2 update dbm cfg using JDK_PATH c:\Program Files\jdk142

c:\Program Files\jdk142 is the path where the SDK for Java is installed.

To verify the correct value for the JDK_PATH field in the DB2 database manager

configuration, enter the following command on the database server:

db2 get dbm cfg

You might want to redirect the output to a file for easier viewing. The

JDK_PATH field appears near the beginning of the output.

 5. If you plan to call SQL procedures that are on DB2 Database for Linux, UNIX,

and Windows servers from Java programs, and the date and time format that

is associated with the territory code of the database servers is not the USA

format, take the following actions:

a. Set the DB2_SQLROUTINE_PREPOPTS registry variable on the database

servers to indicate that the default datetime format is ISO:

 db2set DB2_SQLROUTINE_PREPOPTS="DATETIME ISO"

b. Redefine any existing SQL procedures that you plan to call from Java

programs.

These steps are necessary to ensure that the calling application receives date

and time values correctly.

 6. If you plan to run Java stored procedures that work with XML data on DB2

Database for Linux, UNIX, and Windows servers, you need to set the IBM

DB2 Driver for JDBC and SQLJ as the default JDBC driver for running stored

procedures. To do that, set the DB2_USE_DB2JCCT2_JROUTINE environment

value to YES, yes, ON, on, TRUE, true, or 1. For example:

To set the IBM DB2 Driver for JDBC and SQLJ as the default driver at the

instance level:

db2set DB2_USE_DB2JCCT2_JROUTINE=YES -i instance-name

To set the IBM DB2 Driver for JDBC and SQLJ as the default driver at the

global level:

db2set DB2_USE_DB2JCCT2_JROUTINE=YES -g

 7. If you plan to use Kerberos security, put the following files in the Java

application CLASSPATH:

v ibmjceprovider.jar

v ibmjcefw.jar

v ibmjlog.jar

v US_export_policy.jar

v Local_policy.jar

v ibmjgssprovider.jar

v jaas.jar

v ibmjceprovider.jar

v ibmjcefw.jar

v ibmjlog.jar

v US_export_policy.jar

v Local_policy.jar

Chapter 1. Introduction 7

8. If you intend to connect to a DB2 for z/OS server, run the

com.ibm.db2.jcc.DB2Binder utility to bind the DB2 packages that are used at

the server by the IBM DB2 Driver for JDBC and SQLJ. See DB2Binder utility

for details.

 9. Determine whether you need to use LOB locators to access the following

types of data on DB2 for z/OS servers:

v Data in DBCLOB columns

v Data in CLOB columns

If so, you need to create tables on the database servers that are needed for

fetching data from DBCLOB or CLOB columns using LOB locators. Create the

tables in one of the following ways:

v On the DB2 for z/OS servers, customize and run job DSNTIJMS. That job is

located in data set prefix.SDSNSAMP.

v On the client, run the com.ibm.db2.jcc.DB2LobTableCreator utility against

each of the DB2 for z/OS servers. See DB2LobTableCreator utility for

details.
10. If you plan to use IBM DB2 Driver for JDBC and SQLJ type 4 connectivity to

implement distributed transactions against DB2 for z/OS Version 7 servers,

run the DB2T4XAIndoubtUtil utility once for each of those DB2 for z/OS

Version 7 servers. See DB2T4XAIndoubtUtil utility for details.

 Related concepts:

v “IBM DB2 Driver for JDBC and SQLJ configuration properties customization” on

page 11

v “Supported Java application development software” on page 3

 Related tasks:

v “Special setup for running Java routines in the HP-UX environment” on page 19

v “Configuring TCP/IP communications for a DB2 instance” in Installation and

Configuration Supplement

v “Updating the database manager configuration file on the server for TCP/IP

communications” in Installation and Configuration Supplement

v “Updating the services file on the server for TCP/IP communications” in

Installation and Configuration Supplement

v “Special setup for accessing DB2 for z/OS servers from Java programs” on page

15

 Related reference:

v “DB2Binder utility” on page 8

v “DB2LobTableCreator utility” on page 10

v “IBM Software Development Kit for Java levels for DB2 products” in Quick

Beginnings for DB2 Servers

v “DB2T4XAIndoubtUtil for distributed transactions with DB2 UDB for OS/390

and z/OS Version 7 servers” on page 16

v “DB2 Connect product offerings” in DB2 Connect User’s Guide

DB2Binder utility

 The DB2Binder utility binds the DB2 packages that are used at the database server

by the IBM DB2 Driver for JDBC and SQLJ, and grants EXECUTE authority on the

packages to PUBLIC.

8 Developing Java Applications

DB2Binder syntax:

�� java com.ibm.db2.jcc.DB2Binder -url jdbc:db2://server /database

:

port
 -user user-ID �

� -password password

-size integer

-collection collection-name
 �

�

�

,

-tracelevel

trace-option

 -action add

-action

replace

-help

��

 DB2Binder option descriptions:

-url

Specifies the data source at which the JCC packages are to be bound. The

variable parts of the -url value are:

server

The domain name or IP address of the MVS™ system on which the DB2

subsystem resides.

port

The TCP/IP server port number that is assigned to the DB2 subsystem.

The default is 446.

database

The location name for the DB2 subsystem, as defined in the

SYSIBM.LOCATIONS catalog table.

-user

Specifes the user ID under which the packages are to be bound. This user must

have BIND authority on the packages.

-size

Specifies the number of DB2 packages that DB2binder binds for each of the

four DB2 isolation levels and each of the two holdability values. The IBM DB2

Driver for JDBC and SQLJ uses these packages to process dynamic SQL. In

addition, the DB2binder binds a single package that the IBM DB2 Driver for

JDBC and SQLJ uses for static SQL. Therefore, the total number of packages

that DB2binder binds is:

4*2*integer+1

The default value for integer is 3.

-collection

Specifies the collection ID for the packages that are used by an instance of the

IBM DB2 Driver for JDBC and SQLJ. The default is NULLID. DB2binder

translates this value to uppercase.

 You can create multiple instances of the JCC package set at a single location by

running com.ibm.db2.jcc.DB2Binder multiple times, and specifying a different

value for -collection each time. At run time, you select a copy of the IBM DB2

Driver for JDBC and SQLJ by setting the currentPackageSet property to a

value that matches a -collection value.

Chapter 1. Introduction 9

-tracelevel

Specifies what to trace while DB2Binder runs.

-action

Specifies whether the IBM DB2 Driver for JDBC and SQLJ packages can be

replaced.

add Indicates that a package can be created only if it does not already exist.

Add is the default.

replace

Indicates that a package can be created even if a package with the

same name already exists. The new package replaces the old package.

 Reference Text

 Related tasks:

v “Installing the IBM DB2 Driver for JDBC and SQLJ” on page 4

DB2LobTableCreator utility

 The DB2LobTableCreator utility creates tables on a DB2 for z/OS database server

that are required by JDBC or SQLJ applications that access the following types of

data using LOB locators:

v Data in DBCLOB columns

v Data in CLOB columns

 DB2LobTableCreator syntax:

�� java com.ibm.db2.jcc.DB2LobTableCreator -url jdbc:db2: //server /database

:port
 �

� -user user-ID -password password

-help
 ��

 DB2LobTableCreator option descriptions:

-url

Specifies the data source at which DB2LobTableCreator is to run. The variable

parts of the -url value are:

jdbc:db2:

Indicates that the connection is to a server in the DB2 family.

server

The domain name or IP address of the database server.

port

The TCP/IP server port number that is assigned to the database server.

This is an integer between 0 and 65535. The default is 446.

database

A name for the database server.

 database is the DB2 location name that is defined during installation. All

characters in this value must be uppercase characters. You can determine

the location name by executing the following SQL statement on the server:

SELECT CURRENT SERVER FROM SYSIBM.SYSDUMMY1;

10 Developing Java Applications

-user

Specifes the user ID under which DB2LobTableCreator is to run. This user

must have authority to create tables in the DSNATPDB database.

-password

Specifes the password for the user ID.

-help

Specifies that the DB2LobTableCreator utility describes each of the options that

it supports. If any other options are specified with -help, they are ignored.

 Related tasks:

v “Installing the IBM DB2 Driver for JDBC and SQLJ” on page 4

IBM DB2 Driver for JDBC and SQLJ configuration properties

customization

 The IBM DB2 Driver for JDBC and SQLJ configuration properties let you set

property values that have driver-wide scope. Those settings apply across

applications and DataSource instances. You can change the settings without having

to change application source code or DataSource characteristics.

Each IBM DB2 Driver for JDBC and SQLJ configuration property setting is of this

form:

property=value

property can have one or more of the following forms:

v db2.jcc.override.property-name

v db2.jcc.property-name

v db2.jcc.default.property-name

If the configuration property begins with db2.jcc.override, the configuration

property is applicable to all connections and overrides any Connection or

DataSource property with the same property-name. If the configuration property

begins with db2.jcc or db2.jcc.default, the configuration property value is a default.

Connection or DataSource property settings override that value.

You can set configuration properties in the following ways:

v Set the configuration properties as Java system properties. Those settings

override any other settings.

For stand-alone Java applications, you can set the configuration properties as

Java system properties by specifying -Dproperty=value for each configuration

property when you execute the java command.

v Set the configuration properties in a resource whose name you specify in the

db2.jcc.propertiesFile Java system property. For example, you can specify an

absolute path name for the db2.jcc.propertiesFile value.

For stand-alone Java applications, you can set the configuration properties by

specifying the -Ddb2.jcc.propertiesFile=path option when you execute the java

command.

v Set the configuration properties in a resource named

DB2JccConfiguration.properties. A standard Java resource search is used to find

DB2JccConfiguration.properties. The IBM DB2 Driver for JDBC and SQLJ

searches for this resource only if you have not set the db2.jcc.propertiesFile Java

system property.

Chapter 1. Introduction 11

DB2JccConfiguration.properties can be a stand-alone file, or it can be included in

a JAR file.

If the DB2JccConfiguration.properties file is in the ISO 8859-1 (Latin-1) encoding

scheme, or is in the Latin-1 encoding scheme with some Unicode-encoded

(\udddd) characters, you do not need to do character conversion before the IBM

DB2 Driver for JDBC and SQLJ can use the file. If the

DB2JccConfiguration.properties file is in some other encoding scheme, you need

to use the Java native2ascii converter to convert the contents to Latin-1 or

Unicode-encoded characters.

If DB2JccConfiguration.properties is a stand-alone file, the path for

DB2JccConfiguration.properties must be in the CLASSPATH concatenation.

If DB2JccConfiguration.properties is in a JAR file, the JAR file must be in the

CLASSPATH concatenation.

You can set any of the following IBM DB2 Driver for JDBC and SQLJ configuration

properties. All properties are optional.

db2.jcc.currentSchema or db2.jcc.override.currentSchema

Specifies the default schema name that is used to qualify unqualified database

objects in dynamically prepared SQL statements. This value of this property

sets the value in the CURRENT SCHEMA special register on a DB2 server.

db2.jcc.currentSQLID or db2.jcc.override.currentSQLID

Specifies:

v The authorization ID that is used for authorization checking on dynamically

prepared CREATE, GRANT, and REVOKE SQL statements.

v The owner of a table space, database, storage group, or synonym that is

created by a dynamically issued CREATE statement.

v The implicit qualifier of all table, view, alias, and index names specified in

dynamic SQL statements.

currentSQLID sets the value in the CURRENT SQLID special register on a DB2

for z/OS server. If the currentSQLID property is not set, the default schema

name is the value in the CURRENT SQLID special register. This property

applies only to IBM DB2 Driver for JDBC and SQLJ type 4 connectivity to a

DB2 for z/OS server.

db2.jcc.dumpPool

Specifies the types of statistics on global transport pool events that are written,

in addition to summary statistics. The global transport pool is used for the

connection concentrator and Sysplex workload balancing.

 The data type of db2.jcc.dumpPool is int.

db2.jcc.dumpPoolStatisticsOnSchedule and

db2.jcc.dumpPoolStatisticsOnScheduleFile must also be set for writing statistics

before any statistics are written.

 You can specify one or more of the following types of statistics with the

db2.jcc.dumpPool property:

v DUMP_REMOVE_OBJECT (hexadecimal: X'01', decimal: 1)

v DUMP_GET_OBJECT (hexadecimal: X'02', decimal: 2)

v DUMP_WAIT_OBJECT (hexadecimal: X'04', decimal: 4)

v DUMP_SET_AVAILABLE_OBJECT (hexadecimal: X'08', decimal: 8)

v DUMP_CREATE_OBJECT (hexadecimal: X'10', decimal: 16)

v DUMP_SYSPLEX_MSG (hexadecimal: X'20', decimal: 32)

v DUMP_POOL_ERROR (hexadecimal: X'80', decimal: 128)

12 Developing Java Applications

To trace more than one type of event, add the values for the types of events

that you want to trace. For example, suppose that you want to trace

DUMP_GET_OBJECT and DUMP_CREATE_OBJECT events. The numeric

equivalents of these values are 2 and 16, so you specify 18 for the

db2.jcc.dumpPool value.

 The default is 0, which means that only summary statistics for the global

transport pool are written.

db2.jcc.dumpPoolStatisticsOnSchedule

Specifies how often, in seconds, global transport pool statistics are written to

the file that is specified by db2.jcc.dumpPoolStatisticsOnScheduleFile. The

global transport object pool is used for the connection concentrator and

Sysplex workload balancing.

 The default is -1. -1 means that global transport pool statistics are not written.

db2.jcc.dumpPoolStatisticsOnScheduleFile

Specifies the name of the file to which global transport pool statistics are

written. The global transport pool is used for the connection concentrator and

Sysplex workload balancing.

 If db2.jcc.dumpPoolStatisticsOnScheduleFile is not specified, global transport

pool statistics are not written.

db2.jcc.maxTransportObjectIdleTime

Specifies the amount of time in seconds that an unused transport object stays

in a global transport object pool before it can be deleted from the pool.

Transport objects are used for the connection concentrator and Sysplex

workload balancing.

 The default value for db2.jcc.maxTransportObjectIdleTime is 60. Setting

db2.jcc.maxTransportObjectIdleTime to a value less than 0 causes unused

transport objects to be deleted from the pool immediately. Doing this is not

recommended because it can cause severe performance degradation.

db2.jcc.maxTransportObjects

Specifies the upper limit for the number of transport objects in a global

transport object pool for the connection concentrator and Sysplex workload

balancing. When the number of transport objects in the pool reaches the

db2.jcc.maxTransportObjects value, transport objects that have not been used

for longer than the db2.jcc.maxTransportObjectIdleTime value are deleted from

the pool.

 The default value for db2.jcc.maxTransportObjects is -1. Any value that is less

than or equal to 0 means that there is no limit to the number of transport

objects in the global transport object pool.

db2.jcc.maxTransportObjectWaitTime

Specifies the maximum amount of time in seconds that an application waits for

a transport object if the db2.jcc.maxTransportObjects value has been reached.

Transport objects are used for the connection concentrator and Sysplex

workload balancing. When an application waits for longer than the

db2.jcc.maxTransportObjectWaitTime value, the global transport object pool

throws an SQLException.

 The default value for db2.jcc.maxTransportObjectWaitTime is -1. Any negative

value means that applications wait forever.

db2.jcc.minTransportObjects

Specifies the lower limit for the number of transport objects in a global

Chapter 1. Introduction 13

transport object pool for the connection concentrator and Sysplex workload

balancing. When a JVM is created, there are no transport objects in the pool.

Transport objects are added to the pool as they are needed. After the

db2.jcc.minTransportObjects value is reached, the number of transport objects

in the global transport object pool never goes below the

db2.jcc.minTransportObjects value for the lifetime of that JVM.

 The default value for db2.jcc.minTransportObjects is 0. Any value that is less

than or equal to 0 means that the global transport object pool can become

empty.

db2.jcc.traceDirectory or db2.jcc.override.traceDirectory

Enables the IBM DB2 Driver for JDBC and SQLJ trace for Java driver code, and

specifies a directory into which trace information is written. When

db2.jcc.override.traceDirectory is specified, trace information for multiple

connections on the same DataSource is written to multiple files.

 When db2.jcc.override.traceDirectory is specified, a connection is traced to a

file named file-name_origin_n.

 n is the nth connection for a DataSource.

 If neither db2.jcc.traceFileName nor db2.jcc.override.traceFileName is specified,

file-name is traceFile. If db2.jcc.traceFileName or db2.jcc.override.traceFileName

is also specified, file-name is the value of db2.jcc.traceFileName or

db2.jcc.override.traceFileName.

 origin indicates the origin of the log writer that is in use. Possible values of

origin are:

cpds The log writer for a DB2ConnectionPoolDataSource object.

driver The log writer for a DB2Driver object.

global The log writer for a DB2TraceManager object.

sds The log writer for a DB2SimpleDataSource object.

xads The log writer for a DB2XADataSource object.

The db2.jcc.override.traceDirectory property overrides the traceDirectory

property for a Connection or DataSource object.

 For example, specifying the following setting for db2.jcc.override.traceDirectory

enables tracing of the IBM DB2 Driver for JDBC and SQLJ Java code to files in

a directory named /SYSTEM/tmp:

db2.jcc.override.traceDirectory=/SYSTEM/tmp

You should set the trace properties under the direction of IBM Software

Support.

db2.jcc.sqljUncustomizedWarningOrException

Specifies the action that the IBM DB2 Driver for JDBC and SQLJ takes when an

uncustomized SQLJ application runs.

db2.jcc.sqljUncustomizedWarningOrException can have the following values:

0 The IBM DB2 Driver for JDBC and SQLJ does not throw a Warning or

Exception when an uncustomized SQLJ application is run. This is the

default.

1 The IBM DB2 Driver for JDBC and SQLJ throws a Warning when an

uncustomized SQLJ application is run.

14 Developing Java Applications

2 The IBM DB2 Driver for JDBC and SQLJ throws an Exception when an

uncustomized SQLJ application is run.

db2.jcc.traceFile or db2.jcc.override.traceFile

Enables the IBM DB2 Driver for JDBC and SQLJ trace for Java driver code, and

specifies the name on which the trace file names are based.

 Specify a fully qualified file name for the db2.jcc.override.traceFile property

value.

 The db2.jcc.override.traceFile property overrides the traceFile property for a

Connection or DataSource object.

 For example, specifying the following setting for db2.jcc.override.traceFile

enables tracing of the IBM DB2 Driver for JDBC and SQLJ Java code to a file

named /SYSTEM/tmp/jdbctrace:

db2.jcc.override.traceFile=/SYSTEM/tmp/jdbctrace

You should set the trace properties under the direction of IBM Software

Support.

db2.jcc.traceFileAppend or db2.jcc.override.traceFileAppend

Specifies whether to append to or overwrite the file that is specified by the

db2.jcc.override.traceFile property. The data type of this property is boolean.

The default is false, which means that the file that is specified by the traceFile

property is overwritten.

 The db2.jcc.override.traceFileAppend property overrides the traceFileAppend

property for a Connection or DataSource object.

 For example, specifying the following setting for

db2.jcc.override.traceFileAppend causes trace data to be added to the existing

trace file:

db2.jcc.override.traceFileAppend=true

You should set the trace properties under the direction of IBM Software

Support.

 Related reference:

v “Properties for the IBM DB2 Driver for JDBC and SQLJ” on page 232

Special setup for accessing DB2 for z/OS servers from Java

programs

 Follow these steps if you plan to write JDBC or SQLJ applications that access DB2

for z/OS database servers.

 Procedure:

 1. Install DB2 for z/OS stored procedures.

If any JDBC or SQLJ applications will connect to a DB2 for z/OS server, a

number of stored procedures need to be installed on that server to support

retrieval of DB2 catalog information, tracing, and error message formatting. The

stored procedures are:

v SQLCOLPRIVILEGES

v SQLCOLUMNS

v SQLFOREIGNKEYS

v SQLGETTYPEINFO

v SQLPRIMARYKEYS

Chapter 1. Introduction 15

v SQLPROCEDURECOLS

v SQLPROCEDURES

v SQLSPECIALCOLUMNS

v SQLSTATISTICS

v SQLTABLEPRIVILEGES

v SQLTABLES

v SQLUDTS

v SQLCAMESSAGE

The following DB2 for z/OS PTFs provide the latest versions of the stored

procedures:

 Table 4. PTFs for DB2 for z/OS stored procedures

DB2 for z/OS PTF numbers

Version 7 UQ72083, UQ93889

Version 8 UQ93890

Ask your DB2 for z/OS system administrator whether these stored procedures

are installed.

2. Create DB2 for z/OS tables.

If any JDBC or SQLJ applications will connect to a DB2 for z/OS server, the

following tables need to be installed on that server to support efficient storing

of data in CLOB or DBCLOB columns:

v SYSIBM.SYSDUMMYU

v SYSIBM.SYSDUMMYA

v SYSIBM.SYSDUMMYE

Jobs that define the tables are shipped in the following PTFs:

 Table 5. PTFs for DB2 for z/OS

DB2 for z/OS Version PTF number

Version 7 UQ86843

Version 8 UQ86844

Ask your DB2 for z/OS system administrator whether these tables are defined.

3. Enable Unicode support for OS/390 and z/OS servers.

If any SQLJ or JDBC programs will use IBM DB2 Driver for JDBC and SQLJ

type 4 connectivity to connect to a DB2 for z/OS Version 7 server, the OS/390

or z/OS operating system must support the Unicode UTF-8 encoding scheme.

This support requires OS/390 Version 2 Release 9 with APAR OW44581, or a

later release of OS/390 or z/OS, plus the OS/390 R8/R9/R10 Support for

Unicode. Information APARs II13048 and II13049 contain additional

information.

DB2T4XAIndoubtUtil for distributed transactions with DB2

UDB for OS/390 and z/OS Version 7 servers

 If you plan to implement distributed transactions using IBM DB2 Driver for JDBC

and SQLJ type 4 connectivity that include DB2 UDB for OS/390 and z/OS Version

7 servers, you need to run the DB2T4XAIndoubtUtil utility against those servers.

This utility allows Version 7 servers, which do not have built-in support for

distributed transactions that implement the XA specification, to emulate that

support.

DB2T4XAIndoubtUtil performs one or both of the following tasks:

16 Developing Java Applications

v Creates a table named SYSIBM.INDOUBT and an associated index

v Binds DB2 packages named T4XAIN01, T4XAIN02, T4XAIN03, and T4XAIN04

You should create and drop packages T4XAIN01, T4XAIN02, T4XAIN03, and

T4XAIN04 only by running DB2T4XAIndoubtUtil. You can create and drop

SYSTEM.INDOUBT and its index manually, but it is recommended that you use

the utility. See “DB2T4XAIndoubtUtil usage notes” on page 18 for instructions on

how to create those objects manually.

 DB2T4XAIndoubtUtil authorization:

 To run the DB2T4XAIndoubtUtil utility to create SYSTEM.INDOUBT and bind

packages T4XAIN01, T4XAIN02, T4XAIN03, and T4XAIN04, you need SYSADM

authority.

To run the DB2T4XAIndoubtUtil only to bind packages T4XAIN01, T4XAIN02,

T4XAIN03, and T4XAIN04, you need BIND authority on the packages.

 DB2T4XAIndoubtUtil syntax:

�� java com.ibm.db2.jcc.DB2T4XAIndoubtUtil -url jdbc:db2: //server /database

:port
 �

� -user user-ID -password password

-owner

owner-ID

-help

-delete

-bindonly
 �

�

-showSQL

 -jdbcCollection NULLID

-jdbcCollection

collection-ID

��

 DB2T4XAIndoubtUtil parameter descriptions:

-url

Specifies the data source at which DB2T4XAIndoubtUtil is to run. The variable

parts of the -url value are:

jdbc:db2:

Indicates that the connection is to a server in the DB2 family.

server

The domain name or IP address of the database server.

port

The TCP/IP server port number that is assigned to the database server.

This is an integer between 0 and 65535. The default is 446.

database

A name for the database server.

 database is the DB2 location name that is defined during installation. All

characters in this value must be uppercase characters. You can determine

the location name by executing the following SQL statement on the server:

SELECT CURRENT SERVER FROM SYSIBM.SYSDUMMY1;

-user

Specifes the user ID under which DB2T4XAIndoubtUtil is to run. This user

must have SYSADM authority or must be a member of a RACF® group that

corresponds to a secondary authorization ID with SYSADM authority.

Chapter 1. Introduction 17

-password

Specifes the password for the user ID.

-owner

Specifies a secondary authorization ID that has SYSADM authority. Use the

-owner parameter if the -user parameter value does not have SYSADM

authority. The -user parameter value must be a member of a RACF group

whose name is owner-ID.

 When the -owner parameter is specified, DB2T4XAIndoubtUtil uses owner-ID

as:

v The authorization ID for creating the SYSIBM.INDOUBT table.

v The authorization ID of the owner of the T4XAIN01, T4XAIN02, T4XAIN03,

and T4XAIN04 packages. SQL statements in those packages are executed

using the authority of owner-ID.

-help

Specifies that the DB2T4XAIndoubtUtil utility describes each of the options

that it supports. If any other options are specified with -help, they are ignored.

-delete

Specifies that the DB2T4XAIndoubtUtil utility deletes the objects that were

created when DB2T4XAIndoubtUtil was run previously.

-bindonly

Specifies that the DB2T4XAIndoubtUtil utility binds the T4XAIN01, T4XAIN02,

T4XAIN03, and T4XAIN04 packages and grants permission to PUBLIC to

execute the packages, but does not create the SYSIBM.INDOUBT table.

-showSQL

Specifies that the DB2T4XAIndoubtUtil utility displays the SQL statements that

it executes.

-jdbcCollection collection-name|NULLID

Specifies the value of the -collection parameter that was used when the IBM

DB2 Driver for JDBC and SQLJ packages were bound with the DB2Binder

utility. The -jdbcCollection parameter must be specified if the explicitly or

implicitly specified value of the -collection parameter was not NULLID.

 The default is -jdbcCollection NULLID.

 DB2T4XAIndoubtUtil usage notes:

 To create the SYSTEM.INDOUBT table and its index manually, use these SQL

statements:

CREATE TABLESPACE INDBTTS

 USING STOGROUP

 LOCKSIZE ROW

 BUFFERPOOL BP0

 SEGSIZE 32

 CCSID EBCDIC;

CREATE TABLE SYSIBM.INDOUBT(indbtXid VARCHAR(140) FOR BIT DATA NOT NULL,

 uowId VARCHAR(25) FOR BIT DATA NOT NULL,

 pSyncLog VARCHAR(150) FOR BIT DATA,

 cSyncLog VARCHAR(150) FOR BIT DATA)

 IN INDBTTS;

CREATE UNIQUE INDEX INDBTIDX ON SYSIBM.INDOUBT(indbtXid, uowId);

 DB2T4XAIndoubtUtil example:

18 Developing Java Applications

Run the DB2T4XAIndoubtUtil to allow a DB2 for OS/390 and z/OS Version 7

subsystem that has IP address mvs1, port number 446, and DB2 location name

SJCEC1 to participate in XA distributed transactions.

java com.ibm.db2.jcc.DB2T4XAIndoubtUtil -url jdbc:db2://mvs1:446/SJCEC1 \

 -user SYSADM -password mypass

 Related tasks:

v “Installing the IBM DB2 Driver for JDBC and SQLJ” on page 4

Special setup for running Java routines in the HP-UX

environment

 For the HP-UX operating system on PA-RISC processors, you have extra

prerequisites for running Java stored procedures and user-defined functions. In

addition to the prerequisites in “Installing the IBM DB2 Driver for JDBC and SQLJ”

on page 4, you need to perform the following prerequisite steps:

1. Enable the db2hpjv tool by issuing the following commands on the command

line:

db2hpjv -e

db2stop

db2start

If you need to disable db2hpjv, issue these commands:

db2hpjv -d

db2stop

db2start

Java must be installed on the operating system before you issue db2hpjv -e.

DB2 Database for Linux, UNIX, and Windows cannot run on HP-UX if Java

routine support is enabled, but Java is not on the operating system.

2. Give the HP-UX run-time linker access to Java shared libraries.

To run Java stored procedures or user-defined functions, the HP-UX run-time

linker must be able to access certain Java shared libraries, and the DB2 system

must be able to load these libraries and the JVM. Because the program that

does this loading runs with setuid privileges, it looks for the dependent

libraries only in /usr/lib/pa20_64. To create access to the Java shared libraries,

choose one of the following methods:

v Create symbolic links to the Java shared libraries. To do that, log in as root,

and issue the following commands to create symbolic links to the Java

shared libraries:

ln -s /opt/java1.4/jre/lib/PA_RISC2.0W/*.sl /usr/lib/pa20_64

ln -s /opt/java1.4/jre/lib/PA_RISC2.0W/hotspot/*.sl /usr/lib/pa20_64

These commands create symbolic links to the following libraries:

/opt/java1.4/jre/lib/PA_RISC2.0W/libnet.sl

/opt/java1.4/jre/lib/PA_RISC2.0W/libzip.sl

/opt/java1.4/jre/lib/PA_RISC2.0W/librmi.sl

/opt/java1.4/jre/lib/PA_RISC2.0W/libnio.sl

/opt/java1.4/jre/lib/PA_RISC2.0W/libverify.sl

/opt/java1.4/jre/lib/PA_RISC2.0W/libmlib_image.sl

/opt/java1.4/jre/lib/PA_RISC2.0W/libhprof.sl

/opt/java1.4/jre/lib/PA_RISC2.0W/libjaas_unix.sl

/opt/java1.4/jre/lib/PA_RISC2.0W/libawt.sl

/opt/java1.4/jre/lib/PA_RISC2.0W/libcmm.sl

/opt/java1.4/jre/lib/PA_RISC2.0W/libdcpr.sl

/opt/java1.4/jre/lib/PA_RISC2.0W/libdt_socket.sl

Chapter 1. Introduction 19

/opt/java1.4/jre/lib/PA_RISC2.0W/libfontmanager.sl

/opt/java1.4/jre/lib/PA_RISC2.0W/libioser12.sl

/opt/java1.4/jre/lib/PA_RISC2.0W/libmawt.sl

/opt/java1.4/jre/lib/PA_RISC2.0W/libjsound.sl

/opt/java1.4/jre/lib/PA_RISC2.0W/libjava.sl

/opt/java1.4/jre/lib/PA_RISC2.0W/libjawt.sl

/opt/java1.4/jre/lib/PA_RISC2.0W/libjcov.sl

/opt/java1.4/jre/lib/PA_RISC2.0W/libjcpm.sl

/opt/java1.4/jre/lib/PA_RISC2.0W/libjdwp.sl

/opt/java1.4/jre/lib/PA_RISC2.0W/libjpeg.sl

/opt/java1.4/jre/lib/PA_RISC2.0W/hotspot/libjsig.sl

/opt/java1.4/jre/lib/PA_RISC2.0W/hotspot/libjvm.sl

v Add the /opt/java1.4/jre/lib/PA_RISC2.0W and opt/java1.4/jre/lib/
PA_RISC2.0W/hotspot directories to the /etc/dld.sl.conf file, and to the

SHLIB_PATH environment.

If the DB2 server cannot find the shared Java libraries when it executes a Java

routine, it generates a -4300 error.

 Related concepts:

v “Java sample programs” in Samples Topics

v “Java applet considerations” on page 163

v “The DB2 database application development environment” in Getting Started with

Database Application Development

 Related tasks:

v “Installing the IBM DB2 Driver for JDBC and SQLJ” on page 4

20 Developing Java Applications

Chapter 2. Programming JDBC applications

The topics that follow contain information about writing JDBC applications.

v “Basic steps in writing a JDBC application”

v “Connecting to database servers in JDBC applications” on page 24

v “Java packages for JDBC support” on page 35

v “Learning about a data source using DatabaseMetaData methods” on page 35

v “Variables in JDBC applications” on page 37

v “Executing SQL statements in JDBC applications” on page 38

v “Working with XML data in JDBC applications” on page 68

v “Transaction control in JDBC applications” on page 76

v “Handling errors and warnings in JDBC applications” on page 77

v “IBM DB2 Driver for JDBC and SQLJ client reroute support” on page 86

v “Disconnecting from database servers in JDBC applications” on page 88

Basic steps in writing a JDBC application

 Writing a JDBC application has much in common with writing an SQL application

in any other language: In general, you need to do the following things:

v Access the Java packages that contain JDBC methods.

v Declare variables for sending data to or retrieving data from DB2 tables.

v Connect to a data source.

v Execute SQL statements.

v Handle SQL errors and warnings.

v Disconnect from the data source.

Although the tasks that you need to perform are similar to those in other

languages, the way that you execute those tasks is somewhat different.

Figure 1 on page 22 is a simple program that demonstrates each task. This program

runs on the IBM DB2 Driver for JDBC and SQLJ.

© Copyright IBM Corp. 2006 21

import java.sql.*; �1�

public class EzJava

{

 public static void main(String[] args)

 {

 String urlPrefix = "jdbc:db2:";

 String url;

 String empNo; �2�

 Connection con;

 Statement stmt;

 ResultSet rs;

 System.out.println ("**** Enter class EzJava");

 // Check the that first argument has the correct form for the portion

 // of the URL that follows jdbc:db2:, as described

 // in the Connecting to a data source using the DriverManager

 // interface with the IBM DB2 Driver for JDBC and SQLJ topic.

 // For example, for IBM DB2 Driver for JDBC and SQLJ type 2 connectivity,

 // args[0] might be MVS1DB2M. For

 // type 4 connectivity, args[0] might

 // be //stlmvs1:10110/MVS1DB2M.

 if (args.length==0)

 {

 System.err.println ("Invalid value. First argument appended to "+

 "jdbc:db2: must specify a valid URL.");

 System.exit(1);

 }

 url = urlPrefix + args[0];

 try

 {

 // Load the IBM DB2 Driver for JDBC and SQLJ

 Class.forName("com.ibm.db2.jcc.DB2Driver"); �3a�

 System.out.println("**** Loaded the JDBC driver");

 // Create the connection using the IBM DB2 Driver for JDBC and SQLJ

 con = DriverManager.getConnection (url); �3b�

 // Commit changes manually

 con.setAutoCommit(false);

 System.out.println("**** Created a JDBC connection to the data source");

 // Create the Statement

 stmt = con.createStatement(); �4a�

 System.out.println("**** Created JDBC Statement object");

 // Execute a query and generate a ResultSet instance

 rs = stmt.executeQuery("SELECT EMPNO FROM EMPLOYEE"); �4b�

 System.out.println("**** Created JDBC ResultSet object");

 // Print all of the employee numbers to standard output device

 while (rs.next()) {

 empNo = rs.getString(1);

 System.out.println("Employee number = " + empNo);

 }

 System.out.println("**** Fetched all rows from JDBC ResultSet");

Figure 1. Simple JDBC application (Part 1 of 2)

22 Developing Java Applications

Notes® to Figure 1 on page 22:

 Note Description

�1� This statement imports the java.sql package, which contains the JDBC core API.

For information on other Java packages that you might need to access, see

Access Java packages for JDBC support.

�2� String variable empNo performs the function of a host variable. That is, it is

used to hold data retrieved from an SQL query. See Declare variables in JDBC

applications for more information.

�3a�and

�3b�

These two sets of statements demonstrate how to connect to a data source using

one of two available interfaces. See Connect to a data source using JDBC for

more details.

�4a� and

�4b�

These two sets of statements demonstrate how to perform a SELECT in JDBC.

For information on how to perform other SQL operations, see Execute SQL in a

JDBC application.

�5� This try/catch block demonstrates the use of the SQLException class for SQL

error handling. For more information on handling SQL errors, see Handle an

SQLException under the IBM DB2 Driver for JDBC and SQLJ. For information

on handling SQL warnings, see Handle SQL warnings in a JDBC application.

�6� This statement disconnects the application from the data source. See Close the

connection to the data source.

 Related concepts:

v “Java packages for JDBC support” on page 35

 // Close the ResultSet

 rs.close();

 System.out.println("**** Closed JDBC ResultSet");

 // Close the Statement

 stmt.close();

 System.out.println("**** Closed JDBC Statement");

 // Connection must be on a unit-of-work boundary to allow close

 con.commit();

 System.out.println ("**** Transaction committed");

 // Close the connection

 con.close(); �6�

 System.out.println("**** Disconnected from data source");

 System.out.println("**** JDBC Exit from class EzJava - no errors");

 }

 catch (ClassNotFoundException e)

 {

 System.err.println("Could not load JDBC driver");

 System.out.println("Exception: " + e);

 e.printStackTrace();

 }

 catch(SQLException ex) �5�

 {

 System.err.println("SQLException information");

 while(ex!=null) {

 System.err.println ("Error msg: " + ex.getMessage());

 System.err.println ("SQLSTATE: " + ex.getSQLState());

 System.err.println ("Error code: " + ex.getErrorCode());

 ex.printStackTrace();

 ex = ex.getNextException(); // For drivers that support chained exceptions

 }

 }

 } // End main

} // End EzJava

Figure 1. Simple JDBC application (Part 2 of 2)

Chapter 2. Programming JDBC applications 23

v “How JDBC applications connect to a data source” on page 24

v “Variables in JDBC applications” on page 37

v “JDBC interfaces for executing SQL” on page 38

 Related tasks:

v “Handling an SQLException under the IBM DB2 Driver for JDBC and SQLJ” on

page 77

v “Handling an SQLWarning under the IBM DB2 Driver for JDBC and SQLJ” on

page 81

Connecting to database servers in JDBC applications

The following topics contain information on connection to DB2 Database for Linux,

UNIX, and Windows database servers.

How JDBC applications connect to a data source

 Before you can execute SQL statements in any SQL program, you must connect to

a database server. In JDBC, a database server is known as a data source.

Figure 2 shows how a Java application connects to a data source for a type 2 driver

or IBM DB2 Driver for JDBC and SQLJ type 2 connectivity.

Java application

DriverManager
or

DataSource

Local database
or DB2

subsystem

JDBC driver*

Database
server

*Java byte code executed under JVM,
and native code

Figure 2. Java application flow for a type 2 driver or IBM DB2 Driver for JDBC and SQLJ

type 2 connectivity

24 Developing Java Applications

Figure 3 shows how a Java application connects to a data source for IBM DB2

Driver for JDBC and SQLJ type 4 connectivity.

 Related concepts:

v “How DB2 applications connect to a data source using the DriverManager

interface with the DB2 JDBC Type 2 Driver” on page 25

 Related tasks:

v “Connecting to a data source using the DataSource interface” on page 30

v “Connecting to a data source using the DriverManager interface with the IBM

DB2 Driver for JDBC and SQLJ” on page 27

How DB2 applications connect to a data source using the

DriverManager interface with the DB2 JDBC Type 2 Driver

 A JDBC application can establish a connection to a data source using the JDBC

DriverManager interface, which is part of the java.sql package.

The Java application first loads the JDBC driver by invoking the Class.forName

method. After the application loads the driver, it connects to a database server by

invoking the DriverManager.getConnection method.

For the DB2 JDBC Type 2 Driver for Linux, UNIX and Windows (DB2 JDBC Type 2

Driver), you load the driver by invoking the Class.forName method with the

following argument:

COM.ibm.db2.jdbc.app.DB2Driver

The following code demonstrates loading the DB2 JDBC Type 2 Driver:

Java application

DriverManager
or

DataSource

JDBC driver*

Database
server

*Java byte code executed under JVM

DRDA

Figure 3. Java application flow for IBM DB2 Driver for JDBC and SQLJ type 4 connectivity

Chapter 2. Programming JDBC applications 25

try {

 // Load the DB2 JDBC Type 2 Driver with DriverManager

 Class.forName("COM.ibm.db2.jdbc.app.DB2Driver");

} catch (ClassNotFoundException e) {

 e.printStackTrace();

}

The catch block is used to print an error if the driver is not found.

After you load the driver, you connect to the data source by invoking the

DriverManager.getConnection method. You can use one of the following forms of

getConnection:

getConnection(String url);

getConnection(String url, user, password);

getConnection(String url, java.util.Properties info);

The url argument represents a data source.

For the DB2 JDBC Type 2 Driver, specify a URL of the following form:

Syntax for a URL for the DB2 JDBC Type 2 Driver:

�� jdbc:db2:database ��

The parts of the URL have the following meanings:

jdbc:db2:

jdbc:db2: indicates that the connection is to a DB2 database server.

database

A database alias. The alias refers to the DB2 database catalog entry on the DB2

client.

The info argument is an object of type java.util.Properties that contains a set of

driver properties for the connection. Specifying the info argument is an alternative

to specifying property=value strings in the URL.

Specifying a user ID and password for a connection: There are several ways to specify a

user ID and password for a connection:

v Use the form of the getConnection method that specifies user and password.

v Use the form of the getConnection method that specifies info, after setting the

user and password properties in a java.util.Properties object.

Example: Setting the user ID and password in user and password parameters:

String url = "jdbc:db2:toronto";

 // Set URL for data source

String user = "db2adm";

String password = "db2adm";

Connection con = DriverManager.getConnection(url, user, password);

 // Create connection

Example: Setting the user ID and password in a java.util.Properties object:

Properties properties = new Properties(); // Create Properties object

properties.put("user", "db2adm"); // Set user ID for connection

properties.put("password", "db2adm"); // Set password for connection

String url = "jdbc:db2:toronto";

26 Developing Java Applications

// Set URL for data source

Connection con = DriverManager.getConnection(url, properties);

 // Create connection

 Related concepts:

v “Security under the DB2 JDBC Type 2 Driver” on page 141

Connecting to a data source using the DriverManager

interface with the IBM DB2 Driver for JDBC and SQLJ

 A JDBC application can establish a connection to a data source using the JDBC

DriverManager interface, which is part of the java.sql package.

The Java application first loads the JDBC driver by invoking the Class.forName

method. After the application loads the driver, it connects to a database server by

invoking the DriverManager.getConnection method.

For the IBM DB2 Driver for JDBC and SQLJ, you load the driver by invoking the

Class.forName method with the following argument:

com.ibm.db2.jcc.DB2Driver

For compatibility with previous JDBC drivers, you can use the following argument

instead:

COM.ibm.db2os390.sqlj.jdbc.DB2SQLJDriver

The following code demonstrates loading the IBM DB2 Driver for JDBC and SQLJ:

try {

 // Load the IBM DB2 Driver for JDBC and SQLJ with DriverManager

 Class.forName("com.ibm.db2.jcc.DB2Driver");

} catch (ClassNotFoundException e) {

 e.printStackTrace();

}

The catch block is used to print an error if the driver is not found.

After you load the driver, you connect to the data source by invoking the

DriverManager.getConnection method. You can use one of the following forms of

getConnection:

getConnection(String url);

getConnection(String url, user, password);

getConnection(String url, java.util.Properties info);

For IBM DB2 Driver for JDBC and SQLJ type 4 connectivity, the getConnection

method must specify a user ID and password, through parameters or through

property values.

The url argument represents a data source, and indicates what type of JDBC

connectivity you are using.

For IBM DB2 Driver for JDBC and SQLJ type 4 connectivity, specify a URL of the

following form:

Syntax for a URL for IBM DB2 Driver for JDBC and SQLJ type 4 connectivity:

Chapter 2. Programming JDBC applications 27

�� jdbc:db2: //server

jdbc:db2j:net:

:port
 /database

�

:

property

=

value

;

 ��

For IBM DB2 Driver for JDBC and SQLJ type 2 connectivity, specify a URL of one

of the following forms:

Syntax for a URL for IBM DB2 Driver for JDBC and SQLJ type 2 connectivity:

��

�

 jdbc:db2:database

jdbc:db2os390:database

jdbc:db2os390sqlj:database

jdbc:default:connection

jdbc:db2os390

jdbc:db2os390sqlj

:

property

=

value

;

 ��

The parts of the URL have the following meanings:

jdbc:db2: or jdbc:db2j:net:

The meanings of the initial portion of the URL are:

jdbc:db2:

Indicates that the connection is to a DB2 for z/OS or DB2 Database for

Linux, UNIX, and Windows server.

jdbc:db2j:net:

Indicates that the connection is to a remote IBM Cloudscape server.

server

The domain name or IP address of the database server.

port

The TCP/IP server port number that is assigned to the database server. This is

an integer between 0 and 65535. The default is 446.

database

A name for the database server. This name depends on whether IBM DB2

Driver for JDBC and SQLJ type 4 connectivity or IBM DB2 Driver for JDBC

and SQLJ type 2 connectivity is used.

 For IBM DB2 Driver for JDBC and SQLJ type 4 connectivity:

v If the connection is to a DB2 for z/OS server, database is the DB2 location

name that is defined during installation. All characters in the DB2 location

name must be uppercase characters. The IBM DB2 Driver for JDBC and

SQLJ does not convert lowercase characters in the database value to

uppercase for IBM DB2 Driver for JDBC and SQLJ type 4 connectivity.

You can determine the location name by executing the following SQL

statement on the server:

SELECT CURRENT SERVER FROM SYSIBM.SYSDUMMY1;

v If the connection is to a DB2 for z/OS server, all characters in database must

be uppercase characters.

v If the connection is to a DB2 Database for Linux, UNIX, and Windows

server, database is the database name that is defined during installation.

28 Developing Java Applications

v If the connection is to an IBM Cloudscape server, the database is the

fully-qualified name of the file that contains the database. This name must

be enclosed in double quotation marks ("). For example:

"c:/databases/testdb"

For IBM DB2 Driver for JDBC and SQLJ type 2 connectivity:

v database is the database name that is defined during installation, if the value

of the serverName connection property is null. If the value of serverName

property is not null, database is a database alias.

v If the connection is to a DB2 for z/OS server or a DB2 UDB for iSeries

server, all characters in database must be uppercase characters.

property=value;

A property for the JDBC connection. For the definitions of these properties, see

Properties for the IBM DB2 Driver for JDBC and SQLJ.

The info argument is an object of type java.util.Properties that contains a set of

driver properties for the connection. Specifying the info argument is an alternative

to specifying property=value strings in the URL. See Properties for the IBM DB2

Driver for JDBC and SQLJ for the properties that you can specify.

Specifying a user ID and password for a connection: There are several ways to specify a

user ID and password for a connection:

v Use the form of the getConnection method that specifies url with

property=value; clauses, and include the user and password properties in the

URL.

v Use the form of the getConnection method that specifies user and password.

v Use the form of the getConnection method that specifies info, after setting the

user and password properties in a java.util.Properties object.

Example: Setting the user ID and password in a URL:

String url = "jdbc:db2://sysmvs1.stl.ibm.com:5021/san_jose:" +

 "user=db2adm;password=db2adm;";

 // Set URL for data source

Connection con = DriverManager.getConnection(url);

 // Create connection

Example: Setting the user ID and password in user and password parameters:

String url = "jdbc:db2://sysmvs1.stl.ibm.com:5021/san_jose";

 // Set URL for data source

String user = "db2adm";

String password = "db2adm";

Connection con = DriverManager.getConnection(url, user, password);

 // Create connection

Example: Setting the user ID and password in a java.util.Properties object:

Properties properties = new Properties(); // Create Properties object

properties.put("user", "db2adm"); // Set user ID for connection

properties.put("password", "db2adm"); // Set password for connection

String url = "jdbc:db2://sysmvs1.stl.ibm.com:5021/san_jose";

 // Set URL for data source

Connection con = DriverManager.getConnection(url, properties);

 // Create connection

 Related concepts:

v “Security under the IBM DB2 Driver for JDBC and SQLJ” on page 142

Chapter 2. Programming JDBC applications 29

Related reference:

v “Properties for the IBM DB2 Driver for JDBC and SQLJ” on page 232

Connecting to a data source using the DataSource interface

 Using DriverManager to connect to a data source reduces portability because the

application must identify a specific JDBC driver class name and driver URL. The

driver class name and driver URL are specific to a JDBC vendor, driver

implementation, and data source. If your applications need to be portable among

data sources, you should use the DataSource interface.

When you connect to a data source using the DataSource interface, you use a

DataSource object. The simplest way to use a DataSource object is to create and use

the object in the same application, as you do with the DriverManager interface.

However, this method does not provide portability. Figure 4 shows an example of

creating and using a DataSource object in the same application.

import java.sql.*; // JDBC base

import javax.sql.*; // Methods for producing server-side

 // applications using Java

import com.ibm.db2.jcc.*; // IBM DB2 Driver for JDBC and SQLJ �1�

 // interfaces

DB2SimpleDataSource db2ds=new DB2SimpleDataSource(); �2�

db2ds.setDatabaseName("db2loc1"); �3�

 // Assign the location name

db2ds.setDescription("Our Sample Database");

 // Description for documentation

db2ds.setUser("john");

 // Assign the user ID

db2ds.setPassword("db2");

 // Assign the password

Connection con=db2ds.getConnection(); �4�

 // Create a Connection object

 Note Description

�1� Import the package that contains the implementation of the DataSource interface.

�2� Creates a DB2SimpleDataSource object. DB2SimpleDataSource is one of the DB2

implementations of the DataSource interface. See Create and deploy DataSource

objects for information on DB2’s DataSource implementations.

�3� The setDatabaseName, setDescription, setUser, and setPassword methods assign

attributes to the DB2SimpleDataSource object. See Properties for the IBM DB2

Driver for JDBC and SQLJ for information about the attributes that you can set for

a DB2SimpleDataSource object under the IBM DB2 Driver for JDBC and SQLJ.

�4� Establishes a connection to the data source that DB2SimpleDataSource object db2ds

represents.

The best way to use a DataSource object is for your system administrator to create

and manage it separately, using WebSphere or some other tool. The program that

creates and manages a DataSource object also uses the Java Naming and Directory

Interface (JNDI) to assign a logical name to the DataSource object. The JDBC

application that uses the DataSource object can then refer to the object by its logical

name, and does not need any information about the underlying data source. In

addition, your system administrator can modify the data source attributes, and you

do not need to change your application program.

To learn more about using WebSphere to deploy DataSource objects, go to this

URL on the Web:

Figure 4. Creating and using a DataSource object in the same application

30 Developing Java Applications

http://www.ibm.com/software/webservers/appserv/

To learn about deploying DataSource objects yourself, see Create and deploy

DataSource objects.

You can use the DataSource interface and the DriverManager interface in the same

application, but for maximum portability, it is recommended that you use only the

DataSource interface to obtain connections.

The remainder of this topic explains how to create a connection using a DataSource

object, given that the system administrator has already created the object and

assigned a logical name to it.

To obtain a connection using a DataSource object, you need to follow these steps:

1. From your system administrator, obtain the logical name of the data source to

which you need to connect.

2. Create a Context object to use in the next step. The Context interface is part of

the Java Naming and Directory Interface (JNDI), not JDBC.

3. In your application program, use JNDI to get the DataSource object that is

associated with the logical data source name.

4. Use the DataSource.getConnection method to obtain the connection.

You can use one of the following forms of the getConnection method:

getConnection();

getConnection(String user, String password);

Use the second form if you need to specify a user ID and password for the

connection that are different from the ones that were specified when the

DataSource was deployed.

Figure 5 shows an example of the code that you need in your application program

to obtain a connection using a DataSource object, given that the logical name of the

data source that you need to connect to is jdbc/sampledb. The numbers to the right

of selected statements correspond to the previously-described steps.

import java.sql.*;

import javax.naming.*;

import javax.sql.*;

...

Context ctx=new InitialContext(); �2�

DataSource ds=(DataSource)ctx.lookup("jdbc/sampledb"); �3�

Connection con=ds.getConnection(); �4�

 Related tasks:

v “Creating and deploying DataSource objects” on page 33

 Related reference:

v “Properties for the IBM DB2 Driver for JDBC and SQLJ” on page 232

Figure 5. Obtaining a connection using a DataSource object

Chapter 2. Programming JDBC applications 31

How to determine which type of IBM DB2 Driver for JDBC and

SQLJ connectivity to use

 The IBM DB2 Driver for JDBC and SQLJ supports two types of connectivity: type 2

connectivity and type 4 connectivity. For the DriverManager interface, you specify

the type of connectivity through the URL in the DriverManager.getConnection

method. For the DataSource interface, you specify the type of connectivity through

the driverType property.

The following table summarizes the differences between type 2 connectivity and

type 4 connectivity:

 Table 6. Comparison of IBM DB2 Driver for JDBC and SQLJ type 2 connectivity and IBM DB2 Driver for JDBC and

SQLJ type 4 connectivity

Function

IBM DB2 Driver for JDBC and SQLJ

type 2 connectivity support

IBM DB2 Driver for JDBC and SQLJ

type 4 connectivity support

SYSPLEX workload balancing and

Connection Concentrator

Supported through DB2 Connect Supported directly by the driver for a

connection within a single JVM

Supported through DB2 Connect

across JVMs

Communication protocols TCP/IP TCP/IP

Performance Better for accessing a local DB2 server Better for accessing a remote DB2

server

Installation Requires installation of native

libraries in addition to Java classes

Requires installation of Java classes

only

Stored procedures Can be used to call or execute stored

procedures

Can be used only to call stored

procedures

Distributed transaction processing

(XA)

Supported Supported

J2EE 1.4 compliance Compliant Compliant

The following points can help you determine which type of connectivity to use.

Use IBM DB2 Driver for JDBC and SQLJ type 2 connectivity under these

circumstances:

v Your JDBC or SQLJ application runs locally most of the time.

Local applications have better performance with type 2 connectivity.

v You are running a Java stored procedure.

A stored procedure environment consists of two parts: a client program, from

which you call a stored procedure, and a server program, which is the stored

procedure. You can call a stored procedure in a JDBC or SQLJ program that uses

type 2 or type 4 connectivity, but you must run a Java stored procedure using

type 2 connectivity.

Use IBM DB2 Driver for JDBC and SQLJ type 4 connectivity under these

circumstances:

v Your JDBC or SQLJ application runs remotely most of the time.

Remote applications have better performance with type 4 connectivity.

v You are using IBM DB2 Driver for JDBC and SQLJ connection concentrator and

Sysplex workload balancing support.

32 Developing Java Applications

Related tasks:

v “Connecting to a data source using the DriverManager interface with the IBM

DB2 Driver for JDBC and SQLJ” on page 27

 Related reference:

v “Properties for the IBM DB2 Driver for JDBC and SQLJ” on page 232

JDBC connection objects

 When you connect to a data source by either connection method, you create a

Connection object, which represents the connection to the data source. You use this

Connection object to do the following things:

v Create Statement, PreparedStatement, and CallableStatement objects for

executing SQL statements. These are discussed in Execute SQL in a JDBC

application.

v Gather information about the data source to which you are connected. This

process is discussed in Use DatabaseMetaData to learn about a data source.

v Commit or roll back transactions. You can commit transactions manually or

automatically. These operations are discussed in Commit or roll back a JDBC

transaction.

v Close the connection to the data source. This operation is discussed in Close a

connection to a JDBC data source.

 Related concepts:

v “JDBC interfaces for executing SQL” on page 38

 Related tasks:

v “Disconnecting from database servers in JDBC applications” on page 88

v “Committing or rolling back JDBC transactions” on page 76

v “Learning about a data source using DatabaseMetaData methods” on page 35

Creating and deploying DataSource objects

 JDBC versions starting with version 2.0 provide the DataSource interface for

connecting to a data source. Using the DataSource interface is the preferred way to

connect to a data source. Using the DataSource interface involves two parts:

v Creating and deploying DataSource objects. This is usually done by a system

administrator, using a tool such as WebSphere Application Server.

v Using the DataSource objects to create a connection. This is done in the

application program.

This topic contains information that you need if you create and deploy the

DataSource objects yourself.

The IBM DB2 Driver for JDBC and SQLJ provides the following DataSource

implementations:

v com.ibm.db2.jcc.DB2SimpleDataSource, which does not support connection

pooling. You can use this implementation with IBM DB2 Driver for JDBC and

SQLJ type 2 connectivity or IBM DB2 Driver for JDBC and SQLJ type 4

connectivity.

Chapter 2. Programming JDBC applications 33

v com.ibm.db2.jcc.DB2ConnectionPoolDataSource, which supports connection

pooling. You can use this implementation with IBM DB2 Driver for JDBC and

SQLJ type 2 connectivity or IBM DB2 Driver for JDBC and SQLJ type 4

connectivity.

v com.ibm.db2.jcc.DB2XADataSource, which supports connection pooling and

distributed transactions. The connection pooling is provided by WebSphere

Application Server or another application server. You can use this

implementation only with IBM DB2 Driver for JDBC and SQLJ type 4

connectivity.

The DB2 JDBC Type 2 Driver provides the following DataSource implementations:

v COM.ibm.db2.jdbc.DB2DataSource, which is enabled for connection pooling. With

this implementation, connection pooling is handled internally and is transparent

to the application.

v COM.ibm.db2.jdbc.DB2XADataSource, which does not have built-in support for

distributed transactions and connection pooling. With this implementation, you

must manage the distributed transactions and connection pooling yourself,

either by writing your own code or by using a tool such as WebSphere

Application Server.

When you create and deploy a DataSource object, you need to perform these tasks:

1. Create an instance of the appropriate DataSource implementation.

2. Set the properties of the DataSource object.

3. Register the object with the Java Naming and Directory Interface (JNDI)

naming service.

The example in Figure 6 shows how to perform these tasks.

 Note Description

�1� Creates an instance of the DB2SimpleDataSource class.

�2� This statement and the next three statements set values for properties of this

DB2SimpleDataSource object.

�3� Creates a context for use by JNDI.

�4� Associates DBSimple2DataSource object db2ds with the logical name

jdbc/sampledb. An application that uses this object can refer to it by the name

jdbc/sampledb.

 Related reference:

import java.sql.*; // JDBC base

import javax.naming.*; // JNDI Naming Services

import javax.sql.*; // Methods for producing server-side

 // applications using Java

import com.ibm.db2.jcc.*; // DB2 implementation of JDBC

 // standard extension APIs

DB2SimpleDataSource db2ds = new com.ibm.db2.jcc.DB2SimpleDataSource(); �1�

db2ds.setDatabaseName("db2loc1"); �2�

db2ds.setDescription("Our Sample Database");

db2ds.setUser("john");

db2ds.setPassword("db2"); ...
Context ctx=new InitialContext(); �3�

Ctx.bind("jdbc/sampledb",db2ds); �4�

Figure 6. Example of creating and deploying a DataSource object

34 Developing Java Applications

v “Properties for the IBM DB2 Driver for JDBC and SQLJ” on page 232

Java packages for JDBC support

 Before you can invoke JDBC methods, you need to be able to access all or parts of

various Java packages that contain those methods. You can do that either by

importing the packages or specific classes, or by using the fully-qualified class

names. You might need the following packages or classes for your JDBC program:

java.sql

Contains the core JDBC API.

javax.naming

Contains classes and interfaces for Java Naming and Directory Interface

(JNDI), which is often used for implementing a DataSource.

javax.sql

Contains methods for producing server-side applications using Java

javax.transaction

Contains JDBC support for distributed transactions for the DB2 JDBC Type

2 Driver for Linux, UNIX and Windows (DB2 JDBC Type 2 Driver).

com.ibm.db2.jcc

Contains the DB2-specific implementation of JDBC for the IBM DB2 Driver

for JDBC and SQLJ.

COM.ibm.db2.jdbc

Contains the DB2-specific implementation of the JDBC for the DB2 JDBC

Type 2 Driver.

 Related concepts:

v “Basic steps in writing a JDBC application” on page 21

Learning about a data source using DatabaseMetaData methods

 The DatabaseMetaData interface contains methods that retrieve information about a

data source. These methods are useful when you write generic applications that

can access various data sources. In these types of applications, you need to test

whether a data source can handle various database operations before you execute

them. For example, you need to determine whether the driver at a data source is at

the JDBC 3.0 level before you invoke JDBC 3.0 methods against that driver.

DatabaseMetaData methods provide the following types of information:

v Features that the data source supports, such as the ANSI SQL level

v Specific information about the data source, such as the driver level

v Limits, such as the maximum number of columns that an index can have

v Whether the data source supports data definition statements (CREATE, ALTER,

DROP, GRANT, REVOKE)

v Lists of objects at the data source, such as tables, indexes, or procedures

v Whether the data source supports various JDBC functions, such as batch updates

or scrollable ResultSets

v A list of scalar functions that the driver supports

Chapter 2. Programming JDBC applications 35

If your application connects to a DB2 for z/OS server, a number of stored

procedures need to be installed on that server before you can invoke some

DatabaseMetaData methods that require DB2 catalog information. The stored

procedures are:

v SQLCOLPRIVILEGES

v SQLCOLUMNS

v SQLFOREIGNKEYS

v SQLGETTYPEINFO

v SQLPRIMARYKEYS

v SQLPROCEDURECOLS

v SQLPROCEDURES

v SQLSPECIALCOLUMNS

v SQLSTATISTICS

v SQLTABLEPRIVILEGES

v SQLTABLES

v SQLUDTS

For DB2 UDB for OS/390 and z/OS, Version 7, the stored procedures are shipped

in a PTFs. The PTF is orderable through normal service channels using the

following PTF number:

 Table 7. PTFs for DB2 for z/OS

DB2 for z/OS Version PTF number

Version 7 UQ72083

Ask your DB2 for z/OS system administrator whether these stored procedures are

installed.

To invoke DatabaseMetaData methods, you need to perform these basic steps:

1. Create a DatabaseMetaData object by invoking the getMetaData method on the

connection.

2. Invoke DatabaseMetaData methods to get information about the data source.

3. If the method returns a ResultSet:

a. In a loop, position the cursor using the next method, and retrieve data from

each column of the current row of the ResultSet object using getXXX

methods.

b. Invoke the close method to close the ResultSet object.

For example, the following code demonstrates how to use DatabaseMetaData

methods to determine the driver version, to get a list of the stored procedures that

are available at the data source, and to get a list of datetime functions that the

driver supports. The numbers to the right of selected statements correspond to the

previously-described steps.

36 Developing Java Applications

Related reference:

v “Driver support for JDBC APIs” on page 247

v “JDBC differences between the IBM DB2 Driver for JDBC and SQLJ and other

DB2 JDBC drivers” on page 335

Variables in JDBC applications

 As in any other Java application, when you write JDBC applications, you declare

variables. In Java applications, those variables are known as Java identifiers. Some

of those identifiers have the same function as host variables in other languages:

they hold data that you pass to or retrieve from DB2 tables. Identifier empNo in the

sample program in Basic steps in writing a JDBC application is an example of a

Java String identifier that holds data that you retrieve from a CHAR column of a

DB2 table.

Your choice of Java data types can affect performance because DB2 picks better

access paths when the data types of your Java variables map closely to the DB2

data types. Java, JDBC, and SQL data types shows the recommended mappings of

Java data types and JDBC data types to SQL data types.

 Related concepts:

v “Basic steps in writing a JDBC application” on page 21

 Related reference:

v “Data types that map to SQL data types in JDBC applications” on page 227

Connection con;

DatabaseMetaData dbmtadta;

ResultSet rs;

int mtadtaint;

String procSchema;

String procName;

String dtfnList;

...

dbmtadta = con.getMetaData(); // Create the DatabaseMetaData object �1�

mtadtaint = dmtadta.getDriverVersion(); �2�

 // Check the driver version

System.out.println("Driver version: " + mtadtaint);

rs = dbmtadta.getProcedures(null, null, "%");

 // Get information for all procedures

while (rs.next()) { // Position the cursor �3a�

 procSchema = rs.getString("PROCEDURE_SCHEM");

 // Get procedure schema

 procName = rs.getString("PROCEDURE_NAME");

 // Get procedure name

 System.out.println(procSchema + "." + procName);

 // Print the qualified procedure name

}

dtfnList = dbmtadta.getTimeDateFunctions();

 // Get list of supported datetime functions

System.out.println("Supported datetime functions:");

System.out.println(dtfnList); // Print the list of datetime functions

rs.close(); // Close the ResultSet �3b�

Figure 7. Using DatabaseMetaData methods to get information about a data source

Chapter 2. Programming JDBC applications 37

Executing SQL statements in JDBC applications

The topics that follow contain information about executing SQL statements JDBC

applications.

v “JDBC interfaces for executing SQL”

v “Updating DB2 tables in JDBC applications” on page 39

v “Retrieving data from DB2 tables in JDBC applications” on page 44

v “Calling stored procedures in JDBC applications” on page 52

v “Working with LOBs in JDBC applications” on page 57

v “ROWIDs in JDBC with the IBM DB2 Driver for JDBC and SQLJ” on page 61

v “Distinct types in JDBC applications” on page 61

v “Savepoints in JDBC applications” on page 62

v “Retrieving identity column values in JDBC applications” on page 63

v “Providing extended client information to the DB2 server with the IBM DB2

Driver for JDBC and SQLJ” on page 66

JDBC interfaces for executing SQL

 You execute SQL statements in a traditional SQL program to insert, update, delete,

or merge data in tables, retrieve data from the tables, or call stored procedures. To

perform the same functions in a JDBC program, you invoke methods that are

defined in the following interfaces:

v The Statement interface supports all SQL statement execution. The following

interfaces inherit methods from the Statement interface:

– The PreparedStatement interface supports any SQL statement containing

input parameter markers. Parameter markers represent input variables. The

PreparedStatement interface can also be used for SQL statements with no

parameter markers.

With the IBM DB2 Driver for JDBC and SQLJ, the PreparedStatement

interface can be used to call stored procedures that have input parameters

and no output parameters, and that return no result sets.

– The CallableStatement interface supports the invocation of a stored

procedure.

The CallableStatement interface can be used to call stored procedures with

input parameters, output parameters, or input and output parameters, or no

parameters. With the IBM DB2 Driver for JDBC and SQLJ, you can also use

the Statement interface to call stored procedures, but those stored procedures

must have no parameters.
v The ResultSet interface provides access to the results that a query generates.

The ResultSet interface has the same purpose as the cursor that is used in SQL

applications in other languages.

For a complete list of DB2 support for JDBC interfaces, see Comparison of driver

support for JDBC APIs.

 Related tasks:

v “Retrieving data from DB2 using the PreparedStatement.executeQuery method”

on page 47

v “Updating data in DB2 tables using the PreparedStatement.executeUpdate

method” on page 40

v “Retrieving data from DB2 tables using the Statement.executeQuery method” on

page 46

38 Developing Java Applications

v “Creating and modifying DB2 objects using the Statement.executeUpdate

method” on page 39

 Related reference:

v “Driver support for JDBC APIs” on page 247

Updating DB2 tables in JDBC applications

The topics that follow contain information about creating and modifying DB2

tables in JDBC applications.

v “Creating and modifying DB2 objects using the Statement.executeUpdate

method”

v “Updating data in DB2 tables using the PreparedStatement.executeUpdate

method” on page 40

v “Learning about parameters in a PreparedStatement using ParameterMetaData

methods” on page 41

v “Making batch updates in JDBC applications” on page 42

Creating and modifying DB2 objects using the

Statement.executeUpdate method

 You can use the Statement.executeUpdate method to do the following things:

v Execute data definition statements, such as CREATE, ALTER, DROP, GRANT,

REVOKE

v Execute INSERT, UPDATE, DELETE, and MERGE statements that do not contain

parameter markers

v With the IBM DB2 Driver for JDBC and SQLJ, execute the CALL statement to

call stored procedures that have no parameters and that return no result sets.

To execute these SQL statements, you need to perform these steps:

1. Invoke the Connection.createStatement method to create a Statement object.

2. Invoke the Statement.executeUpdate method to perform the SQL operation.

3. Invoke the Statement.close method to close the Statement object.

For example, suppose that you want to execute this SQL statement:

UPDATE EMPLOYEE SET PHONENO=’4657’ WHERE EMPNO=’000010’

The following code creates Statement object stmt, executes the UPDATE statement,

and returns the number of rows that were updated in numUpd. The numbers to the

right of selected statements correspond to the previously-described steps.

 Related reference:

v “Driver support for JDBC APIs” on page 247

v “JDBC differences between the IBM DB2 Driver for JDBC and SQLJ and other

DB2 JDBC drivers” on page 335

Connection con;

Statement stmt;

int numUpd;

...

stmt = con.createStatement(); // Create a Statement object �1�

numUpd = stmt.executeUpdate(

 "UPDATE EMPLOYEE SET PHONENO=’4657’ WHERE EMPNO=’000010’"); �2�

 // Perform the update

stmt.close(); // Close Statement object �3�

Figure 8. Using Statement.executeUpdate

Chapter 2. Programming JDBC applications 39

Updating data in DB2 tables using the

PreparedStatement.executeUpdate method

 The Statement.executeUpdate method works if you update DB2 tables with

constant values. However, updates often need to involve passing values in

variables to DB2 tables. To do that, you use the PreparedStatement.executeUpdate

method.

With the IBM DB2 Driver for JDBC and SQLJ, you can also use

PreparedStatement.executeUpdate to call stored procedures that have input

parameters and no output parameters, and that return no result sets.

When you execute an SQL statement many times, you can get better performance

by creating the SQL statement as a PreparedStatement.

For example, the following UPDATE statement lets you update the employee table

for only one phone number and one employee number:

UPDATE EMPLOYEE SET PHONENO=’4657’ WHERE EMPNO=’000010’

Suppose that you want to generalize the operation to update the employee table

for any set of phone numbers and employee numbers. You need to replace the

constant phone number and employee number with variables:

UPDATE EMPLOYEE SET PHONENO=? WHERE EMPNO=?

Variables of this form are called parameter markers. To execute an SQL statement

with parameter markers, you need to perform these steps:

1. Invoke the Connection.prepareStatement method to create a PreparedStatement

object.

2. Invoke the PreparedStatement.setXXX methods to pass values to the variables.

3. Invoke the PreparedStatement.executeUpdate method to update the table with

the variable values.

4. Invoke the PreparedStatement.close method to close the PreparedStatement

object when you have finished using that object.

The following code performs the previous steps to update the phone number to

’4657’ for the employee with employee number ’000010’. The numbers to the right

of selected statements correspond to the previously-described steps.

You can also use the PreparedStatement.executeUpdate method for statements that

have no parameter markers. The steps for executing a PreparedStatement object

with no parameter markers are similar to executing a PreparedStatement object

Connection con;

PreparedStatement pstmt;

int numUpd;

...

pstmt = con.prepareStatement(

 "UPDATE EMPLOYEE SET PHONENO=? WHERE EMPNO=?");

 // Create a PreparedStatement object �1�

pstmt.setString(1,"4657"); // Assign first value to first parameter �2�

pstmt.setString(2,"000010"); // Assign first value to second parameter

numUpd = pstmt.executeUpdate(); // Perform first update �3�

pstmt.setString(1,"4658"); // Assign second value to first parameter

pstmt.setString(2,"000020"); // Assign second value to second parameter

numUpd = pstmt.executeUpdate(); // Perform second update

pstmt.close(); // Close the PreparedStatement object �4�

Figure 9. Using PreparedStatement.executeUpdate for an SQL statement with parameter

markers

40 Developing Java Applications

with parameter markers, except you skip step 2. The following example

demonstrates these steps.

 Related reference:

v “Driver support for JDBC APIs” on page 247

v “JDBC differences between the IBM DB2 Driver for JDBC and SQLJ and other

DB2 JDBC drivers” on page 335

Learning about parameters in a PreparedStatement using

ParameterMetaData methods

 The IBM DB2 Driver for JDBC and SQLJ includes support for the

ParameterMetaData interface. The ParameterMetaData interface contains methods

that retrieve information about the parameter markers in a PreparedStatement

object.

ParameterMetaData methods provide the following types of information:

v The data types of parameters, including the precision and scale of decimal

parameters.

v The parameters’ database-specific type names. For parameters that correspond to

table columns that are defined with distinct types, these names are the distinct

type names.

v Whether parameters are nullable.

v Whether parameters are input or output parameters.

v Whether the values of a numeric parameter can be signed.

v The fully-qualified Java class name that PreparedStatement.setObject uses

when it sets a parameter value.

To invoke ParameterMetaData methods, you need to perform these basic steps:

1. Invoke the Connection.prepareStatement method to create a PreparedStatement

object.

2. Invoke the PreparedStatement.getParameterMetaData method to retrieve a

ParameterMetaData object.

3. Invoke ParameterMetaData.getParameterCount to determine the number of

parameters in the PreparedStatement.

4. Invoke ParameterMetaData methods on individual parameters.

For example, the following code demonstrates how to use ParameterMetaData

methods to determine the number and data types of parameters in an SQL

UPDATE statement. The numbers to the right of selected statements correspond to

the previously-described steps.

Connection con;

PreparedStatement pstmt;

int numUpd;

...

pstmt = con.prepareStatement(

 "UPDATE EMPLOYEE SET PHONENO=’4657’ WHERE EMPNO=’000010’");

 // Create a PreparedStatement object �1�

numUpd = pstmt.executeUpdate(); // Perform the update �3�

pstmt.close(); // Close the PreparedStatement object �4�

Figure 10. Using PreparedStatement.executeUpdate for an SQL statement without parameter

markers

Chapter 2. Programming JDBC applications 41

Related reference:

v “Driver support for JDBC APIs” on page 247

Making batch updates in JDBC applications

 With batch updates, instead of updating rows of a DB2 table one at a time, you

can direct JDBC to execute a group of updates at the same time. Statements that

can be included in the same batch of updates are known as batchable statements.

If a statement has input parameters or host expressions, you can include that

statement only in a batch that has other instances of the same statement. This type

of batch is known as a homogeneous batch. If a statement has no input parameters,

you can include that statement in a batch only if the other statements in the batch

have no input parameters or host expressions. This type of batch is known as a

heterogeneous batch. Two statements that can be included in the same batch are

known as batch compatible.

Use the following Statement methods for creating, executing, and removing a

batch of SQL updates:

v addBatch

v executeBatch

v clearBatch

Use the following PreparedStatement and CallableStatement method for creating a

batch of parameters so that a single statement can be executed multiple times in a

batch, with a different set of parameters for each execution.

v addBatch

To make batch updates using several statements with no input parameters, follow

these basic steps:

1. Invoke the createStatement method to create a Statement object.

2. For each SQL statement that you want to execute in the batch, invoke the

addBatch method.

3. Invoke the executeBatch method to execute the batch of statements.

4. Check for errors. If no errors occurred:

Connection con;

ParameterMetaData pmtadta;

int mtadtacnt;

String sqlType;

...

pstmt = con.prepareStatement(

 "UPDATE EMPLOYEE SET PHONENO=? WHERE EMPNO=?");

 // Create a PreparedStatement object �1�

pmtadta = pstmt.getParameterMetaData(); �2�

 // Create a ParameterMetaData object

mtadtacnt = pmtadta.getParameterCount(); �3�

 // Determine the number of parameters

System.out.println("Number of statement parameters: " + mtadtacnt);

for (int i = 1; i <= mtadtacnt; i++) {

 sqlType = pmtadta.getParameterTypeName(i); �4�

 // Get SQL type for each parameter

 System.out.println("SQL type of parameter " + i " is " + sqlType);

}

...

pstmt.close(); // Close the PreparedStatement

Figure 11. Using ParameterMetaData methods to get information about a PreparedStatement

42 Developing Java Applications

a. Get the number of rows that were affect by each SQL statement from the

array that the executeBatch invocation returns. This number does not

include rows that were affected by triggers or by referential integrity

enforcement.

b. If AutoCommit is disabled for the Connection object, invoke the commit

method to commit the changes.

If AutoCommit is enabled for the Connection object, the IBM DB2 Driver for

JDBC and SQLJ adds a commit method at the end of the batch.

To make batch updates using a single statement with several sets of input

parameters, follow these basic steps:

1. Invoke the prepareStatement method to create a PreparedStatement object for

the SQL statement with input parameters.

2. For each set of input parameter values:

a. Execute setXXX methods to assign values to the input parameters.

b. Invoke the addBatch method to add the set of input parameters to the batch.
3. Invoke the executeBatch method to execute the statements with all sets of

parameters.

4. Check for errors. If no errors occurred:

a. Get the number of rows that were updated by each execution of the SQL

statement from the array that the executeBatch invocation returns.

b. If AutoCommit is disabled for the Connection object, invoke the commit

method to commit the changes.

If AutoCommit is enabled for the Connection object, the IBM DB2 Driver for

JDBC and SQLJ adds a commit method at the end of the batch.

Example of a batch update: In the following code fragment, two sets of parameters

are batched. An UPDATE statement that takes two input parameters is then

executed twice, once with each set of parameters. The numbers to the right of

selected statements correspond to the previously-described steps.

try {

...

 PreparedStatement prepStmt = con.prepareStatement(

 "UPDATE DEPT SET MGRNO=? WHERE DEPTNO=?"); �1�

 prepStmt.setString(1,mgrnum1); �2a�

 prepStmt.setString(2,deptnum1);

 prepStmt.addBatch(); �2b�

 prepStmt.setString(1,mgrnum2);

 prepStmt.setString(2,deptnum2);

 prepStmt.addBatch();

 int [] numUpdates=prepStmt.executeBatch(); �3�

 for (int i=0; i < numUpdates.length; i++) { �4a�

 if (numUpdates[i] == SUCCESS_NO_INFO)

 System.out.println("Execution " + i +

 ": unknown number of rows updated");

 else

 System.out.println("Execution " + i +

 "successful: " numUpdates[i] + " rows updated");

 }

 con.commit(); �4b�

} catch(BatchUpdateException b) {

 // process BatchUpdateException

}

Figure 12. Performing a batch update

Chapter 2. Programming JDBC applications 43

Related tasks:

v “Committing or rolling back JDBC transactions” on page 76

 Related reference:

v “JDBC differences between the IBM DB2 Driver for JDBC and SQLJ and other

DB2 JDBC drivers” on page 335

Retrieving data from DB2 tables in JDBC applications

The topics that follow contain information about retrieving data from DB2 tables in

JDBC applications.

v “Characteristics of a JDBC ResultSet under the IBM DB2 Driver for JDBC and

SQLJ”

v “Learning about a ResultSet using ResultSetMetaData methods” on page 45

v “Retrieving data from DB2 tables using the Statement.executeQuery method” on

page 46

v “Retrieving data from DB2 using the PreparedStatement.executeQuery method”

on page 47

v “Making batch queries in JDBC applications” on page 48

v “Specifying updatability, scrollability, and holdability for ResultSets in JDBC

applications” on page 49

Characteristics of a JDBC ResultSet under the IBM DB2 Driver

for JDBC and SQLJ

 In addition to moving forward, one row at a time, through a ResultSet, you might

want to do the following things:

v Move backward or go directly to a specific row

v Update or delete rows of a ResultSet

v Leave the ResultSet open after a COMMIT

The following terms describe characteristics of a ResultSet:

scrollability

Whether the cursor can move forward, backward, or to a specific row.

updatability

Whether the cursor can be used to update or delete rows. This characteristic

does not apply to a ResultSet that is returned from a stored procedure,

because a stored procedure ResultSet cannot be updated.

holdability

Whether the cursor stays open after a COMMIT.

A scrollable ResultSet in JDBC is equivalent to the result table of a DB2 cursor

that is declared as SCROLL. A scrollable cursor can be insensitive, sensitive, or

asensitive. Insensitive means that changes to the underlying table after the cursor is

opened are not visible to the cursor. Asensitive means that a cursor can behave as

a sensitive or insensitive cursor, depending on whether it is used as a read-only

cursor. Insensitive cursors are read-only. Sensitive means the following things:

v Changes that the cursor makes to the underlying table are always visible to the

cursor.

v Changes that are made by other means to the underlying table can be visible to

the cursor. In DB2, if the rows are fetched with FETCH INSENSITIVE, changes

that are made by other means are not visible to the cursor. If the rows are

fetched with FETCH SENSITIVE, changes that are made by other means are

44 Developing Java Applications

visible to the cursor. In JDBC, calling the refreshRow method before calling

getXXX methods has the same effect as FETCH SENSITIVE.

A JDBC ResultSet can also be static or dynamic, if the database server supports

both attributes. You determine whether scrollable cursors in a program are static or

dynamic by setting the cursorSensitivity property. See Properties for the IBM DB2

Driver for JDBC and SQLJ for more information about the cursorSensitivity

property.

If a JDBC ResultSet is static, the size of the result table and the order of the rows

in the result table do not change after the cursor is opened. This means that if you

insert into the underlying table, the result table for a static ResultSet does not

change. If you delete a row of a result table, a delete hole occurs. You can test

whether the current row is a delete hole by using the rowDeleted method. See

Comparison of driver support for JDBC APIs for a complete list of the methods

that are supported for ResultSets.

 Related tasks:

v “Specifying updatability, scrollability, and holdability for ResultSets in JDBC

applications” on page 49

Learning about a ResultSet using ResultSetMetaData methods

 Previous discussions of retrieving data from a table or stored procedure result set

assumed that you know the number of columns and data types of the columns in

the table or result set. This is not always the case, especially when you are

retrieving data from a remote data source. When you write programs that retrieve

unknown ResultSets, you need to use ResultSetMetaData methods to determine

the characteristics of the ResultSets before you can retrieve data from them.

ResultSetMetaData methods provide the following types of information:

v The number of columns in a ResultSet

v The qualifier for the underlying table of the ResultSet

v Information about a column, such as the data type, length, precision, scale, and

nullability

v Whether a column is read-only

After you invoke the executeQuery method to generate a ResultSet for a query on

a table, follow these basic steps to determine the contents of the ResultSet:

1. Invoke the getMetaData method on the ResultSet object to create a

ResultSetMetaData object.

2. Invoke the getColumnCount method to determine how many columns are in the

ResultSet.

3. For each column in the ResultSet, execute ResultSetMetaData methods to

determine column characteristics.

The results of ResultSetMetaData.getColumnName for the same table definition

might differ, depending on the data source. However, the returned information

correctly reflects the column name information that is stored in the DB2 catalog

for that data source.

For example, the following code demonstrates how to determine the data types of

all the columns in the employee table. The numbers to the right of selected

statements correspond to the previously-described steps.

Chapter 2. Programming JDBC applications 45

Related tasks:

v “Calling stored procedures using CallableStatement methods” on page 53

v “Retrieving data from DB2 tables using the Statement.executeQuery method” on

page 46

Retrieving data from DB2 tables using the

Statement.executeQuery method

 To retrieve data from a table using a SELECT statement with no parameter

markers, you can use the Statement.executeQuery method. This method returns a

result table in a ResultSet object. After you obtain the result table, you need to use

ResultSet methods to move through the result table and obtain the individual

column values from each row.

With the IBM DB2 Driver for JDBC and SQLJ, you can also use the

Statement.executeQuery method to retrieve a result set from a stored procedure

call, if that stored procedure returns only one result set. If the stored procedure

returns multiple result sets, you need to use the Statement.execute method. See

Retrieve multiple result sets from a stored procedure in a JDBC application for

more information.

This topic discusses the simplest kind of ResultSet, which is a read-only ResultSet

in which you can only move forward, one row at a time. The IBM DB2 Driver for

JDBC and SQLJ also supports updatable and scrollable ResultSets. These are

discussed in Specify updatability, scrollability, and holdability for ResultSets in

JDBC applications.

To retrieve rows from a table using a SELECT statement with no parameter

markers, you need to perform these steps:

1. Invoke the Connection.createStatement method to create a Statement object.

2. Invoke the Statement.executeQuery method to obtain the result table from the

SELECT statement in a ResultSet object.

String s;

Connection con;

Statement stmt;

ResultSet rs;

ResultSetMetaData rsmtadta;

int colCount

int mtadtaint;

int i;

String colName;

String colType;

...

stmt = con.createStatement(); // Create a Statement object

rs = stmt.executeQuery("SELECT * FROM EMPLOYEE");

 // Get the ResultSet from the query

rsmtadta = rs.getMetaData(); // Create a ResultSetMetaData object �1�

colCount = rsmtadta.getColumnCount(); �2�

 // Find number of columns in EMP

for (i=1; i<= colCount; i++) { �3�

 colName = rsmtadta.getColumnName(); // Get column name

 colType = rsmtadta.getColumnTypeName();

 // Get column data type

 System.out.println("Column = " + colName +

 " is data type " + colType);

 // Print the column value

}

Figure 13. Using ResultSetMetaData methods to get information about a ResultSet

46 Developing Java Applications

3. In a loop, position the cursor using the next method, and retrieve data from

each column of the current row of the ResultSet object using getXXX methods.

XXX represents a data type. See Comparison of driver support for JDBC APIs for

a list of supported getXXX and setXXX methods.

4. Invoke the ResultSet.close method to close the ResultSet object.

5. Invoke the Statement.close method to close the Statement object when you

have finished using that object.

For example, the following code demonstrates how to retrieve all rows from the

employee table. The numbers to the right of selected statements correspond to the

previously-described steps.

 Related tasks:

v “Retrieving multiple result sets from a stored procedure in a JDBC application”

on page 54

v “Specifying updatability, scrollability, and holdability for ResultSets in JDBC

applications” on page 49

 Related reference:

v “Driver support for JDBC APIs” on page 247

Retrieving data from DB2 using the

PreparedStatement.executeQuery method

 To retrieve data from a table using a SELECT statement with parameter markers,

you use the PreparedStatement.executeQuery method. This method returns a result

table in a ResultSet object. After you obtain the result table, you need to use

ResultSet methods to move through the result table and obtain the individual

column values from each row.

With the IBM DB2 Driver for JDBC and SQLJ, you can also use the

PreparedStatement.executeQuery method to retrieve a result set from a stored

procedure call, if that stored procedure returns only one result set and has only

input parameters. If the stored procedure returns multiple result sets, you need to

use the Statement.execute method. See Retrieve multiple result sets from a stored

procedure in a JDBC application for more information.

To retrieve rows from a table using a SELECT statement with parameter markers,

you need to perform these steps:

String empNo;

Connection con;

Statement stmt;

ResultSet rs;

...

stmt = con.createStatement(); // Create a Statement object �1�

rs = stmt.executeQuery("SELECT EMPNO FROM EMPLOYEE"); �2�

 // Get the result table from the query

while (rs.next()) { // Position the cursor �3�

 empNo = rs.getString(1); // Retrieve only the first column value

 System.out.println("Employee number = " + empNo);

 // Print the column value

}

rs.close(); // Close the ResultSet �4�

stmt.close(); // Close the Statement �5�

Figure 14. Using Statement.executeQuery

Chapter 2. Programming JDBC applications 47

1. Invoke the Connection.prepareStatement method to create a PreparedStatement

object.

2. Invoke PreparedStatement.setXXX methods to pass values to the input

parameters.

3. Invoke the PreparedStatement.executeQuery method to obtain the result table

from the SELECT statement in a ResultSet object.

4. In a loop, position the cursor using the ResultSet.next method, and retrieve

data from each column of the current row of the ResultSet object using getXXX

methods.

5. Invoke the ResultSet.close method to close the ResultSet object.

6. Invoke the PreparedStatement.close method to close the PreparedStatement

object when you have finished using that object.

For example, the following code demonstrates how to retrieve rows from the

employee table for a specific employee. The numbers to the right of selected

statements correspond to the previously-described steps.

You can also use the PreparedStatement.executeQuery method for statements that

have no parameter markers. When you execute a query many times, you can get

better performance by creating the SQL statement as a PreparedStatement.

 Related tasks:

v “Retrieving multiple result sets from a stored procedure in a JDBC application”

on page 54

 Related reference:

v “Driver support for JDBC APIs” on page 247

Making batch queries in JDBC applications

 The IBM DB2 Driver for JDBC and SQLJ provides a DB2-only interface that lets

you perform batch queries on a homogeneous batch.

With the DB2PreparedStatement interface, you can execute a single SQL statement

with multiple sets of input parameters.

String empnum, phonenum;

Connection con;

PreparedStatement pstmt;

ResultSet rs;

...

pstmt = con.prepareStatement(

 "SELECT EMPNO, PHONENO FROM EMPLOYEE WHERE EMPNO=?");

 // Create a PreparedStatement object �1�

pstmt.setString(1,"000010"); // Assign value to input parameter �2�

rs = pstmt.executeQuery(); // Get the result table from the query �3�

while (rs.next()) { // Position the cursor �4�

 empnum = rs.getString(1); // Retrieve the first column value

 phonenum = rs.getString(2); // Retrieve the first column value

 System.out.println("Employee number = " + empnum +

 "Phone number = " + phonenum);

 // Print the column values

}

rs.close(); // Close the ResultSet �5�

pstmt.close(); // Close the PreparedStatement �6�

Figure 15. Using PreparedStatement.executeQuery

48 Developing Java Applications

Use the following PreparedStatement method for creating a batch of parameters so

that a single statement can be executed multiple times in a batch, with a different

set of parameters for each execution.

v addBatch

Use the following DB2PreparedStatement method for executing the batch query.

v executeDB2QueryBatch

To make batch queries using a single statement with several sets of input

parameters, follow these basic steps:

1. Invoke the prepareStatement method to create a PreparedStatement object for

the SQL statement with input parameters.

2. For each set of input parameter values:

a. Execute PreparedStatement.setXXX methods to assign values to the input

parameters.

b. Invoke the PreparedStatement.addBatch method to add the set of input

parameters to the batch.
3. Cast the PreparedStatement object to a DB2PreparedStatement object.

4. Invoke the DB2PreparedStatement.executeBatch method to execute the

statement with all sets of parameters.

5. Check for errors.

Example of a batch query: In the following code fragment, two sets of parameters

are batched. A SELECT statement that takes one input parameter is then executed

twice, once with each parameter value. The numbers to the right of selected

statements correspond to the previously described steps.

 Related tasks:

v “Making batch updates in JDBC applications” on page 42

Specifying updatability, scrollability, and holdability for

ResultSets in JDBC applications

 To specify scrollability, updatability, and holdability for a ResultSet, you need to

follow these steps:

1. If the SELECT statement that defines the ResultSet has no input parameters,

invoke the createStatement method to create a Statement object. Otherwise,

invoke the prepareStatement method to create a PreparedStatement object.

try {

...

 PreparedStatement prepStmt = con.prepareStatement(

 "SELECT EMPNO FROM EMPLOYEE WHERE EMPNO=?"); �1�

 prepStmt.setString(1,empnum1); �2a�

 prepStmt.addBatch(); �2b�

 prepStmt.setString(1,empnum2);

 prepStmt.addBatch();

 ((com.ibm.db2.jcc.DB2PreparedStatement)prepStmt).executeDB2QueryBatch();

 �3,4�

} catch(BatchUpdateException b) { �5�

 // process BatchUpdateException

}

Figure 16. Performing a batch query

Chapter 2. Programming JDBC applications 49

You need to specify forms of the createStatement or prepareStatement

methods that include the resultSetType, resultSetConcurrency, or

resultSetHoldability parameters.

The form of the createStatement method that supports scrollability and

updatability is:

createStatement(int resultSetType, int resultSetConcurrency);

The form of the createStatement method that supports scrollability,

updatability, and holdability is:

createStatement(int resultSetType, int resultSetConcurrency,

 int resultSetHoldability);

The form of the prepareStatement method that supports scrollability and

updatability is:

prepareStatement(String sql, int resultSetType,

 int resultSetConcurrency);

The form of the prepareStatement method that supports scrollability,

updatability, and holdability is:

prepareStatement(String sql, int resultSetType,

 int resultSetConcurrency, int resultSetHoldability);

See Table 8 for a list of valid values for resultSetType and resultSetConcurrency.

 Table 8. Valid combinations of resultSetType and resultSetConcurrency for scrollable

ResultSets

resultSetType value resultSetConcurrency value

TYPE_FORWARD_ONLY CONCUR_READ_ONLY

TYPE_FORWARD_ONLY CONCUR_UPDATABLE

TYPE_SCROLL_INSENSITIVE CONCUR_READ_ONLY

TYPE_SCROLL_SENSITIVE CONCUR_READ_ONLY

TYPE_SCROLL_SENSITIVE CONCUR_UPDATABLE

resultSetHoldability has two possible values: HOLD_CURSORS_OVER_COMMIT and

CLOSE_CURSORS_AT_COMMIT. Either of these values can be specified with any

valid combination of resultSetConcurrency and resultSetHoldability. The value that

you set overrides the default holdability for the connection.

Restriction: If the ResultSet is scrollable, and the ResultSet is used to select

columns from a table on a DB2 Database for Linux, UNIX, and Windows

server, the SELECT statement that defines the ResultSet cannot select columns

with the following data types:

v LONG VARCHAR

v LONG VARGRAPHIC

v DATALINK

v BLOB

v CLOB

v A distinct type that is based on any of the previous data types in this list

v A structured type
2. If the SELECT statement has input parameters, invoke setXXX methods to pass

values to the input parameters.

3. Invoke the executeQuery method to obtain the result table from the SELECT

statement in a ResultSet object.

4. For each row that you want to access:

50 Developing Java Applications

a. Position the cursor using one of the methods that are listed in Table 9.

 Table 9. ResultSet methods for positioning a scrollable cursor

Method Positions the cursor

first() On the first row of the ResultSet

last() On the last row of the ResultSet

next()1 On the next row of the ResultSet

previous()2 On the previous row of the ResultSet

absolute(int n)3 If n>0, on row n of the ResultSet. If n<0, and m is the

number of rows in the ResultSet, on row m+n+1 of

the ResultSet.

relative(int n)4,5 If n>0, on the row that is n rows after the current row.

If n<0, on the row that is n rows before the current

row. If n=0, on the current row.

afterLast() After the last row in the ResultSet

beforeFirst() Before the first row in the ResultSet

Notes:

1. If the cursor is before the first row of the ResultSet, this method positions the cursor on

the first row.

2. If the cursor is after the last row of the ResultSet, this method positions the cursor on

the last row.

3. If the absolute value of n is greater than the number of rows in the result set, this

method positions the cursor after the last row if n is positive, or before the first row if n

is negative.

4. The cursor must be on a valid row of the ResultSet before you can use this method. If

the cursor is before the first row or after the last row, the method throws an

SQLException.

5. Suppose that m is the number of rows in the ResultSet and x is the current row number

in the ResultSet. If n>0 and x+n>m, the driver positions the cursor after the last row. If

n<0 and x+n<1, the driver positions the cursor before the first row.

b. If you need to know the current cursor position, use the getRow, isFirst,

isLast, isBeforeFirst, or isAfterLast method to obtain this information.

c. If you specified a resultSetType value of TYPE_SCROLL_SENSITIVE in step 1 on

page 49, and you need to see the latest values of the current row, invoke the

refreshRow method.

Recommendation: Because refreshing the rows of a ResultSet can have a

detrimental effect on the performance of your applications, you should

invoke refreshRow only when you need to see the latest data.

d. Perform one or more of the following operations:

v To retrieve data from each column of the current row of the ResultSet

object, use getXXX methods.

v To update the current row from the underlying table, use updateXXX

methods to assign column values to the current row of the ResultSet.

Then use updateRow to update the corresponding row of the underlying

table. If you decide that you do not want to update the underlying table,

invoke the cancelRowUpdates method instead of the updateRow method.

The resultSetConcurrency value for the ResultSet must be

CONCUR_UPDATABLE for you to use these methods.

Chapter 2. Programming JDBC applications 51

v To delete the current row from the underlying table, use the deleteRow

method. Invoking deleteRow causes the driver to replace the current row

of the ResultSet with a hole.

The resultSetConcurrency value for the ResultSet must be

CONCUR_UPDATABLE for you to use this method.
5. Invoke the close method to close the ResultSet object.

6. Invoke the close method to close the Statement or PreparedStatement object.

For example, the following code demonstrates how to retrieve all rows from the

employee table in reverse order, and update the phone number for employee

number ″000010″. The numbers to the right of selected statements correspond to

the previously-described steps.

Important: The method of performing positioned UPDATE operations that is

described previously in this topic follows the JDBC 2.0 standard. The IBM DB2

Driver for JDBC and SQLJ supports an alternative method that follows the JDBC

1.0 standard. That method is not recommended. The JDBC 1.0 method involves

using the ResultSet.getCursorName method to obtain the name of the cursor for

the ResultSet, and defining a positioned UPDATE statement of the following form:

UPDATE table SET col1=value1,...coln=valueN WHERE CURRENT OF cursorname

If you use the JDBC 1.0 method to update data on a database server that supports

multiple-row FETCH, the positioned UPDATE statement might update multiple

rows, when you expect it to update a single row. To avoid unexpected updates,

you should modify your applications to use the JDBC 2.0 method.

Calling stored procedures in JDBC applications

The topics that follow contain information about calling stored procedures in JDBC

applications.

v “Calling stored procedures using CallableStatement methods” on page 53

String s;

Connection con;

Statement stmt;

ResultSet rs;

...

stmt = con.createStatement(ResultSet.TYPE_SCROLL_SENSITIVE,

 ResultSet.CONCUR_UPDATABLE); �1�

 // Create a Statement object

 // for a scrollable, updatable

 // ResultSet

rs = stmt.executeQuery("SELECT EMPNO FROM EMPLOYEE FOR UPDATE OF PHONENO");

 // Create the ResultSet �3�

rs.afterLast(); // Position the cursor at the end of

 // the ResultSet �4a�

while (rs.previous()) { // Position the cursor backward

 s = rs.getString("EMPNO"); // Retrieve the employee number �4d�

 // (column 1 in the result

 // table)

 System.out.println("Employee number = " + s);

 // Print the column value

 if (s.compareTo("000010") == 0) { // Look for employee 000010

 rs.updateString("PHONENO","4657"); // Update their phone number

 rs.updateRow(); // Update the row

 }

}

rs.close(); // Close the ResultSet �5�

stmt.close(); // Close the Statement �6�

Figure 17. Using a scrollable cursor

52 Developing Java Applications

v “Retrieving multiple result sets from a stored procedure in a JDBC application”

on page 54

Calling stored procedures using CallableStatement methods

 To call stored procedures, you invoke methods in the CallableStatement class. The

basic steps are:

1. Invoke the Connection.prepareCall method with the CALL statement as its

argument to create a CallableStatement object.

The CALL statement cannot contain literal arguments unless the DB2 server on

which the statement runs supports dynamic execution of the CALL statement.

2. Invoke the CallableStatement.setXXX methods to pass values to the input (IN)

parameters.

If the database server does not support dynamic execution of the CALL

statement, you must specify the data types for CALL statement input

parameters exactly as they are specified in the stored procedure definition.

3. Invoke the CallableStatement.registerOutParameter method to indicate which

parameters are output-only (OUT) parameters, or input and output (INOUT)

parameters.

If the database server does not support dynamic execution of the CALL

statement, you must specify the data types for CALL statement output-only or

input and output parameters exactly as they are specified in the stored

procedure definition.

4. Invoke one of the following methods to call the stored procedure:

CallableStatement.executeUpdate

Invoke this method if the stored procedure does not return result sets.

CallableStatement.executeQuery

Invoke this method if the stored procedure returns one result set.

CallableStatement.execute

Invoke this method if the stored procedure returns multiple result sets, or

an unknown number of result sets.
5. If the stored procedure returns result sets, retrieve the result sets. See Retrieve

multiple result sets from a stored procedure in a JDBC application.

6. Invoke the CallableStatement.getXXX methods to retrieve values from the OUT

parameters or INOUT parameters.

7. Invoke the CallableStatement.close method to close the CallableStatement

object when you have finished using that object.

The following code illustrates calling a stored procedure that has one input

parameter, four output parameters, and no returned ResultSets. The numbers to

the right of selected statements correspond to the previously-described steps.

Chapter 2. Programming JDBC applications 53

Related tasks:

v “Retrieving multiple result sets from a stored procedure in a JDBC application”

on page 54

 Related reference:

v “Driver support for JDBC APIs” on page 247

v “JDBC differences between the IBM DB2 Driver for JDBC and SQLJ and other

DB2 JDBC drivers” on page 335

Retrieving multiple result sets from a stored procedure in a

JDBC application

 If you call a stored procedure that returns result sets, you need to include code to

retrieve the result sets. The steps that you take depend on whether you know how

many result sets are returned, and whether you know the contents of those result

sets.

 Retrieving a known number of result sets:

 To retrieve result sets when you know the number of result sets and their contents,

follow these steps:

1. Invoke the Statement.execute method, the PreparedStatement.execute method,

or the CallableStatement.execute method to call the stored procedure. Use

PreparedStatement.execute if the stored procedure has input parameters.

2. Invoke the getResultSet method to obtain the first result set, which is in a

ResultSet object.

3. In a loop, position the cursor using the next method, and retrieve data from

each column of the current row of the ResultSet object using getXXX methods.

4. If there are n result sets, repeat the following steps n-1 times:

a. Invoke the getMoreResults method to close the current result set and point

to the next result set.

b. Invoke the getResultSet method to obtain the next result set, which is in a

ResultSet object.

int ifcaret;

int ifcareas;

int xsbytes;

String errbuff;

Connection con;

CallableStatement cstmt;

ResultSet rs;

...

cstmt = con.prepareCall("CALL DSN8.DSN8ED2(?,?,?,?,?)"); �1�

 // Create a CallableStatement object

cstmt.setString (1, "DISPLAY THREAD(*)"); �2�

 // Set input parameter (DB2 command)

cstmt.registerOutParameter (2, Types.INTEGER); �3�

 // Register output parameters

cstmt.registerOutParameter (3, Types.INTEGER);

cstmt.registerOutParameter (4, Types.INTEGER);

cstmt.registerOutParameter (5, Types.VARCHAR);

cstmt.executeUpdate(); // Call the stored procedure �4�

ifcaret = cstmt.getInt(2); // Get the output parameter values �6�

ifcareas = cstmt.getInt(3);

xsbytes = cstmt.getInt(4);

errbuff = cstmt.getString(5);

cstmt.close(); �7�

Figure 18. Using CallableStatement methods for a stored procedure call with parameter

markers

54 Developing Java Applications

c. In a loop, position the cursor using the next method, and retrieve data from

each column of the current row of the ResultSet object using getXXX

methods.

The following code illustrates retrieving two result sets. The first result set contains

an INTEGER column, and the second result set contains a CHAR column. The

numbers to the right of selected statements correspond to the previously-described

steps.

 Retrieving an unknown number of result sets:

 To retrieve result sets when you do not know the number of result sets or their

contents, you need to retrieve ResultSets, until no more ResultSets are returned.

For each ResultSet, use ResultSetMetaData methods to determine its contents. See

Use ResultSetMetaData to learn about a ResultSet for more information on

determining the contents of a ResultSet.

After you call a stored procedure, follow these basic steps to retrieve the contents

of an unknown number of result sets.

1. Check the value that was returned from the execute statement that called the

stored procedure. If the returned value is true, there is at least one result set, so

you need to go to the next step.

2. Repeat the following steps in a loop:

a. Invoke the getResultSet method to obtain a result set, which is in a

ResultSet object. Invoking this method closes the previous result set.

b. Process the ResultSet, as shown in Use ResultSetMetaData to learn about a

ResultSet.

c. Invoke the getMoreResults method to determine whether there is another

result set. If getMoreResults returns true, go to step 2a to get the next result

set.

CallableStatement cstmt;

ResultSet rs;

int i;

String s;

...

cstmt.execute(); // Call the stored procedure �1�

rs = cstmt.getResultSet(); // Get the first result set �2�

while (rs.next()) { // Position the cursor �3�

 i = rs.getInt(1); // Retrieve current result set value

 System.out.println("Value from first result set = " + i);

 // Print the value

}

cstmt.getMoreResults(); // Point to the second result set �4a�

 // and close the first result set

rs = cstmt.getResultSet(); // Get the second result set �4b�

while (rs.next()) { // Position the cursor �4c�

 s = rs.getString(1); // Retrieve current result set value

 System.out.println("Value from second result set = " + s);

 // Print the value

}

rs.close(); // Close the result set

cstmt.close(); // Close the statement

Figure 19. Retrieving known result sets from a stored procedure

Chapter 2. Programming JDBC applications 55

The following code illustrates retrieving result sets when you do not know the

number of result sets or their contents. The numbers to the right of selected

statements correspond to the previously-described steps.

 Keeping result sets open:

 In Figure 20, invocation of getMoreResults() closes the ResultSet object that is

returned by the previous invocation of getResultSet. However, with the IBM DB2

Driver for JDBC and SQLJ, you can invoke the JDBC 3 form of getMoreResults,

which has a parameter that determines whether the current ResultSet or

previously-opened ResultSets are closed.

You can specify one of these constants:

Statement.KEEP_CURRENT_RESULT

Checks for the next ResultSet, but does not close the current ResultSet.

Statement.CLOSE_CURRENT_RESULT

Checks for the next ResultSet, and closes the current ResultSet.

Statement.CLOSE_ALL_RESULTS

Closes all ResultSets for the Statement object that were previously kept open.

For example, the code in Figure 21 keeps all ResultSets open until the final

ResultSet has been retrieved, and then closes all ResultSets.

 Related tasks:

v “Learning about a ResultSet using ResultSetMetaData methods” on page 45

CallableStatement cstmt;

ResultSet rs;

...

boolean resultsAvailable = cstmt.execute(); // Call the stored procedure

while (resultsAvailable) { // Test for result sets �1�

 ResultSet rs = cstmt.getResultSet(); // Get a result set �2a�

 ... // process ResultSet

 resultsAvailable = cstmt.getMoreResults(); // Check for next result set �2c�

 // (Also closes the

 // previous result set)

}

Figure 20. Retrieving unknown result sets from a stored procedure

CallableStatement cstmt;

...

boolean resultsAvailable = cstmt.execute(); // Call the stored procedure

if (resultsAvailable==true) { // Test for result set

 ResultSet rs1 = cstmt.getResultSet(); // Get a result set

 ... // Process ResultSet

 resultsAvailable = cstmt.getMoreResults(Statement.KEEP_CURRENT_RESULT);

 // Check for next result set

 // but do not close

 // previous result set

 if (resultsAvailable==true) { // Test for another result set

 ResultSet rs2 = cstmt.getResultSet(); // Get next result set

 ... // Process either ResultSet

 }

}

resultsAvailable = cstmt.getMoreResults(Statement.CLOSE_ALL_RESULTS);

 // Close the result sets

Figure 21. Keeping retrieved stored procedure result sets open

56 Developing Java Applications

Working with LOBs in JDBC applications

The topics that follow contain information about updating and retrieving LOB data

in JDBC applications.

v “LOBs in JDBC applications with the IBM DB2 Driver for JDBC and SQLJ”

v “Java data types for retrieving or updating LOB column data in JDBC

applications” on page 59

LOBs in JDBC applications with the IBM DB2 Driver for JDBC

and SQLJ

 The IBM DB2 Driver for JDBC and SQLJ includes all of the LOB support in the

JDBC 3.0 and earlier specifications. This driver also includes support for LOBs in

additional methods and for additional data types.

Progressive streaming support: If the database server supports progressive

streaming, the IBM DB2 Driver for JDBC and SQLJ can use progressive streaming

to retrieve data in LOB or XML columns. With progressive streaming, the database

server dynamically determines the most efficient mode in which to return LOB or

XML data, based on the size of the LOBs or XML objects. To cause JDBC to use

progressive streaming to retrieve data, you need to set the progressiveStreaming

property to DB2BaseDataSource.YES or DB2BaseDataSource.NOT_SET, and to be

connected to a database server that supports progressive streaming, DB2 Version

9.1 for z/OS or later. When you enable progressive streaming, you can control

when the JDBC driver materializes LOBs with the streamBufferSize property. If a

LOB or XML object is less than or equal to the streamBufferSize value, the object

is materialized.

With progressive streaming, when you retrieve a LOB or XML value from a

ResultSet into an application variable, you can manipulate the contents of that

application variable until you move the cursor or close the cursor on the

ResultSet. After that, the contents of the application variable are no longer

available to you. If you perform any actions on the LOB in the application variable,

you receive an SQLException. For example, suppose that progressive streaming is

enabled, and you execute statements like this:

...

ResultSet rs = stmt.executeQuery("SELECT CLOBCOL FROM MY_TABLE");

rs.next(); // Retrieve the first row of the ResultSet

Clob clobFromRow1 = rs.getClob(1); // Put the CLOB from the first row

 // in an application variable

String substr1Clob = clobFromRow1.getSubstring(1,50);

 // Retrieve the first 50 bytes of the CLOB

rs.next(); // Move the cursor to the next row.

 // clobFromRow1 is no longer available.

// String substr2Clob = clobFromRow1.getSubstring(51,100);

 // This statement would yield an SQLException

Clob clobFromRow2 = rs.getClob(2); // Put the CLOB from the second row

 // in an application variable

rs.close(); // Close the ResultSet.

 // clobFromRow2 is also no longer available.

After you execute rs.next() to position the cursor at the second row of the

ResultSet, the CLOB value in clobFromRow1 is no longer available to you.

Similarly, after you execute rs.close() to close the ResultSet, the values in

clobFromRow1 and clobFromRow2 are no longer available.

Chapter 2. Programming JDBC applications 57

If you disable progressive streaming, the way in which the IBM DB2 Driver for

JDBC and SQLJ handles LOBs depends on the value of the

fullyMaterializeLobData property.

Use of progressive streaming is the preferred method of LOB or XML data

retrieval.

LOB locator support: The IBM DB2 Driver for JDBC and SQLJ can use LOB

locators to retrieve data in LOB columns. You should use LOB locators only if the

database server does not support progressive streaming. To cause JDBC to use LOB

locators to retrieve data from LOB columns, you need to set the

fullyMaterializeLobData property to false and set the progressiveStreaming

property to DB2BaseDataSource.NO. If you do not set progressiveStreaming to

DB2BaseDataSource.NO, and the database server supports progressive streaming, the

JDBC driver ignores the fullyMaterializeLobData value.

fullyMaterializeLobData has no effect on stored procedure parameters.

As in any other language, a LOB locator in a Java application is associated with

only one database. You cannot use a single LOB locator to move data between two

different databases. To move LOB data between two databases, you need to

materialize the LOB data when you retrieve it from a table in the first database

and then insert that data into the table in the second database.

Additional methods supported by the IBM DB2 Driver for JDBC and SQLJ: In

addition to the methods in the JDBC specification, the IBM DB2 Driver for JDBC

and SQLJ includes LOB support in the following methods:

v You can specify a BLOB column as an argument of the following ResultSet

methods to retrieve data from a BLOB column:

– getBinaryStream

– getBytes

v You can specify a CLOB column as an argument of the following ResultSet

methods to retrieve data from a CLOB column:

– getAsciiStream

– getCharacterStream

– getString

– getUnicodeStream

v You can use the following PreparedStatement methods to set the values for

parameters that correspond to BLOB columns:

– setBytes

– setBinaryStream

v You can use the following PreparedStatement methods to set the values for

parameters that correspond to CLOB columns:

– setString

– setAsciiStream

– setUnicodeStream

– setCharacterStream

v You can retrieve the value of a JDBC CLOB parameter using the following

CallableStatement method:

– getString

Restriction on using LOBs with the IBM DB2 Driver for JDBC and SQLJ: If you

are using IBM DB2 Driver for JDBC and SQLJ type 2 connectivity, you cannot call

a stored procedure that has DBCLOB OUT or INOUT parameters.

58 Developing Java Applications

Related reference:

v “Driver support for JDBC APIs” on page 247

v “JDBC differences between the IBM DB2 Driver for JDBC and SQLJ and other

DB2 JDBC drivers” on page 335

v “Properties for the IBM DB2 Driver for JDBC and SQLJ” on page 232

Java data types for retrieving or updating LOB column data in

JDBC applications

 When the deferPrepares property is set to true, and the IBM DB2 Driver for JDBC

and SQLJ processes a PreparedStatement.setXXX call, the driver might need to do

extra processing to determine data types. This extra processing can impact

performance.

When the JDBC driver cannot immediately determine the data type of a parameter

that is used with a LOB column, you need to choose a parameter data type that is

compatible with the LOB data type.

 Input parameters for BLOB columns:

 For input parameters for BLOB columns, or input/output parameters that are used

for input to BLOB columns, you can use one of the following techniques:

v Use a java.sql.Blob input variable, which is an exact match for a BLOB column:

cstmt.setBlob(parmIndex, blobData);

v Use a CallableStatement.setObject call that specifies that the target data type is

BLOB:

byte[] byteData = {(byte)0x1a, (byte)0x2b, (byte)0x3c};

cstmt.setObject(parmInd, byteData, java.sql.Types.BLOB);

v Use an input parameter of type of java.io.ByteArrayInputStream with a

CallableStatement.setBinaryStream call. A java.io.ByteArrayInputStream

object is compatible with a BLOB data type. For this call, you need to specify the

exact length of the input data:

java.io.ByteArrayInputStream byteStream =

 new java.io.ByteArrayInputStream(byteData);

int numBytes = byteData.length;

cstmt.setBinaryStream(parmIndex, byteStream, numBytes);

 Output parameters for BLOB columns:

 For output parameters for BLOB columns, or input/output parameters that are

used for output from BLOB columns, you can use the following technique:

v Use the CallableStatement.registerOutParameter call to specify that an output

parameter is of type BLOB. Then you can retrieve the parameter value into any

variable that has a data type that is compatible with a BLOB data type. For

example, the following code lets you retrieve a BLOB value into a byte[]

variable:

cstmt.registerOutParameter(parmIndex, java.sql.Types.BLOB);

cstmt.execute();

byte[] byteData = cstmt.getBytes(parmIndex);

 Input parameters for CLOB columns:

 For input parameters for CLOB columns, or input/output parameters that are used

for input to CLOB columns, you can use one of the following techniques:

v Use a java.sql.Clob input variable, which is an exact match for a CLOB column:

Chapter 2. Programming JDBC applications 59

cstmt.setClob(parmIndex, clobData);

v Use a CallableStatement.setObject call that specifies that the target data type is

CLOB:

String charData = "CharacterString";

cstmt.setObject(parmInd, charData, java.sql.Types.CLOB);

v Use one of the following types of stream input parameters:

– A java.io.StringReader input parameter with a cstmt.setCharacterStream

call:

java.io.StringReader reader = new java.io.StringReader(charData);

cstmt.setCharacterStream(parmIndex, reader, charData.length);

– A java.io.ByteArrayInputStream parameter with a cstmt.setAsciiStream

call, for ASCII data:

byte[] charDataBytes = charData.getBytes("US-ASCII");

java.io.ByteArrayInputStream byteStream =

 new java.io.ByteArrayInputStream (charDataBytes);

cstmt.setAsciiStream(parmIndex, byteStream, charDataBytes.length);

For these calls, you need to specify the exact length of the input data.

v Use a String input parameter with a cstmt.setString call:

cstmt.setString(charData);

If the length of the data is greater than 32KB, the JDBC driver assigns the CLOB

data type to the input data.

v Use a String input parameter with a cstmt.setObject call, and specify the target

data type as VARCHAR or LONGVARCHAR:

cstmt.setObject(parmIndex, charData, java.sql.Types.VARCHAR);

If the length of the data is greater than 32KB, the JDBC driver assigns the CLOB

data type to the input data.

 Output parameters for CLOB columns:

 For output parameters for CLOB columns, or input/output parameters that are

used for output from CLOB columns, you can use one of the following techniques:

v Use the CallableStatement.registerOutParameter call to specify that an output

parameter is of type CLOB. Then you can retrieve the parameter value into any

variable that has a data type that is compatible with a CLOB data type. For

example, the following code lets you retrieve a CLOB value into a String

variable:

cstmt.registerOutParameter(parmIndex, java.sql.Types.CLOB);

cstmt.execute();

String charData = cstmt.getString(parmIndex);

v Use the CallableStatement.registerOutParameter call to specify that an output

parameter is of type VARCHAR or LONGVARCHAR:

cstmt.registerOutParameter(parmIndex, java.sql.Types.VARCHAR);

cstmt.execute();

String charData = cstmt.getString(parmIndex);

This technique should be used only if you know that the length of the retrieved

data is less than or equal to 32KB. Otherwise, the data is truncated.

 Related concepts:

v “LOBs in JDBC applications with the IBM DB2 Driver for JDBC and SQLJ” on

page 57

60 Developing Java Applications

Related reference:

v “Data types that map to SQL data types in JDBC applications” on page 227

ROWIDs in JDBC with the IBM DB2 Driver for JDBC and SQLJ

 DB2 for z/OS and DB2 UDB for iSeries support the ROWID data type for a

column in a DB2 table. A ROWID is a value that uniquely identifies a row in a

table.

You can use the following ResultSet methods to retrieve data from a ROWID

column:

v getBytes

v getObject

For getObject, the IBM DB2 Driver for JDBC and SQLJ returns an instance of the

DB2-only class com.ibm.db2.jcc.DB2RowID.

You can use the following PreparedStatement methods to set a value for a

parameter that is associated with a ROWID column:

v setBytes

v setObject

For setObject, use the DB2-only type com.ibm.db2.jcc.Types.ROWID or an instance

of the com.ibm.db2.jcc.DB2RowID class as the target type for the parameter.

Example: Using PreparedStatement.setObject with a com.ibm.db2.jcc.DB2Types.ROWID

target type: To set parameter 1, use this form of the SetObject method:

ps.setObject(1, bytes[], com.ibm.db2.jcc.DB2Types.ROWID);

Example: Using PreparedStatement.setObject with a com.ibm.db2.jcc.DB2RowID target

type: Suppose that rwid is an instance of com.ibm.db2.jcc.DB2RowID. To set

parameter 1, use this form of the SetObject method:

ps.setObject (1, rwid);

To call a stored procedure that is defined with a ROWID output parameter, register

that parameter to be of the com.ibm.db2.jcc.DB2Types.ROWID type.

Example: Using CallableStatement.registerOutParameter with a

com.ibm.db2.jcc.DB2Types.ROWID parameter type: To register parameter 1 of a CALL

statement as a com.ibm.db2.jcc.DB2Types.ROWID data type, use this form of the

registerOutParameter method:

cs.registerOutParameter(1, com.ibm.db2.jcc.DB2Types.ROWID)

 Related reference:

v “Data types that map to SQL data types in JDBC applications” on page 227

Distinct types in JDBC applications

 A distinct type is a user-defined data type that is internally represented as a

built-in SQL data type. You create a distinct type by executing the SQL statement

CREATE DISTINCT TYPE.

In a JDBC program, you can create a distinct type using the executeUpdate method

to execute the CREATE DISTINCT TYPE statement. You can also use

executeUpdate to create a table that includes a column of that type. When you

Chapter 2. Programming JDBC applications 61

retrieve data from a column of that type, or update a column of that type, you use

Java identifiers with data types that correspond to the built-in types on which the

distinct types are based.

The following example creates a distinct type that is based on an INTEGER type,

creates a table with a column of that type, inserts a row into the table, and

retrieves the row from the table:

 Related reference:

v “CREATE DISTINCT TYPE statement” in SQL Reference, Volume 2

Savepoints in JDBC applications

 An SQL savepoint represents the state of data and schemas at a particular point in

time within a unit of work. SQL statements exist to set a savepoint, release a

savepoint, and restore data and schemas to the state that the savepoint represents.

The IBM DB2 Driver for JDBC and SQLJ supports the following methods for using

savepoints:

Connection.setSavepoint() or Connection.setSavepoint(String name)

Sets a savepoint. These methods return a Savepoint object that is used in later

releaseSavepoint or rollback operations.

 When you execute either of these methods, DB2 executes the form of the

SAVEPOINT statement that includes ON ROLLBACK RETAIN® CURSORS.

Connection.releaseSavepoint(Savepoint savepoint)

Releases the specified savepoint, and all subsequently established savepoints.

Connection.rollback(Savepoint savepoint)

Rolls back work to the specified savepoint.

Connection con;

Statement stmt;

ResultSet rs;

String empNumVar;

int shoeSizeVar;

...

stmt = con.createStatement(); // Create a Statement object

stmt.executeUpdate(

 "CREATE DISTINCT TYPE SHOESIZE AS INTEGER");

 // Create distinct type

stmt.executeUpdate(

 "CREATE TABLE EMP_SHOE (EMPNO CHAR(6), EMP_SHOE_SIZE SHOESIZE)");

 // Create table with distinct type

stmt.executeUpdate("INSERT INTO EMP_SHOE " +

 "VALUES (’000010’, 6)"); // Insert a row

rs=stmt.executeQuery("SELECT EMPNO, EMP_SHOE_SIZE FROM EMP_SHOE);

 // Create ResultSet for query

while (rs.next()) {

 empNumVar = rs.getString(1); // Get employee number

 shoeSizeVar = rs.getInt(2); // Get shoe size (use int

 // because underlying type

 // of SHOESIZE is INTEGER)

 System.out.println("Employee number = " + empNumVar +

 " Shoe size = " + shoeSizeVar);

}

rs.close(); // Close ResultSet

stmt.close(); // Close Statement

Figure 22. Creating and using a distinct type

62 Developing Java Applications

DatabaseMetaData.supportsSavepoints()

Indicates whether a data source supports savepoints.

The following example demonstrates how to set a savepoint, roll back to the

savepoint, and release the savepoint.

 Related tasks:

v “Committing or rolling back JDBC transactions” on page 76

 Related reference:

v “Driver support for JDBC APIs” on page 247

Retrieving identity column values in JDBC applications

 An identity column is a DB2 table column that provides a way for DB2 to

automatically generate a numeric value for each row. You define an identity

column in a CREATE TABLE or ALTER TABLE statement by specifying the AS

IDENTITY clause when you define a column that has an exact numeric type with a

scale of 0 (SMALLINT, INTEGER, BIGINT, DECIMAL with a scale of zero, or a

distinct type based on one of these types).

With the IBM DB2 Driver for JDBC and SQLJ, you can retrieve identity columns

from a DB2 table using JDBC 3.0 methods. In a JDBC program, identity columns

are known as automatically generated keys. To enable retrieval of automatically

generated keys from a table, you need to indicate when you insert rows that you

will want to retrieve automatically generated key values. You do that by setting a

flag in a Connection.prepareStatement, Statement.executeUpdate, or

Statement.execute method call. The statement that is executed must be an INSERT

statement or an INSERT within SELECT statement. Otherwise, the JDBC driver

ignores the parameter that sets the flag.

To retrieve automatically generated keys from a DB2 table, you need to perform

these steps:

1. Use one of the following methods to indicate that you want to return

automatically generated keys:

Connection con;

Statement stmt;

ResultSet rs;

String empNumVar;

int shoeSizeVar;

...

con.setAutoCommit(false); // set autocommit OFF

stmt = con.createStatement(); // Create a Statement object

... // Perform some SQL

con.commit(); // Commit the transaction

stmt.executeUpdate("INSERT INTO EMP_SHOE " +

 "VALUES (’000010’, 6)"); // Insert a row

Savepoint savept = con.setSavepoint(); // Create a savepoint

...

stmt.executeUpdate("INSERT INTO EMP_SHOE " +

 "VALUES (’000020’, 10)"); // Insert another row

conn.rollback(savept); // Roll back work to the point

 // after the first insert

...

con.releaseSavepoint(savept); // Release the savepoint

stmt.close(); // Close the Statement

Figure 23. Setting, rolling back to, and releasing a savepoint in a JDBC application

Chapter 2. Programming JDBC applications 63

v If you plan to use the PreparedStatement.executeUpdate method to insert

rows, invoke one of these forms of the Connection.prepareStatement method

to create a PreparedStatement object:

Use the following form for a table on any database server that supports

identity columns. Use this form for single-row INSERT statements only.

Connection.prepareStatement(sql-statement,

 Statement.RETURN_GENERATED_KEYS);

Use one of the following forms only for a table on any database server that

supports identity columns and INSERT within SELECT. Use one of these

forms for single-row INSERT statements or multiple-row INSERT statements.

With the first form, you specify the names of the columns for which you

want automatically generated keys. With the second form, you specify the

positions in the table of the columns for which you want automatically

generated keys.

Connection.prepareStatement(sql-statement, String [] columnNames);

Connection.prepareStatement(sql-statement, int [] columnIndexes);

v If you use the Statement.executeUpdate method to insert rows, invoke one

of these forms of the Statement.executeUpdate method:

Use the following form for a table on any database server that supports

identity columns. Use this form for single-row INSERT statements only.

Statement.executeUpdate(sql-statement, Statement.RETURN_GENERATED_KEYS);

Use one of the following forms only for a table on any database server that

supports identity columns and INSERT within SELECT. Use one of these

forms for single-row INSERT statements or multiple-row INSERT statements.

Statement.executeUpdate(sql-statement, String [] columnNames);

Statement.executeUpdate(sql-statement, int [] columnIndexes);

v If you use the Statement.execute method to insert rows, invoke one of these

forms of the Statement.execute method:

Use the following form for a table on any database server that supports

identity columns. Use this form for single-row INSERT statements only.

Statement.execute(sql-statement, Statement.RETURN_GENERATED_KEYS);

Use one of the following forms only for a table on any database server that

supports identity columns and INSERT within SELECT. Use one of these

forms for single-row INSERT statements or multiple-row INSERT statements.

Statement.execute(sql-statement, String [] columnNames);

Statement.execute(sql-statement, int [] columnIndexes);

2. Invoke the PreparedStatement.getGeneratedKeys method or the

Statement.getGeneratedKeys method to retrieve a ResultSet object that

contains the automatically generated key values.

The data type of the automatically generated keys in the ResultSet is

DECIMAL, regardless of the data type of the corresponding column.

The following code creates a table with an identity column, inserts a row into the

table, and retrieves the automatically generated key value for the identity column.

The numbers to the right of selected statements correspond to the previously

described steps.

64 Developing Java Applications

The following code creates a table with an identity column, inserts two rows into

the table using a multiple-row INSERT statement, and retrieves the automatically

generated key values for the identity column. The numbers to the right of selected

statements correspond to the previously-described steps.

import java.sql.*;

import java.math.*;

import com.ibm.db2.jcc.*;

Connection con;

Statement stmt;

ResultSet rs;

java.math.BigDecimal iDColVar;

...

stmt = con.createStatement(); // Create a Statement object

stmt.executeUpdate(

 "CREATE TABLE EMP_PHONE (EMPNO CHAR(6), PHONENO CHAR(4), " +

 "IDENTCOL INTEGER GENERATED ALWAYS AS IDENTITY)");

 // Create table with identity column

stmt.executeUpdate("INSERT INTO EMP_PHONE (EMPNO, PHONENO) " + �1�

 "VALUES (’000010’, "5555")", // Insert a row

 Statement.RETURN_GENERATED_KEYS); // Indicate you want automatically

 // generated keys

rs = stmt.getGeneratedKeys(); // Retrieve the automatically �2�

 // generated key value in a ResultSet.

 // Only one row is returned.

 // Create ResultSet for query

while (rs.next()) {

 java.math.BigDecimal idColVar = rs.getBigDecimal(1);

 // Get automatically generated key

 // value

 System.out.println("automatically generated key value = " + idColVar);

}

rs.close(); // Close ResultSet

stmt.close(); // Close Statement

Figure 24. Retrieving automatically generated keys

Chapter 2. Programming JDBC applications 65

Related concepts:

v “Identity Columns” in Developing SQL and External Routines

 Related tasks:

v “Updating data in DB2 tables using the PreparedStatement.executeUpdate

method” on page 40

v “Creating and modifying DB2 objects using the Statement.executeUpdate

method” on page 39

 Related reference:

v “Driver support for JDBC APIs” on page 247

Providing extended client information to the DB2 server with

the IBM DB2 Driver for JDBC and SQLJ

 The IBM DB2 Driver for JDBC and SQLJ provides DB2-only methods that you can

use to provide extra information about the client to the server. This information

can be used for accounting, workload management, or debugging. The information

is sent to the DB2 server when the application performs an action that accesses the

server, such as executing SQL.

import java.sql.*;

import java.math.*;

import com.ibm.db2.jcc.*;

Connection con;

Statement stmt;

ResultSet rs;

...

stmt = con.createStatement();

stmt.executeUpdate(

 "CREATE TABLE EMP_PHONE (EMPNO CHAR(6), PHONENO CHAR(4), " +

 "IDENTCOL INTEGER GENERATED ALWAYS AS IDENTITY)");

 // Create table with identity column

String[] id_col = {"IDENTCOL"};

int updateCount = �1�

 stmt.executeUpdate("INSERT INTO EMP_PHONE (EMPNO, PHONENO)" +

 "VALUES (’000010’, ’5555’), (’000020’, ’5556’)", id_col);

 // Insert two rows

 // Indicate you want automatically

 // generated keys

rs = stmt.getGeneratedKeys(); // Retrieve the automatically �2�

 // generated key values in a ResultSet.

 // Two rows are returned.

 // Create ResultSet for query

while (rs.next()) {

 java.math.BigDecimal idColVar = rs.getBigDecimal(1);

 // Get automatically generated key

 // values

 System.out.println("automatically generated key value = " + idColVar);

}

stmt.close();

con.close();

Figure 25. Retrieving automatically generated keys after a multiple-row INSERT

66 Developing Java Applications

The methods are listed in Table 10.

 Table 10. Methods that provide client information to the DB2 server

Method Information provided

setDB2ClientAccountingInformation Accounting information

setDB2ClientApplicationInformation Name of the application that is working with

a connection

setDB2ClientDebugInfo The CLIENT DEBUGINFO connection

attribute for the Unified debugger

setDB2ClientProgramId

setDB2ClientUser User name for a connection

setDB2ClientWorkstation Client workstation name for a connection

To set the extended information:

1. Create a Connection.

2. Cast the java.sql.Connection object to a com.ibm.db2.jcc.DB2Connection.

3. Call any of the methods shown in Table 10.

4. Execute an SQL statement to cause the information to be sent to the DB2 server.

The following code performs the previous steps to pass a user name and a

workstation name to the DB2 server. The numbers to the right of selected

statements correspond to the previously-described steps.

 Related reference:

v “Summary of IBM DB2 Driver for JDBC and SQLJ extensions to JDBC” on page

301

public class ClientInfoTest {

 public static void main(String[] args) {

 String url = "jdbc:db2://sysmvs1.stl.ibm.com:5021/san_jose";

 try {

 Class.forName("com.ibm.db2.jcc.DB2Driver");

 String user = "db2adm";

 String password = "db2adm";

 Connection conn = DriverManager.getConnection(url, �1�

 user, password);

 if (conn instanceof DB2Connection) {

 DB2Connection db2conn = (DB2Connection) conn; �2�

 db2conn.setDB2ClientUser("Michael L Thompson"); �3�

 db2conn.setDB2ClientWorkstation("sjwkstn1");

 // Execute SQL to force extended client information to be sent

 // to the server

 conn.prepareStatement("SELECT * FROM SYSIBM.SYSDUMMY1"

 + "WHERE 0 = 1").executeQuery(); �4�

 }

 } catch (Throwable e) {

 e.printStackTrace();

 }

 }

}

Figure 26. Example of passing extended client information to a DB2 server

Chapter 2. Programming JDBC applications 67

Working with XML data in JDBC applications

The topics that follow contain information about updating and retrieving XML

data in JDBC applications.

v “XML data in JDBC applications”

v “XML column updates in JDBC applications”

v “XML data retrieval in JDBC applications” on page 70

v “Invocation of routines with XML parameters in Java applications” on page 72

v “Java support for XML schema registration and removal” on page 74

XML data in JDBC applications

 In DB2 tables, the XML built-in data type is used to store XML data in a column as

a structured set of nodes in a tree format.

In applications, XML data is in the serialized string format.

In JDBC applications, you can:

v Store an entire XML document in an XML column using setXXX methods.

v Retrieve an entire XML document from an XML column using getXXX methods.

v Retrieve a sequence from a document in an XML column by using the SQL

XMLQUERY function to retrieve the sequence into a serialized XML string in the

database, and then using getXXX methods to retrieve the data into an application

variable.

v Retrieve a sequence from a document in an XML column by using an XQuery

expression, prepended with the string 'XQUERY', to retrieve the elements of the

sequence into a result table in the database, in which each row of the result table

represents an item in the sequence. Then use getXXX methods to retrieve the data

into application variables.

v Retrieve a sequence from a document in an XML column as a user-defined table

by using the SQL XMLTABLE function to define the result table and retrieve it.

Then use getXXX methods to retrieve the data from the result table into

application variables.

Java has no XML data type, and invocations of metadata methods, such as

ResultSetMetaData.getColumnTypeName return a type of java.sql.Types.OTHER for

an XML column type.

 Related concepts:

v “XML column updates in JDBC applications” on page 68

v “XML data retrieval in JDBC applications” on page 70

 Related reference:

v “Data types that map to SQL data types in JDBC applications” on page 227

XML column updates in JDBC applications

 When you update or insert data into XML columns of a DB2 table, the input data

must be in the serialized string format. Table 11 on page 69 lists the methods and

corresponding input data types that you can use to put data in XML columns.

68 Developing Java Applications

Table 11. Methods and data types for updating XML columns

Method Input data type

PreparedStatement.setAsciiStream InputStream

PreparedStatement.setBinaryStream InputStream

PreparedStatement.setBlob Blob

PreparedStatement.setBytes byte[]

PreparedStatement.setCharacterStream Reader

PreparedStatement.setClob Clob

PreparedStatement.setObject byte[], Blob, Clob, DB2Xml, InputStream, Reader, String

PreparedStatement.setString String

The encoding of XML data can be derived from the data itself, which is known as

internally encoded data, or from external sources, which is known as externally

encoded data. XML data that is sent to the database server as binary data is treated

as internally encoded data. XML data that is sent to the database server as

character data is treated as externally encoded data.

External encoding for Java applications is always Unicode encoding.

Externally encoded data can have internal encoding. That is, the data might be sent

to the database server as character data, but the data contains encoding

information. The database server handles incompatibilities between internal and

external encoding as follows:

v If the database server is DB2 Database for Linux, UNIX, and Windows, the

database server generates an error if the external and internal encoding are

incompatible, unless the external and internal encoding are Unicode. If the

external and internal encoding are Unicode, the database server ignores the

internal encoding.

v If the database server is DB2 for z/OS, the database server ignores the internal

encoding.

Data in XML columns is stored in UTF-8 encoding. The database server handles

conversion of the data from its internal or external encoding to UTF-8.

Example: The following example demonstrates inserting data from a file into an

XML column. The data is inserted as binary data, so the database server honors the

internal encoding.

 public void insertBinStream()

 {

 PreparedStatement insertStmt = null;

 String sqls = null;

 int cid = 0;

 ResultSet rs=null;

 Statement stmt=null;

 try {

 sqls = "INSERT INTO CUSTOMER (CID, INFO) VALUES (?, ?)";

 insertStmt = conn.prepareStatement(sqls);

 insertStmt.setInt(1, cid);

 File file = new File(fn);

 insertStmt.setBinaryStream(2,

 new FileInputStream(file), (int)file.length());

 if (insertStmt.executeUpdate() != 1) {

 System.out.println("insertBinStream: No record inserted.");

 }

Chapter 2. Programming JDBC applications 69

}

 catch (IOException ioe) {

 ioe.printStackTrace();

 }

 catch (SQLException sqle) {

 System.out.println("insertBinStream: SQL Exception: " +

 sqle.getMessage());

 System.out.println("insertBinStream: SQL State: " +

 sqle.getSQLState());

 System.out.println("insertBinStream: SQL Error Code: " +

 sqle.getErrorCode());

 }

 }

 Related concepts:

v “Encoding considerations for XML data in JDBC, SQLJ, and .NET applications”

in XML Guide

 Related reference:

v “Data types that map to SQL data types in JDBC applications” on page 227

XML data retrieval in JDBC applications

 When you retrieve data from XML columns of a DB2 table, the output data is in

the serialized string format. This is true whether you retrieve the entire contents of

an XML column or a sequence from the column.

You can use one of the following techniques to retrieve XML data:

v Use a ResultSet.getXXX method other than ResultSet.getObject to retrieve the

data into a compatible data type.

v Use the ResultSet.getObject method to retrieve the data, and then cast it to the

DB2Xml type and assign it to a DB2Xml object. Then use a DB2Xml.getDB2XXX or

DB2Xml.getDB2XmlXXX method to retrieve the data into a compatible output data

type.

DB2Xml.getDB2XmlXXX methods add XML declarations with encoding

specifications to the output data. DB2Xml.getDB2XXX methods do not add XML

declarations with encoding specifications to the output data.

Table 12 lists the ResultSet methods and corresponding output data types for

retrieving XML data.

 Table 12. ResultSet methods and data types for retrieving XML data

Method Output data type

ResultSet.getAsciiStream InputStream

ResultSet.getBinaryStream InputStream

ResultSet.getBytes byte[]

ResultSet.getCharacterStream Reader

ResultSet.getObject DB2Xml

ResultSet.getString String

Table 13 on page 71 lists the methods and corresponding output data types for

retrieving data from a DB2Xml object, as well as the type of encoding in the XML

declaration that the driver adds to the output data.

70 Developing Java Applications

Table 13. DB2Xml methods, data types, and added encoding specifications

Method Output data type Type of XML internal encoding declaration added

DB2Xml.getDB2AsciiStream InputStream None

DB2Xml.getDB2BinaryStream InputStream None

DB2Xml.getDB2Bytes byte[] None

DB2Xml.getDB2CharacterStream Reader None

DB2Xml.getDB2String String None

DB2Xml.getDB2XmlAsciiStream InputStream US-ASCII

DB2Xml.getDB2XmlBinaryStream InputStream Specified by getDB2XmlBinaryStream targetEncoding

parameter

DB2Xml.getDB2XmlBytes byte[] Specified by DB2Xml.getDB2XmlBytes targetEncoding

parameter

DB2Xml.getDB2XmlCharacterStream Reader ISO-10646-UCS-2

DB2Xml.getDB2XmlString String ISO-10646-UCS-2

If the application executes the XMLSERIALIZE function on the data that is to be

returned, after execution of the function, the data has the data type that is specified

in the XMLSERIALIZE function, not the XML data type. Therefore, the driver

handles the data as the specified type and ignores any internal encoding

declarations.

Example: The following example demonstrates retrieving data from an XML

column into a String variable.

public void fetchToString()

 {

 System.out.println(">> fetchToString: Get XML data " +

 "using getString");

 PreparedStatement selectStmt = null;

 String sqls = null, stringDoc = null;

 ResultSet rs = null;

 try{

 sqls = "SELECT info FROM customer WHERE cid = " + cid;

 selectStmt = conn.prepareStatement(sqls);

 rs = selectStmt.executeQuery();

 // get metadata. Column type for XML column is java.sql.Types.OTHER

 ResultSetMetaData meta = rs.getMetaData();

 String colType = meta.getColumnTypeName(1);

 System.out.println("fetchToString: Column type = " + colType);

 while (rs.next()) {

 stringDoc = rs.getString(1);

 System.out.println("Document contents:");

 System.out.println(stringDoc);

 }

 catch (SQLException sqle) {

 System.out.println("fetchToString: SQL Exception: " +

 sqle.getMessage());

 System.out.println("fetchToString: SQL State: " +

 sqle.getSQLState());

 System.out.println("fetchToString: SQL Error Code: " +

 sqle.getErrorCode());

 }

 }

Chapter 2. Programming JDBC applications 71

Example: The following example demonstrates retrieving data from an XML

column into a DB2Xml object, and then using the DB2Xml.getDB2XmlString method

to retrieve the data into a string with an added XML declaration with an

ISO-10646-UCS-2 encoding specification.

public void fetchToDB2Xml()

 {

 System.out.println(">> fetchToDB2Xml: Get XML data as a DB2XML object " +

 "using getObject");

 PreparedStatement selectStmt = null;

 String sqls = null, stringDoc = null;

 ResultSet rs = null;

 try{

 sqls = "SELECT info FROM customer WHERE cid = " + cid;

 selectStmt = conn.prepareStatement(sqls);

 rs = selectStmt.executeQuery();

 // get metadata. Column type for XML column is java.sql.Types.OTHER

 ResultSetMetaData meta = rs.getMetaData();

 String colType = meta.getColumnTypeName(1);

 System.out.println("fetchToObject: Column type = " + colType);

 if (rs.next() == false) {

 System.out.println("fetchToObject: "

 "Cannot read document with cid " + cid);

 }

 else {

 // Retrieve the XML data with getObject, and cast the object

 // as a DB2Xml object. Then write it to a string with

 // explicit internal ISO-10646-UCS-2 encoding.

 com.ibm.db2.jcc.DB2Xml xml =

 (com.ibm.db2.jcc.DB2Xml) rs.getObject(1);

 System.out.println (xml.getDB2XmlString());

 }

 rs.close();

 }

 catch (SQLException sqle) {

 System.out.println("fetchToString: SQL Exception: " +

 sqle.getMessage());

 System.out.println("fetchToString: SQL State: " +

 sqle.getSQLState());

 System.out.println("fetchToString: SQL Error Code: " +

 sqle.getErrorCode());

 }

 }

 Related concepts:

v “Encoding considerations for XML data in JDBC, SQLJ, and .NET applications”

in XML Guide

 Related reference:

v “Data types that map to SQL data types in JDBC applications” on page 227

Invocation of routines with XML parameters in Java

applications

 SQL or external stored procedures and external user-defined functions can include

XML parameters. For SQL procedures, those parameters in the stored procedure

definition have the XML type. For external stored procedures and user-defined

functions, XML parameters in the routine definition have the XML AS CLOB type.

When you call a stored procedure or user-defined function that has XML

parameters, you need to use a compatible data type in the invoking statement.

72 Developing Java Applications

To call a routine with XML input parameters from a JDBC program, use

parameters of the com.ibm.db2.jcc.DB2Xml type. To register XML output

parameters, register the parameters as the com.ibm.db2.jcc.DB2Types.XML type.

Example: JDBC program that calls a stored procedure that takes three XML

parameters: an IN parameter, an OUT parameter, and an INOUT parameter.

com.ibm.db2.jcc.DB2Xml in_xml = xmlvar;

com.ibm.db2.jcc.DB2Xml out_xml = null;

com.ibm.db2.jcc.DB2Xml inout_xml = xmlvar;

 // Declare an input, output, and

 // input/output XML parameter

Connection con;

CallableStatement cstmt;

ResultSet rs;

...

stmt = con.prepareCall("CALL SP_xml(?,?,?)");

 // Create a CallableStatement object

cstmt.setObject (1, in_xml); // Set input parameter

cstmt.registerOutParameter (2, com.ibm.db2.jcc.DB2Types.XML);

 // Register out and input parameters

cstmt.registerOutParameter (3, com.ibm.db2.jcc.DB2Types.XML);

cstmt.executeUpdate(); // Call the stored procedure

System.out.println("Parameter values from SP_xml call: ");

System.out.println("Output parameter value ");

printBytes(out_xml.getDB2String());

 // Use the DB2-only method getBytes to

 // convert the value to bytes for printing

System.out.println("Input/output parameter value ");

printBytes(inout_xml.getDB2String());

To call a routine with XML parameters from an SQLJ program, use parameters of

the com.ibm.db2.jcc.DB2Xml type.

Example: SQLJ program that calls a stored procedure that takes three XML

parameters: an IN parameter, an OUT parameter, and an INOUT parameter.

com.ibm.db2.jcc.DB2Xml in_xml = xmlvar;

com.ibm.db2.jcc.DB2Xml out_xml = null;

com.ibm.db2.jcc.DB2Xml inout_xml = xmlvar;

 // Declare an input, output, and

 // input/output XML parameter

...

#sql [myConnCtx] {CALL SP_xml(:IN in_xml,

 :OUT out_xml,

 :INOUT inout_xml)};

 // Call the stored procedure

System.out.println("Parameter values from SP_xml call: ");

System.out.println("Output parameter value ");

printBytes(out_xml.getDB2String());

 // Use the DB2-only method getBytes to

 // convert the value to bytes for printing

System.out.println("Input/output parameter value ");

printBytes(inout_xml.getDB2String());

 Related tasks:

v “Calling stored procedures in an SQLJ application” on page 122

v “Calling stored procedures using CallableStatement methods” on page 53

 Related reference:

v “Data types that map to SQL data types in JDBC applications” on page 227

v “DB2Xml interface” on page 333

Chapter 2. Programming JDBC applications 73

Java support for XML schema registration and removal

 DB2 provides the SYSPROC.XSR_REGISTER, SYSPROC.XSR_ADDSCHEMADOC,

SYSPROC.XSR_COMPLETE, and SYSPROC.XSR_REMOVE stored procedures that

let you register and remove XML schemas and their components.

The IBM DB2 Driver for JDBC and SQLJ provides methods that let you perform

the same functions from a Java application program. Those methods are:

DB2Connection.registerDB2XMLSchema

Registers an XML schema in DB2, using one or more XML schema documents.

There are two forms of this method: one form for XML schema documents that

are input from an InputStream objects, and one form for XML schema

documents that are in a Strings.

DB2Connection.deregisterDB2XMLObject

Removes an XML schema definition from DB2.

Before you can invoke these methods, the underlying stored procedures must be

installed on the DB2 database server.

Example:Registration of an XML schema: The following example demonstrates the use

of registerDB2XmlSchema to register an XML schema in DB2 using a single XML

schema document (customer.xsd) that is read from an input stream. The SQL

schema name for the registered schema is SYSXSR. The xmlSchemaLocations value is

null, so DB2 will not find this XML schema on an invocation of

DSN_XMLVALIDATE that supplies a non-null XML schema location value. No

additional properties are registered.

74 Developing Java Applications

Example:Removal of an XML schema: The following example demonstrates the use of

deregisterDB2XmlObject to remove an XML schema from DB2. The SQL schema

name for the registered schema is SYSXSR.

public static void registerSchema(

 Connection con,

 String schemaName)

 throws SQLException {

 // Define the registerDB2XmlSchema parameters

 String[] xmlSchemaNameQualifiers = new String[1];

 String[] xmlSchemaNames = new String[1];

 String[] xmlSchemaLocations = new String[1];

 InputStream[] xmlSchemaDocuments = new InputStream[1];

 int[] xmlSchemaDocumentsLengths = new int[1];

 java.io.InputStream[] xmlSchemaDocumentsProperties = new InputStream[1];

 int[] xmlSchemaDocumentsPropertiesLengths = new int[1];

 InputStream xmlSchemaProperties;

 int xmlSchemaPropertiesLength;

 //Set the parameter values

 xmlSchemaLocations[0] = "";

 FileInputStream fi = null;

 xmlSchemaNameQualifiers[0] = "SYSXSR";

 xmlSchemaNames[0] = schemaName;

 try {

 fi = new FileInputStream("customer.xsd");

 xmlSchemaDocuments[0] = new BufferedInputStream(fi);

 } catch (FileNotFoundException e) {

 e.printStackTrace();

 }

 try {

 xmlSchemaDocumentsLengths[0] = (int) fi.getChannel().size();

 System.out.println(xmlSchemaDocumentsLengths[0]);

 } catch (IOException e1) {

 e1.printStackTrace();

 }

 xmlSchemaDocumentsProperties[0] = null;

 xmlSchemaDocumentsPropertiesLengths[0] = 0;

 xmlSchemaProperties = null;

 xmlSchemaPropertiesLength = 0;

 DB2Connection ds = (DB2Connection) con;

 // Invoke registerDB2XmlSchema

 ds.registerDB2XmlSchema(

 xmlSchemaNameQualifiers,

 xmlSchemaNames,

 xmlSchemaLocations,

 xmlSchemaDocuments,

 xmlSchemaDocumentsLengths,

 xmlSchemaDocumentsProperties,

 xmlSchemaDocumentsPropertiesLengths,

 xmlSchemaProperties,

 xmlSchemaPropertiesLength,

 false);

}

Figure 27. Example of registration of an XML schema with DB2 using an XML document from an input stream

Chapter 2. Programming JDBC applications 75

Related concepts:

v “XML schema, DTD, and external entity management using the XML schema

repository (XSR)” in XML Guide

v “XSR object registration” in XML Guide

Transaction control in JDBC applications

The topics that follow discuss JDBC methods for controlling DB2 transactions.

v “Setting the isolation level for a JDBC transaction”

v “Committing or rolling back JDBC transactions”

Setting the isolation level for a JDBC transaction

 To set the isolation level for a unit of work within a JDBC program, use the

Connection.setTransactionIsolation(int level) method. Table 14 shows the

values of level that you can specify in the Connection.setTransactionIsolation

method and their DB2 equivalents.

 Table 14. Equivalent JDBC and DB2 isolation levels

JDBC value DB2 isolation level

TRANSACTION_SERIALIZABLE Repeatable read

TRANSACTION_REPEATABLE_READ Read stability

TRANSACTION_READ_COMMITTED Cursor stability

TRANSACTION_READ_UNCOMMITTED Uncommitted read

 Related concepts:

v “JDBC connection objects” on page 33

Committing or rolling back JDBC transactions

 In JDBC, to commit or roll back transactions explicitly, use the commit or rollback

methods. For example:

 Connection con;

 ...

con.commit();

If autocommit mode is on, the DB2 database manager performs a commit

operation after every SQL statement completes. To set autocommit mode on,

invoke the Connection.setAutoCommit(true) method. To set autocommit mode off,

public static void deregisterSchema(

 Connection con,

 String schemaName)

 throws SQLException {

 // Define and assign values to the deregisterDB2XmlObject parameters

 String xmlSchemaNameQualifier = "SYSXSR";

 String xmlSchemaName = schemaName;

 DB2Connection ds = (DB2Connection) con;

 // Invoke deregisterDB2XmlObject

 ds.deregisterDB2XmlObject(

 xmlSchemaNameQualifier,

 xmlSchemaName);

}

Figure 28. Example of removal of an XML schema from DB2

76 Developing Java Applications

invoke the Connection.setAutoCommit(false) method. To determine whether

autocommit mode is on, invoke the Connection.getAutoCommit method.

When autocommit mode is on, you cannot execute the commit and rollback

methods.

Connections that participate in distributed transactions cannot invoke the

setAutoCommit(true) method.

When you change the autocommit state, the DB2 database manager executes a

commit operation, if the application is not already on a transaction boundary.

While a connection is participating in a distributed transaction, the associated

application cannot issue the commit or rollback methods.

 Related concepts:

v “Savepoints in JDBC applications” on page 62

 Related tasks:

v “Disconnecting from database servers in JDBC applications” on page 88

v “Making batch updates in JDBC applications” on page 42

Handling errors and warnings in JDBC applications

The topics that follow explain how to handle SQL errors and warnings in JDBC

applications.

v “Handling an SQLException under the IBM DB2 Driver for JDBC and SQLJ”

v “Handling an SQLWarning under the IBM DB2 Driver for JDBC and SQLJ” on

page 81

v “Retrieving information from a BatchUpdateException” on page 82

v “Handling an SQLException under the DB2 JDBC Type 2 Driver” on page 84

v “Handling an SQLWarning under the DB2 JDBC Type 2 Driver” on page 85

Handling an SQLException under the IBM DB2 Driver for

JDBC and SQLJ

 As in all Java programs, error handling is done using try/catch blocks. Methods

throw exceptions when an error occurs, and the code in the catch block handles

those exceptions.

JDBC provides the SQLException class for handling errors. All JDBC methods

throw an instance of SQLException when an error occurs during their execution.

According to the JDBC specification, an SQLException object contains the following

information:

v A String object that contains a description of the error, or null

v A String object that contains the SQLSTATE, or null

v An int value that contains an error code

v A pointer to the next SQLException, or null

The IBM DB2 Driver for JDBC and SQLJ provides a

com.ibm.db2.jcc.DB2Diagnosable interface that extends the SQLException class. The

DB2Diagnosable interface gives you more information about errors that occur when

DB2 is accessed. If the JDBC driver detects an error, DB2Diagnosable gives you the

Chapter 2. Programming JDBC applications 77

same information as the standard SQLException class. However, if DB2 detects the

error, DB2Diagnosable adds the following methods, which give you additional

information about the error:

getSqlca

Returns an DB2Sqlca object with the following information:

v An SQL error code

v The SQLERRMC values

v The SQLERRP value

v The SQLERRD values

v The SQLWARN values

v The SQLSTATE

getThrowable

Returns a java.lang.Throwable object that caused the SQLException, or null, if

no such object exists.

printTrace

Prints diagnostic information.

The basic steps for handling an SQLException in a JDBC program that runs under

the IBM DB2 Driver for JDBC and SQLJ are:

1. Give the program access to the com.ibm.db2.jcc.DB2Diagnosable interface and

the com.ibm.db2.jcc.DB2Sqlca class. You can fully qualify all references to

them, or you can import them:

import com.ibm.db2.jcc.DB2Diagnosable;

import com.ibm.db2.jcc.DB2Sqlca;

2. Put code that can generate an SQLException in a try block.

3. In the catch block, perform the following steps in a loop:

a. Test whether you have retrieved the last SQLException. If not, continue to

the next step.

b. Check whether any DB2-only information exists by testing whether the

SQLException is an instance of DB2Diagnosable. If so:

 1) Cast the object to a DB2Diagnosable object.

 2) Optional: Invoke the DB2Diagnosable.printTrace method to write all

SQLException information to a java.io.PrintWriter object.

 3) Invoke the DB2Diagnosable.getThrowable method to determine

whether an underlying java.lang.Throwable caused the SQLException.

 4) Invoke the DB2Diagnosable.getSqlca method to retrieve the DB2Sqlca

object.

 5) Invoke the DB2Sqlca.getSqlCode method to retrieve an SQL error code

value.

 6) Invoke the DB2Sqlca.getSqlErrmc method to retrieve a string that

contains all SQLERRMC values, or invoke the

DB2Sqlca.getSqlErrmcTokens method to retrieve the SQLERRMC

values in an array.

 7) Invoke the DB2Sqlca.getSqlErrp method to retrieve the SQLERRP

value.

 8) Invoke the DB2Sqlca.getSqlErrd method to retrieve the SQLERRD

values in an array.

 9) Invoke the DB2Sqlca.getSqlWarn method to retrieve the SQLWARN

values in an array.

10) Invoke the DB2Sqlca.getSqlState method to retrieve the SQLSTATE

value.

78 Developing Java Applications

11) Invoke the DB2Sqlca.getMessage method to retrieve error message text

from the database server.
c. Invoke the SQLException.getNextException method to retrieve the next

SQLException.

The following code demonstrates how to obtain information from the DB2 version

of an SQLException that is provided with the IBM DB2 Driver for JDBC and SQLJ.

The numbers to the right of selected statements correspond to the

previously-described steps.

Chapter 2. Programming JDBC applications 79

import java.sql.*; // Import JDBC API package

import com.ibm.db2.jcc.DB2Diagnosable; // Import packages for DB2 �1�

import com.ibm.db2.jcc.DB2Sqlca; // SQLException support

java.io.PrintWriter printWriter; // For dumping all SQLException

 // information

...

try { �2�

 // Code that could generate SQLExceptions

 ...

} catch(SQLException sqle) {

 while(sqle != null) { // Check whether there are more �3a�

 // SQLExceptions to process

 //=====> Optional DB2-only error processing

 if (sqle instanceof DB2Diagnosable) { �3b�

 // Check if DB2-only information exists

 com.ibm.db2.jcc.DB2Diagnosable diagnosable =

 (com.ibm.db2.jcc.DB2Diagnosable)sqle; �3b1�

 diagnosable.printTrace (printWriter, ""); �3b2�

 java.lang.Throwable throwable =

 diagnosable.getThrowable(); �3b3�

 if (throwable != null) {

 // Extract java.lang.Throwable information

 // such as message or stack trace.

 ...

 }

 DB2Sqlca sqlca = diagnosable.getSqlca(); �3b4�

 // Get DB2Sqlca object

 if (sqlca != null) { // Check that DB2Sqlca is not null

 int sqlCode = sqlca.getSqlCode(); // Get the SQL error code �3b5�

 String sqlErrmc = sqlca.getSqlErrmc(); �3b6�

 // Get the entire SQLERRMC

 String[] sqlErrmcTokens = sqlca.getSqlErrmcTokens();

 // You can also retrieve the

 // individual SQLERRMC tokens

 String sqlErrp = sqlca.getSqlErrp(); �3b7�

 // Get the SQLERRP

 int[] sqlErrd = sqlca.getSqlErrd(); �3b8�

 // Get SQLERRD fields

 char[] sqlWarn = sqlca.getSqlWarn(); �3b9�

 // Get SQLWARN fields

 String sqlState = sqlca.getSqlState(); �3b10�

 // Get SQLSTATE

 String errMessage = sqlca.getMessage(); �3b11�

 // Get error message

 System.err.println ("Server error message: " + errMessage);

 System.err.println ("--------------- SQLCA ---------------");

 System.err.println ("Error code: " + sqlCode);

 System.err.println ("SQLERRMC: " + sqlErrmc);

 for (int i=0; i< sqlErrmcTokens.length; i++) {

 System.err.println (" token " + i + ": " + sqlErrmcTokens[i]);

 }

Figure 29. Processing an SQLException under the IBM DB2 Driver for JDBC and SQLJ (Part

1 of 2)

80 Developing Java Applications

Related reference:

v “Error codes issued by the IBM DB2 Driver for JDBC and SQLJ” on page 344

Handling an SQLWarning under the IBM DB2 Driver for JDBC

and SQLJ

 Unlike SQL errors, SQL warnings do not cause JDBC methods to throw exceptions.

Instead, the Connection, Statement, PreparedStatement, CallableStatement, and

ResultSet classes contain getWarnings methods, which you need to invoke after

you execute SQL statements to determine whether any SQL warnings were

generated. Calling getWarnings retrieves an SQLWarning object.

 Important:

 When a call to Statement.executeUpdate or PreparedStatement.executeUpdate

affects no rows, the IBM DB2 Driver for JDBC and SQLJ generates an SQLWarning

with error code +100.

When a call to ResultSet.next returns no rows, the IBM DB2 Driver for JDBC and

SQLJ does not generate an SQLWarning.

 A generic SQLWarning object contains the following information:

v A String object that contains a description of the warning, or null

v A String object that contains the SQLSTATE, or null

v An int value that contains an error code

v A pointer to the next SQLWarning, or null

Under the IBM DB2 Driver for JDBC and SQLJ, like an SQLException object, an

SQLWarning object can also contain DB2-specific information. The DB2-specific

information for an SQLWarning object is the same as the DB2-specific information

for an SQLException object.

 System.err.println ("SQLERRP: " + sqlErrp);

 System.err.println (

 "SQLERRD(1): " + sqlErrd[0] + "\n" +

 "SQLERRD(2): " + sqlErrd[1] + "\n" +

 "SQLERRD(3): " + sqlErrd[2] + "\n" +

 "SQLERRD(4): " + sqlErrd[3] + "\n" +

 "SQLERRD(5): " + sqlErrd[4] + "\n" +

 "SQLERRD(6): " + sqlErrd[5]);

 System.err.println (

 "SQLWARN1: " + sqlWarn[0] + "\n" +

 "SQLWARN2: " + sqlWarn[1] + "\n" +

 "SQLWARN3: " + sqlWarn[2] + "\n" +

 "SQLWARN4: " + sqlWarn[3] + "\n" +

 "SQLWARN5: " + sqlWarn[4] + "\n" +

 "SQLWARN6: " + sqlWarn[5] + "\n" +

 "SQLWARN7: " + sqlWarn[6] + "\n" +

 "SQLWARN8: " + sqlWarn[7] + "\n" +

 "SQLWARN9: " + sqlWarn[8] + "\n" +

 "SQLWARNA: " + sqlWarn[9]);

 System.err.println ("SQLSTATE: " + sqlState);

 // portion of SQLException

 }

 sqle=sqle.getNextException(); // Retrieve next SQLException �3c�

 }

}

Figure 29. Processing an SQLException under the IBM DB2 Driver for JDBC and SQLJ (Part

2 of 2)

Chapter 2. Programming JDBC applications 81

The basic steps for retrieving SQL warning information are:

1. Immediately after invoking a method that executes an SQL statement, invoke

the getWarnings method to retrieve an SQLWarning object.

2. Perform the following steps in a loop:

a. Test whether the SQLWarning object is null. If not, continue to the next step.

b. Invoke the SQLWarning.getMessage method to retrieve the warning

description.

c. Invoke the SQLWarning.getSQLState method to retrieve the SQLSTATE

value.

d. Invoke the SQLWarning.getErrorCode method to retrieve the error code

value.

e. If you want DB2-specific warning information, perform the same steps that

you perform to get DB2-specific information for an SQLException.

f. Invoke the SQLWarning.getNextWarning method to retrieve the next

SQLWarning.

The following code illustrates how to obtain generic SQLWarning information. The

numbers to the right of selected statements correspond to the previously-described

steps.

 Related tasks:

v “Handling an SQLException under the IBM DB2 Driver for JDBC and SQLJ” on

page 77

Retrieving information from a BatchUpdateException

 When an error occurs during execution of a statement in a batch, processing

continues. However, executeBatch throws a BatchUpdateException. A

BatchUpdateException object contains the following items:

v A String object that contains a description of the error, or null.

v A String object that contains the SQLSTATE for the failing SQL statement, or

null

v An integer value that contains the error code, or zero

v An integer array of update counts for SQL statements in the batch, or null

v A pointer to an SQLException object, or null

One BatchUpdateException is thrown for the entire batch. At least one

SQLException object is chained to the BatchUpdateException object. The

Connection con;

Statement stmt;

ResultSet rs;

SQLWarning sqlwarn;

...

stmt = con.createStatement(); // Create a Statement object

rs = stmt.executeQuery("SELECT * FROM EMPLOYEE");

 // Get the result table from the query

sqlwarn = stmt.getWarnings(); // Get any warnings generated �1�

while (sqlwarn != null) { // While there are warnings, get and �2a�

 // print warning information

 System.out.println ("Warning description: " + sqlwarn.getMessage()); �2b�

 System.out.println ("SQLSTATE: " + sqlwarn.getSQLState()); �2c�

 System.out.println ("Error code: " + sqlwarn.getErrorCode()); �2d�

 sqlwarn=sqlwarn.getNextWarning(); // Get next SQLWarning �2f�

}

Figure 30. Processing an SQLWarning

82 Developing Java Applications

SQLException objects are chained in the same order as the corresponding

statements were added to the batch. To help you match SQLException objects to

statements in the batch, the error description field for each SQLException object

begins with this string:

Error for batch element #n:

n is the number of the statement in the batch.

To retrieve information from the BatchUpdateException, follow these steps:

1. Use the BatchUpdateException.getUpdateCounts method to determine the

number of rows that each SQL statement in the batch updated before the

exception was thrown. getUpdateCount returns an array with an element for

each statement in the batch. An element has one of the following values:

n The number of rows that the statement updated.

Statement.SUCCESS_NO_INFO

This value is returned if the number of updated rows cannot be

determined.

Statement.EXECUTE_FAILED

This value is returned if the statement did not execute successfully.
2. Use SQLException methods getMessage, getSQLState, and getErrorCode to

retrieve the description of the error, the SQLSTATE, and the error code for the

first error.

3. Use the BatchUpdateException.getNextException method to get a chained

SQLException.

4. In a loop, execute the getMessage, getSQLState, getErrorCode, and

getNextException method calls to obtain information about an SQLException

and get the next SQLException.

Example of obtaining information from a BatchUpdateException: The following

code fragment demonstrates how to obtain the fields of a BatchUpdateException

and the chained SQLException objects. The numbers to the right of selected

statements correspond to the previously-described steps.

try {

 // Batch updates

} catch(BatchUpdateException buex) {

 System.err.println("Contents of BatchUpdateException:");

 System.err.println(" Update counts: ");

 int [] updateCounts = buex.getUpdateCounts(); �1�

 for (int i = 0; i < updateCounts.length; i++) {

 System.err.println(" Statement " + i + ":" + updateCounts[i]);

 }

 System.err.println(" Message: " + buex.getMessage()); �2�

 System.err.println(" SQLSTATE: " + buex.getSQLState());

 System.err.println(" Error code: " + buex.getErrorCode());

 SQLException ex = buex.getNextException(); �3�

 while (ex != null) { �4�

 System.err.println("SQL exception:");

 System.err.println(" Message: " + ex.getMessage());

 System.err.println(" SQLSTATE: " + ex.getSQLState());

 System.err.println(" Error code: " + ex.getErrorCode());

 ex = ex.getNextException();

 }

}

Figure 31. Retrieving a BatchUpdateException fields

Chapter 2. Programming JDBC applications 83

To obtain information about warnings, use the Statement.getWarnings method on

the object on which you ran the executeBatch method. You can then retrieve an

error description, SQLSTATE, and error code for each SQLWarning object.

Restrictions on executing statements in a batch:

v If you try to execute a SELECT statement in a batch, a BatchUpdateException is

thrown.

v A CallableStatement object that you execute in a batch can contain output

parameters. However, you cannot retrieve the values of the output parameters. If

you try to do so, a BatchUpdateException is thrown.

v You cannot retrieve ResultSet objects from a CallableStatement object that you

execute in a batch. A BatchUpdateException is not thrown, but the getResultSet

method invocation returns a null value.

 Related tasks:

v “Making batch updates in JDBC applications” on page 42

Handling an SQLException under the DB2 JDBC Type 2 Driver

 As in all Java programs, error handling is done using try/catch blocks. Methods

throw exceptions when an error occurs, and the code in the catch block handles

those exceptions.

JDBC provides the SQLException class for handling errors. All JDBC methods

throw an instance of SQLException when an error occurs during their execution.

According to the JDBC specification, an SQLException object contains the following

information:

v A String object that contains a description of the error, or null

v A String object that contains the SQLSTATE, or null

v An int value that contains an error code

v A pointer to the next SQLException, or null

The basic steps for handling an SQLException in a JDBC program that runs under

the DB2 JDBC Type 2 Driver for Linux, UNIX and Windows (DB2 JDBC Type 2

Driver) are:

1. Put code that can generate an SQLException in a try block.

2. In the catch block, perform the following steps in a loop:

a. Test whether you have retrieved the last SQLException. If not, continue to

the next step.

b. Retrieve error information from the SQLException.

c. Invoke the SQLException.getNextException method to retrieve the next

SQLException.

The following code illustrates a catch block that uses the DB2 version of

SQLException that is provided with the DB2 JDBC Type 2 Driver. The numbers to

the right of selected statements correspond to the previously-described steps.

84 Developing Java Applications

Related tasks:

v “Handling an SQLWarning under the IBM DB2 Driver for JDBC and SQLJ” on

page 81

Handling an SQLWarning under the DB2 JDBC Type 2 Driver

 Unlike SQL errors, SQL warnings do not cause JDBC methods to throw exceptions.

Instead, the Connection, Statement, PreparedStatement, CallableStatement, and

ResultSet classes contain getWarnings methods, which you need to invoke after

you execute SQL statements to determine whether any SQL warnings were

generated. Calling getWarnings retrieves an SQLWarning object.

The DB2 JDBC Type 2 Driver for Linux, UNIX and Windows (DB2 JDBC Type 2

Driver) generates generic SQLWarning objects. A generic SQLWarning object contains

the following information:

v A String object that contains a description of the warning, or null

v A String object that contains the SQLSTATE, or null

v An int value that contains an error code

v A pointer to the next SQLWarning, or null

The basic steps for retrieving SQL warning information are:

1. Immediately after invoking a method that executes an SQL statement, invoke

the getWarnings method to retrieve an SQLWarning object.

2. Perform the following steps in a loop:

a. Test whether the SQLWarning object is null. If not, continue to the next step.

b. Invoke the SQLWarning.getMessage method to retrieve the warning

description.

c. Invoke the SQLWarning.getSQLState method to retrieve the SQLSTATE

value.

d. Invoke the SQLWarning.getErrorCode method to retrieve the error code

value.

e. Invoke the SQLWarning.getNextWarning method to retrieve the next

SQLWarning.

The following code illustrates how to obtain generic SQLWarning information. The

numbers to the right of selected statements correspond to the previously-described

steps.

import java.sql.*; // Import JDBC API package

...

try {

 // Code that could generate SQLExceptions

 ...

} catch(SQLException sqle) {

 while(sqle != null) { // Check whether there are more �1�

 System.out.println("Message: " + sqle.getMessage()); �2�

 System.out.println("SQLSTATE: " + sqle.getSQLState());

 System.out.println("SQL error code: " + sqle.getErrorCode());

 sqle=sqle.getNextException(); // Retrieve next SQLException �3�

 }

}

Figure 32. Processing an SQLException under the IBM DB2 Driver for JDBC and SQLJ

Chapter 2. Programming JDBC applications 85

Related tasks:

v “Handling an SQLException under the DB2 JDBC Type 2 Driver” on page 84

IBM DB2 Driver for JDBC and SQLJ client reroute support

 The DB2 Database for Linux, UNIX, and Windows automatic client reroute feature

allows client applications to recover from a loss of communication with the server

so that they can continue to work with minimal interruption.

Whenever a server crashes, each client that is connected to that server receives a

communication error, which terminates the connection and results in an application

error. When availability is important, you should have a redundant setup or

failover support. Failover is the ability of a server to take over operations when

another server fails. In either case, the IBM DB2 Driver for JDBC and SQLJ client

attempts to reestablish the connection to the original server or to a new server.

When the connection is reestablished, the application receives an SQLException that

informs it of the transaction failure, but the application can continue with the next

transaction.

IBM DB2 Driver for JDBC and SQLJ client reroute support is available only for

connections that are obtained using a DataSource interface. The DriverManager

interface is not supported.

Before a client application can recover from a loss of communication, an alternate

server location must be specified at the server. The database administrator specifies

the alternate server with the UPDATE ALTERNATE SERVER FOR DATABASE

command.

After the database administrator specifies the alternate server location on a

particular database at the server instance, the primary and alternate server

locations are returned to the client at connect time. The IBM DB2 Driver for JDBC

and SQLJ creates an instance of the DB2ClientRerouteServerList class, which

implements the javax.naming.Referenceable interface, and stores that instance in

its transient memory. If communication is lost, the IBM DB2 Driver for JDBC and

SQLJ tries to reestablish the connection using the server location information that is

returned from the server.

DB2ClientRerouteServerList is a serializable Java bean with the following

properties:

Connection con;

Statement stmt;

ResultSet rs;

SQLWarning sqlwarn;

...

stmt = con.createStatement(); // Create a Statement object

rs = stmt.executeQuery("SELECT * FROM EMPLOYEE");

 // Get the result table from the query

sqlwarn = stmt.getWarnings(); // Get any warnings generated �1�

while (sqlwarn != null) { // While there are warnings, get and �2a�

 // print warning information

 System.out.println ("Warning description: " + sqlwarn.getMessage()); �2b�

 System.out.println ("SQLSTATE: " + sqlwarn.getSQLState()); �2c�

 System.out.println ("Error code: " + sqlwarn.getErrorCode()); �2d�

 sqlwarn=sqlwarn.getNextWarning(); // Get next SQLWarning �2f�

}

Figure 33. Processing an SQLWarning

86 Developing Java Applications

Property name Data type

com.ibm.db2.jcc.DB2ClientRerouteServerList.alternateServerName String[]

com.ibm.db2.jcc.DB2ClientRerouteServerList.alternatePortNumber int[]

com.ibm.db2.jcc.DB2ClientRerouteServerList.primaryServerName String[]

com.ibm.db2.jcc.DB2ClientRerouteServerList.primaryPortNumber int[]

getXXX and setXXX methods are defined for each property.

The clientRerouteServerListJNDIName property of a DataSource provides

additional client reroute support at the client. clientRerouteServerListJNDIName

has two functions:

v Allows information about reroute servers to persist across JVMs

v Provides an alternate server location if the first connection to the database server

fails

clientRerouteServerListJNDIName identifies a JNDI reference to a

DB2ClientRerouteServerList instance in a JNDI repository of reroute server

information. After a successful connection to the primary server, the alternate

server information that is provided by clientRerouteServerListJNDIName is

overwritten by the information from the server.

If the clientRerouteServerListJNDIName property is defined:

v The IBM DB2 Driver for JDBC and SQLJ attempts to propagate the updated

information to the JNDI store after a failover.

v primaryServerName and primaryPortNumber values that are specified in

DB2ClientRerouteServerList are used for the connection. If primaryServerName

is not specified, the serverName value for the DataSource instance is used.

When a failover connection is established, it has the original DataSource properties,

except for the server name and port number. In addition, any DB2 special registers

that were modified during the original connection are reestablished in the failover

connection by the IBM DB2 Driver for JDBC and SQLJ.

When a communication failure occurs, the IBM DB2 Driver for JDBC and SQLJ

first attempts recovery to the original server. Reconnection to the original server is

called failback. If failback fails, the driver attempts failover to the alternate

location. After a connection is reestablished, the driver throws a

java.sql.SQLException to the application with SQLCODE -4498, to indicate to the

application that the connection to the alternate server was automatically

reestablished and the transaction was implicitly rolled back. The application can

then retry its transaction without doing an explicit rollback first.

To set up storage to make DB2ClientRerouteServerList persistent, follow these

steps:

1. Create an instance of DB2ClientRerouteServerList, and bind that instance to

the JNDI registry.

Example:

// Create a starting context for naming operations

InitialContext registry = new InitialContext();

// Create a DB2ClientRerouteServerList object

DB2ClientRerouteServerList address = new DB2ClientRerouteServerList();

// Set the port number and server name for the primary server

address.setPrimaryPortNumber(50000);

address.setPrimaryServerName("mvs1.sj.ibm.com");

Chapter 2. Programming JDBC applications 87

// Set the port number and server name for the alternate server

int[] port = {50002};

String[] server = {"mvs3.sj.ibm.com"};

address.setAlternatePortNumber(port);

address.setAlternateServerName(server);

registry.rebind("serverList", address);

2. Assign the JNDI name of the DB2ClientRerouteServerList object to the

clientRerouteServerListJNDIName property.

Example:

datasource.setClientRerouteServerListJNDIName("serverList");

 Related reference:

v “Properties for the IBM DB2 Driver for JDBC and SQLJ” on page 232

v “Summary of IBM DB2 Driver for JDBC and SQLJ extensions to JDBC” on page

301

Disconnecting from database servers in JDBC applications

 When you have finished with a connection to a data source, it is essential that you

close the connection to the data source. Doing this releases the Connection object’s

DB2 and JDBC resources immediately. To close the connection to the data source,

use the close method. For example:

 Connection con;

 ...

con.close();

If autocommit mode is not on, the connection needs to be on a unit-of-work

boundary before you close the connection.

 Related concepts:

v “How JDBC applications connect to a data source” on page 24

88 Developing Java Applications

Chapter 3. Programming SQLJ applications

The topics that follow contain information about writing SQLJ applications.

v “Basic steps in writing an SQLJ application”

v “Connecting to a data source using SQLJ” on page 92

v “Java packages for SQLJ support” on page 97

v “Variables in SQLJ applications” on page 98

v “Comments in an SQLJ application” on page 99

v “Executing SQL statements in SQLJ applications” on page 100

v “Working with XML data in SQLJ applications” on page 133

v “Transaction control in SQLJ applications” on page 137

v “Handling errors and warnings in SQLJ applications” on page 138

v “Closing the connection to a data source in an SQLJ application” on page 140

Basic steps in writing an SQLJ application

 Writing a SQLJ application has much in common with writing an SQL application

in any other language: In general, you need to do the following things:

v Import the Java packages that contain SQLJ and JDBC methods.

v Declare variables for sending data to or retrieving data from DB2 tables.

v Connect to a data source.

v Execute SQL statements.

v Handle SQL errors and warnings.

v Disconnect from the data source.

Although the tasks that you need to perform are similar to those in other

languages, the way that you execute those tasks, and the order in which you

execute those tasks, is somewhat different.

Figure 34 on page 90 is a simple program that demonstrates each task.

© Copyright IBM Corp. 2006 89

import sqlj.runtime.*; �1�

import java.sql.*;

#sql context EzSqljCtx; �3a�

#sql iterator EzSqljNameIter (String LASTNAME); �4a�

public class EzSqlj {

 public static void main(String args[])

 throws SQLException

 {

 EzSqljCtx ctx = null;

 String URLprefix = "jdbc:db2:";

 String url;

 url = new String(URLprefix + args[0]);

 // Location name is an input parameter

 String hvmgr="000010"; �2�

 String hvdeptno="A00";

 try { �3b�

 Class.forName("com.ibm.db2.jcc.DB2Driver");

 } catch (Exception e)

 {

 throw new SQLException("Error in EzSqlj: Could not load the driver");

 }

 try

 {

 System.out.println("About to connect using url: " + url);

 Connection con0 = DriverManager.getConnection(url); �3c�

 // Create a JDBC Connection

 con0.setAutoCommit(false); // set autocommit OFF

 ctx = new EzSqljCtx(con0); �3d�

 try

 {

 EzSqljNameIter iter;

 int count=0;

 #sql [ctx] iter =

 {SELECT LASTNAME FROM EMPLOYEE}; �4b�

 // Create result table of the SELECT

 while (iter.next()) { �4c�

 System.out.println(iter.LASTNAME()); // Retrieve rows from result table

 count++;

 }

 System.out.println("Retrieved " + count + " rows of data");

 }

Figure 34. Simple SQLJ application (Part 1 of 2)

90 Developing Java Applications

Notes to Figure 34 on page 90:

 Note Description

�1� These statements import the java.sql package, which contains the JDBC core

API, and the sqlj.runtime package, which contains the SQLJ API. For

information on other packages or classes that you might need to access, see

Access Java packages for SQLJ support.

�2� String variables hvmgr and hvdeptno are host identifiers, which are equivalent

to DB2 host variables. See Declare variables in SQLJ applications for more

information.

�3a�, �3b�,

�3c�, and

�3d�

These statements demonstrate how to connect to a data source using one of the

three available techniques. See Connect to a data source using SQLJ for more

details.

 catch(SQLException e) �5�

 {

 System.out.println ("**** SELECT SQLException...");

 while(e!=null) {

 System.out.println ("Error msg: " + e.getMessage());

 System.out.println ("SQLSTATE: " + e.getSQLState());

 System.out.println ("Error code: " + e.getErrorCode());

 e = e.getNextException(); // Check for chained exceptions

 }

 }

 catch(Exception e)

 {

 System.out.println("**** NON-SQL exception = " + e);

 e.printStackTrace();

 }

 try

 {

 #sql [ctx] �4d�

 {UPDATE DEPARTMENT SET MGRNO=:hvmgr

 WHERE DEPTNO=:hvdeptno};

 // Update data for one department �6�

 #sql [ctx] {COMMIT}; // Commit the update

 }

 catch(SQLException e)

 {

 System.out.println ("**** UPDATE SQLException...");

 System.out.println ("Error msg: " + e.getMessage() + ". SQLSTATE=" +

 e.getSQLState() + " Error code=" + e.getErrorCode());

 e.printStackTrace();

 }

 catch(Exception e)

 {

 System.out.println("**** NON-SQL exception = " + e);

 e.printStackTrace();

 }

 iter.close(); // Close the iterator

 ctx.close(); �7�

 }

 catch(SQLException e)

 {

 System.out.println ("**** SQLException ...");

 System.out.println ("Error msg: " + e.getMessage() + ". SQLSTATE=" +

 e.getSQLState() + " Error code=" + e.getErrorCode());

 e.printStackTrace();

 }

 catch(Exception e)

 {

 System.out.println ("**** NON-SQL exception = " + e);

 e.printStackTrace();

 }

}

Figure 34. Simple SQLJ application (Part 2 of 2)

Chapter 3. Programming SQLJ applications 91

Note Description

�4a� ,

�4b�, �4c�,

and �4d�

These statements demonstrate how to execute SQL statements in SQLJ.

Statement 4a demonstrates the SQLJ equivalent of declaring an SQL cursor.

Statements 4b and 4c show one way of doing the SQLJ equivalent of executing

SQL FETCHes. Statement 4d shows how to do the SQLJ equivalent of

performing an SQL UPDATE. For more information, see Execute SQL in an

SQLJ application.

�5� This try/catch block demonstrates the use of the SQLException class for SQL

error handling. For more information on handling SQL errors, see Handle errors

in an SQLJ application. For more information on handling SQL warnings, see

Handle SQL warnings in an SQLJ application.

�6� This is an example of a comment. For rules on including comments in SQLJ

programs, see Include comments in an SQLJ application.

�7� This statement closes the connection to the data source. See Close the

connection to the data source in an SQLJ application.

 Related concepts:

v “Java packages for SQLJ support” on page 97

v “Variables in SQLJ applications” on page 98

v “SQL statements in an SQLJ application” on page 100

 Related tasks:

v “Connecting to a data source using SQLJ” on page 92

Connecting to a data source using SQLJ

 In an SQLJ application, as in any other DB2 application, you must be connected to

a database server before you can execute SQL statements. In SQLJ, as in JDBC, a

database server is called a data source.

You can use one of the following techniques to connect to a data source.

Connection technique 1: This technique uses the JDBC DriverManager as the

underlying means for creating the connection. Use it with any level of the JDBC

driver.

1. Execute an SQLJ connection declaration clause.

Doing this generates a connection context class. The simplest form of the

connection declaration clause is:

#sql context context-class-name;

The name of the generated connection context class is context-class-name.

2. Load a JDBC driver by invoking the Class.forName method:

v For the IBM DB2 Driver for JDBC and SQLJ, invoke Class.forName this way:

Class.forName("com.ibm.db2.jcc.DB2Driver");

v For the DB2 JDBC Type 2 Driver, invoke Class.forName this way:

Class.forName("COM.ibm.db2.jdbc.app.DB2Driver");

3. Invoke the constructor for the connection context class that you created in step

1.

Doing this creates a connection context object that you specify in each SQL

statement that you execute at the associated data source. The constructor

invocation statement needs to be in one of the following forms:

92 Developing Java Applications

connection-context-class connection-context-object=

 new connection-context-class(String url, boolean autocommit);

connection-context-class connection-context-object=

 new connection-context-class(String url, String user,

 String password, boolean autocommit);

connection-context-class connection-context-object=

 new connection-context-class(String url, Properties info,

 boolean autocommit);

The meanings of the parameters are:

url A string that specifies the location name that is associated with the data

source. That argument has one of the forms that are specified in Connect to

a data source using the DriverManager interface with the IBM DB2 Driver

for JDBC and SQLJ. The form depends on which JDBC driver you are

using.

user and password

Specify a user ID and password for connection to the data source, if the

data source to which you are connecting requires them.

info

Specifies an object of type java.util.Properties that contains a set of

driver properties for the connection. For the DB2 JDBC Type 2 Driver for

Linux, UNIX and Windows (DB2 JDBC Type 2 Driver), you should specify

only the user and password properties. For the IBM DB2 Driver for JDBC

and SQLJ, you can specify any of the properties listed in Properties for the

IBM DB2 Driver for JDBC and SQLJ.

autocommit

Specifies whether you want the database manager to issue a COMMIT after

every statement. Possible values are true or false. If you specify false,

you need to do explicit commit operations.

The following code uses connection technique 1 to create a connection to location

NEWYORK. The connection requires a user ID and password, and does not require

autocommit. The numbers to the right of selected statements correspond to the

previously-described steps.

 Connection technique 2: This technique uses the JDBC DriverManager interface for

creating the connection. Use it with any level of the JDBC driver.

#sql context Ctx; // Create connection context class Ctx �1�

String userid="dbadm"; // Declare variables for user ID and password

String password="dbadm";

String empname; // Declare a host variable

...

try { // Load the JDBC driver

 Class.forName("com.ibm.db2.jcc.DB2Driver"); �2�

}

catch (ClassNotFoundException e) {

 e.printStackTrace();

}

Ctx myConnCtx= �3�

 new Ctx("jdbc:db2://sysmvs1.stl.ibm.com:5021/NEWYORK",

 userid,password,false); // Create connection context object myConnCtx

 // for the connection to NEWYORK

#sql [myConnCtx] {SELECT LASTNAME INTO :empname FROM EMPLOYEE

 WHERE EMPNO='000010'};

 // Use myConnCtx for executing an SQL statement

Figure 35. Using connection technique 1 to connect to a data source

Chapter 3. Programming SQLJ applications 93

1. Execute an SQLJ connection declaration clause.

This is the same as step 1 on page 92 in connection technique 1.

2. Load the driver.

This is the same as step 2 on page 92 in connection technique 1.

3. Invoke the JDBC DriverManager.getConnection method.

Doing this creates a JDBC connection object for the connection to the data

source. You can use any of the forms of getConnection that are specified in

Connect to a data source using the DriverManager interface with the IBM DB2

Driver for JDBC and SQLJ.

The meanings of the url, user, and password parameters are the same as the

meanings of the parameters in step 3 on page 92 of connection technique 1.

4. Invoke the constructor for the connection context class that you created in step

1.

Doing this creates a connection context object that you specify in each SQL

statement that you execute at the associated data source. The constructor

invocation statement needs to be in the following form:

connection-context-class connection-context-object=

 new connection-context-class(Connection JDBC-connection-object);

The JDBC-connection-object parameter is the Connection object that you created

in step 3.

The following code uses connection technique 2 to create a connection to location

NEWYORK. The connection requires a user ID and password, and does not require

autocommit. The numbers to the right of selected statements correspond to the

previously-described steps.

Connection technique 3: This technique uses the JDBC DataSource interface for

creating the connection.

1. Execute an SQLJ connection declaration clause.

This is the same as step 1 on page 92 in connection technique 1.

2. If your system administrator created a DataSource object in a different program:

a. Obtain the logical name of the data source to which you need to connect.

#sql context Ctx; // Create connection context class Ctx �1�

String userid="dbadm"; // Declare variables for user ID and password

String password="dbadm";

String empname; // Declare a host variable

...

try { // Load the JDBC driver

 Class.forName("com.ibm.db2.jcc.DB2Driver"); �2�

}

catch (ClassNotFoundException e) {

 e.printStackTrace();

}

Connection jdbccon= �3�

 DriverManager.getConnection("jdbc:db2://sysmvs1.stl.ibm.com:5021/NEWYORK",

 userid,password);

 // Create JDBC connection object jdbccon

jdbccon.setAutoCommit(false); // Do not autocommit �4�

Ctx myConnCtx=new Ctx(jdbccon); �5�

 // Create connection context object myConnCtx

 // for the connection to NEWYORK

#sql [myConnCtx] {SELECT LASTNAME INTO :empname FROM EMPLOYEE

 WHERE EMPNO='000010'};

 // Use myConnCtx for executing an SQL statement

Figure 36. Using connection technique 2 to connect to a data source

94 Developing Java Applications

b. Create a context to use in the next step.

c. In your application program, use the Java Naming and Directory Interface

(JNDI) to get the DataSource object that is associated with the logical data

source name.

Otherwise, create a DataSource object and assign properties to it, as shown in

″Creating and using a DataSource object in the same application″ in Connect to

a data source using the DataSource interface.

3. Invoke the JDBC DataSource.getConnection method.

Doing this creates a JDBC connection object for the connection to the data

source. You can use one of the following forms of getConnection:

getConnection();

getConnection(user, password);

The meanings of user and password parameters are the same as the meanings of

the parameters in step 3 on page 92 of connection technique 1.

4. If the default autocommit mode is not appropriate, invoke the JDBC

Connection.setAutoCommit method.

Doing this indicates whether you want the database manager to issue a

COMMIT after every statement. The form of this method is:

setAutoCommit(boolean autocommit);

5. Invoke the constructor for the connection context class that you created in step

1 on page 94.

Doing this creates a connection context object that you specify in each SQL

statement that you execute at the associated data source. The constructor

invocation statement needs to be in the following form:

connection-context-class connection-context-object=

 new connection-context-class(Connection JDBC-connection-object);

The JDBC-connection-object parameter is the Connection object that you created

in step 3.

The following code uses connection technique 3 to create a connection to a location

with logical name jdbc/sampledb. The numbers to the right of selected statements

correspond to the previously-described steps.

 Connection technique 4 (IBM DB2 Driver for JDBC and SQLJ only): This technique

uses the JDBC DataSource interface for creating the connection. This technique

requires that the DataSource is registered with JNDI.

import java.sql.*;

import javax.naming.*;

import javax.sql.*;

...

#sql context CtxSqlj; // Create connection context class CtxSqlj �1�

Context ctx=new InitialContext(); �2b�

DataSource ds=(DataSource)ctx.lookup("jdbc/sampledb"); �2c�

Connection con=ds.getConnection(); �3�

String empname; // Declare a host variable

...

con.setAutoCommit(false); // Do not autocommit �4�

CtxSqlj myConnCtx=new CtxSqlj(con); �5�

 // Create connection context object myConnCtx

#sql [myConnCtx] {SELECT LASTNAME INTO :empname FROM EMPLOYEE

 WHERE EMPNO='000010'};

 // Use myConnCtx for executing an SQL statement

Figure 37. Using connection technique 3 to connect to a data source

Chapter 3. Programming SQLJ applications 95

1. From your system administrator, obtain the logical name of the data source to

which you need to connect.

2. Execute an SQLJ connection declaration clause.

For this type of connection, the connection declaration clause needs to be of

this form:

#sql public static context context-class-name

 with (dataSource="logical-name");

The connection context must be declared as public and static. logical-name is the

data source name that you obtained in step 1.

3. Invoke the constructor for the connection context class that you created in step

2.

Doing this creates a connection context object that you specify in each SQL

statement that you execute at the associated data source. The constructor

invocation statement needs to be in one of the following forms:

connection-context-class connection-context-object=

 new connection-context-class();

connection-context-class connection-context-object=

 new connection-context-class (String user,

 String password);

The meanings of the user and password parameters are the same as the

meanings of the parameters in step 3 on page 92 of connection technique 1.

The following code uses connection technique 4 to create a connection to a location

with logical name jdbc/sampledb. The connection requires a user ID and password.

Connection technique 5: This technique uses a previously created connection to

connect to the data source. In general, one program declares a connection context

class, creates connection contexts, and passes them as parameters to other

programs. A program that uses the connection context invokes a constructor with

the passed connection context object as its argument.

Example: Program CtxGen.sqlj declares connection context Ctx and creates instance

oldCtx:

#sql context Ctx;

...

// Create connection context object oldCtx

Program test.sqlj receives oldCtx as a parameter and uses oldCtx as the argument

of its connection context constructor:

#sql public static context Ctx

 with (dataSource="jdbc/sampledb"); �2�

 // Create connection context class Ctx

String userid="dbadm"; // Declare variables for user ID and password

String password="dbadm";

String empname; // Declare a host variable

...

Ctx myConnCtx=new Ctx(userid, password); �3�

 // Create connection context object myConnCtx

 // for the connection to jdbc/sampledb

#sql [myConnCtx] {SELECT LASTNAME INTO :empname FROM EMPLOYEE

 WHERE EMPNO='000010'};

 // Use myConnCtx for executing an SQL statement

Figure 38. Using connection technique 4 to connect to a data source

96 Developing Java Applications

void useContext(sqlj.runtime.ConnectionContext oldCtx)

 // oldCtx was created in CtxGen.sqlj

{

 Ctx myConnCtx=

 new Ctx(oldCtx); // Create connection context object myConnCtx

 // from oldCtx

 #sql [myConnCtx] {SELECT LASTNAME INTO :empname FROM EMPLOYEE

 WHERE EMPNO=’000010’};

 // Use myConnCtx for executing an SQL statement

...

}

Connection technique 6: This technique uses the default connection to connect to

the data source. It should be used only in situations where the database thread is

controlled by another resource manager, such as the Java stored procedure

environment. You use the default connection by specifying your SQL statements

without a connection context object. When you use this technique, you do not need

to load a JDBC driver unless you explicitly use JDBC interfaces in your program.

For example:

#sql {SELECT LASTNAME INTO :empname FROM EMPLOYEE

 WHERE EMPNO='000010'}; // Use default connection for

 // executing an SQL statement

To create a default connection context, SQLJ does a JNDI lookup for

jdbc/defaultDataSource. If nothing is registered, a null context exception is issued

when SQLJ attempts to access the context.

 Related concepts:

v “How JDBC applications connect to a data source” on page 24

 Related tasks:

v “Connecting to a data source using the DriverManager interface with the IBM

DB2 Driver for JDBC and SQLJ” on page 27

v “Connecting to a data source using the DataSource interface” on page 30

 Related reference:

v “Properties for the IBM DB2 Driver for JDBC and SQLJ” on page 232

Java packages for SQLJ support

 Before you can execute SQLJ statements or invoke JDBC methods in your SQLJ

program, you need to be able to access all or parts of various Java packages that

contain support for those statements. You can do that either by importing the

packages or specific classes, or by using fully-qualified class names. You might

need the following packages or classes for your SQLJ program:

sqlj.runtime

Contains the SQLJ run-time API.

java.sql

Contains the core JDBC API.

com.ibm.db2.jcc

Contains the DB2-specific implementation of JDBC and SQLJ.

javax.naming

Contains classes and interfaces for Java Naming and Directory Interface

(JNDI), which is often used for implementing a DataSource.

Chapter 3. Programming SQLJ applications 97

javax.sql

Contains methods for producing server-side applications using Java.

 Related concepts:

v “Basic steps in writing an SQLJ application” on page 89

Variables in SQLJ applications

 In DB2 programs in other languages, you use host variables to pass data between

the application program and DB2. In SQLJ programs, host variables are known as

host expressions. A host expression can be a simple Java identifier, or it can be a

complex expression. Every host expression must start with a colon when it is used

in an SQL statement. Host expressions are case sensitive.

A Java identifier can have any of the data types listed in the Java data type column

of Java, JDBC, and SQLJ data types. Data types that are specified in an iterator can

be any of the types in the Java data type column of Java, JDBC, and SQLJ data

types.

A complex expression is an array element or Java expression that evaluates to a

single value. A complex expression in an SQLJ clause must be surrounded by

parentheses.

The following examples demonstrate how to use host expressions.

Example: Declaring a Java identifier and using it in a SELECT statement:

In this example, the statement that begins with #sql has the same function as a

SELECT statement in other languages. This statement assigns the last name of the

employee with employee number 000010 to Java identifier empname.

String empname;

...

#sql [ctxt]

 {SELECT LASTNAME INTO :empname FROM EMPLOYEE WHERE EMPNO='000010'};

Example: Declaring a Java identifier and using it in a stored procedure call:

In this example, the statement that begins with #sql has the same function as an

SQL CALL statement in other languages. This statement uses Java identifier empno

as an input parameter to stored procedure A. The value IN, which precedes empno,

specifies that empno is an input parameter. For a parameter in a CALL statement, IN

is the default. The explicit or default qualifier that indicates how the parameter is

used (IN, OUT, or INOUT) must match the corresponding value in the parameter

definition that you specified in the CREATE PROCEDURE statement for the stored

procedure.

String empno = "0000010";

...

#sql [ctxt] {CALL A (:IN empno)};

Example: Using a complex expression as a host identifier:

This example uses complex expression (((int)yearsEmployed++/5)*500) as a host

expression.

#sql [ctxt] {UPDATE EMPLOYEE

 SET BONUS=:(((int)yearsEmployed++/5)*500) WHERE EMPNO=:empID};

98 Developing Java Applications

SQLJ performs the following actions when it processes a complex host expression:

v Evaluates each of the host expressions in the statement, from left to right, before

assigning their respective values to the database.

v Evaluates side effects, such as operations with postfix operators, according to

normal Java rules. All host expressions are fully evaluated before any of their

values are passed to DB2.

v Uses Java rules for rounding and truncation.

Therefore, if the value of yearsEmployed is 6 before the UPDATE statement is

executed, the value that is assigned to column BONUS by the UPDATE statement

is ((int)6/5)*500, or 500. After 500 is assigned to BONUS, the value of

yearsEmployed is incremented.

Restrictions on variable names: Two strings have special meanings in SQLJ

programs. Observe the following restrictions when you use these strings in your

SQLJ programs:

v The string __sJT_ is a reserved prefix for variable names that are generated by

SQLJ. Do not begin the following types of names with __sJT_:

– Host expression names

– Java variable names that are declared in blocks that include executable SQL

statements

– Names of parameters for methods that contain executable SQL statements

– Names of fields in classes that contain executable SQL statements, or in

classes with subclasses or enclosed classes that contain executable SQL

statements
v The string _SJ is a reserved suffix for resource files and classes that are

generated by SQLJ. Avoid using the string _SJ in class names and input source

file names.

 Related concepts:

v “Basic steps in writing an SQLJ application” on page 89

 Related reference:

v “Data types that map to SQL data types in JDBC applications” on page 227

Comments in an SQLJ application

 To document your program, you need to include comments. To do that, use Java

comments. Java comments are denoted by /* */ or //. You can include Java

comments outside SQLJ clauses, wherever the Java language permits them. Within

an SQLJ clause, you can use Java comments in the following places:

v Within a host expression (/* */ or //).

v Within an SQL statement in an executable clause, if the database server supports

a comment within the SQL statement (/* */ only).

only

 Related concepts:

v “Basic steps in writing a JDBC application” on page 21

Chapter 3. Programming SQLJ applications 99

Executing SQL statements in SQLJ applications

The topics that follow contain information about executing SQL statements SQLJ

applications.

v “SQL statements in an SQLJ application”

v “Updating DB2 tables in SQLJ applications” on page 101

v “Retrieving data from DB2 tables in SQLJ applications” on page 111

v “Calling stored procedures in SQLJ applications” on page 121

v “Working with LOBs in SQLJ applications” on page 124

v “Using SQLJ and JDBC in the same application” on page 127

v “Controlling the execution of SQL statements in SQLJ” on page 130

v “ROWIDs in SQLJ with the IBM DB2 Driver for JDBC and SQLJ” on page 130

v “Distinct types in SQLJ applications” on page 131

v “Savepoints in SQLJ applications” on page 132

SQL statements in an SQLJ application

 You execute SQL statements in a traditional SQL program to create tables, insert,

update, delete, or merge data in tables, retrieve data from the tables, call stored

procedures, or commit or roll back transactions. In an SQLJ program, you also

execute these statements, within SQLJ executable clauses. An executable clause can

have one of the following general forms:

#sql [connection-context] {sql-statement};

#sql [connection-context,execution-context] {sql-statement};

#sql [execution-context] {sql-statement};

execution-context specification

In an executable clause, you should always specify an explicit connection

context, with one exception: you do not specify an explicit connection context

for a FETCH statement. You include an execution context only for specific

cases. See Control the execution of SQL statements in SQLJ for information

about when you need an execution context.

connection-context specification

In an executable clause, if you do not explicitly specify a connection context,

the executable clause uses the DefaultContext. This means that a context must

already be defined as the DefaultContext. Use of a DefaultContext is not

thread-safe, and is not recommended.

 Related concepts:

v “Comments in an SQLJ application” on page 99

v “How an SQLJ application retrieves data from DB2 tables” on page 111

v “Retrieving multiple result sets from a stored procedure in an SQLJ application”

on page 122

v “LOBs in SQLJ applications with the IBM DB2 Driver for JDBC and SQLJ” on

page 124

v “Using SQLJ and JDBC in the same application” on page 127

 Related tasks:

v “Calling stored procedures in an SQLJ application” on page 122

v “Committing or rolling back SQLJ transactions” on page 138

v “Controlling the execution of SQL statements in SQLJ” on page 130

v “Creating and modifying DB2 objects in an SQLJ application” on page 101

v “Handling SQL errors in an SQLJ application” on page 138

100 Developing Java Applications

v “Handling SQL warnings in an SQLJ application” on page 139

v “Making batch updates in SQLJ applications” on page 107

v “Performing positioned UPDATE and DELETE operations in an SQLJ

application” on page 101

v “Setting the isolation level for an SQLJ transaction” on page 138

v “Using a named iterator in an SQLJ application” on page 112

v “Using a positioned iterator in an SQLJ application” on page 114

v “Using scrollable iterators in an SQLJ application” on page 118

 Related reference:

v “SQLJ executable-clause” on page 271

Updating DB2 tables in SQLJ applications

The topics that follow contain information about creating and modifying DB2

tables in SQLJ applications.

v “Creating and modifying DB2 objects in an SQLJ application”

v “Performing positioned UPDATE and DELETE operations in an SQLJ

application”

v “Iterators as passed variables for positioned UPDATE or DELETE operations in

an SQLJ application” on page 106

v “Making batch updates in SQLJ applications” on page 107

Creating and modifying DB2 objects in an SQLJ application

 Use SQLJ executable clauses to do the following things:

v Execute data definition statements (CREATE, ALTER, DROP, GRANT, REVOKE)

v Execute INSERT, searched or positioned UPDATE, and searched or positioned

DELETE statements

For example, the following executable statements demonstrate an INSERT, a

searched UPDATE, and a searched DELETE:

#sql [myConnCtx] {INSERT INTO DEPARTMENT VALUES

 ("X00","Operations 2","000030","E01",NULL)};

#sql [myConnCtx] {UPDATE DEPARTMENT

 SET MGRNO="000090" WHERE MGRNO="000030"};

#sql [myConnCtx] {DELETE FROM DEPARTMENT

 WHERE DEPTNO="X00"};

For information on positioned UPDATEs and DELETEs, see Perform positioned

UPDATE and DELETE operations in an SQLJ application.

 Related tasks:

v “Performing positioned UPDATE and DELETE operations in an SQLJ

application” on page 101

Performing positioned UPDATE and DELETE operations in an

SQLJ application

 As in DB2 applications in other languages, performing positioned UPDATEs and

DELETEs is an extension of retrieving rows from a result table. The basic steps are:

1. Declare the iterator.

The iterator can be positioned or named. For positioned UPDATE or DELETE

operations, the iterator must be declared as updatable. To do this, the

declaration must include the following clauses:

Chapter 3. Programming SQLJ applications 101

implements sqlj.runtime.ForUpdate

This clause causes the generated iterator class to include methods for

using updatable iterators. This clause is required for programs with

positioned UPDATE or DELETE operations.

with (updateColumns=″column-list″)

This clause specifies a comma-separated list of the columns of the result

table that the iterator will update. This clause is optional.
You need to declare the iterator as public, so you need to follow the rules for

declaring and using public iterators in the same file or different files.

If you declare the iterator in a file by itself, any SQLJ source file that has

addressability to the iterator and imports the generated class can retrieve data

and execute positioned UPDATE or DELETE statements using the iterator. The

authorization ID under which a positioned UPDATE or DELETE statement

executes depends on whether the statement executes statically or dynamically.

If the statement executes statically, the authorization ID is the owner of the DB2

plan or package that includes the statement. If the statement executes

dynamically the authorization ID is determined by the DYNAMICRULES

behavior that is in effect. For the IBM DB2 Driver for JDBC and SQLJ, the

behavior is always DYNAMICRULES BIND.

2. Disable autocommit mode for the connection.

If autocommit mode is enabled, a COMMIT operation occurs every time the

positioned UPDATE statement executes, which causes the iterator to be

destroyed unless the iterator has the with (holdability=true) attribute.

Therefore, you need to turn autocommit off to prevent COMMIT operations

until you have finished using the iterator. If you want a COMMIT to occur

after every update operation, an alternative way to keep the iterator from being

destroyed after each COMMIT operation is to declare the iterator with

(holdability=true).

3. Create an instance of the iterator class.

This is the same step as for a non-updatable iterator.

4. Assign the result table of a SELECT to an instance of the iterator.

This is the same step as for a non-updatable iterator. The SELECT statement

must not include a FOR UPDATE clause.

5. Retrieve and update rows.

For a positioned iterator, do this by performing the following actions in a loop:

a. Execute a FETCH statement in an executable clause to obtain the current

row.

b. Test whether the iterator is pointing to a row of the result table by invoking

the PositionedIterator.endFetch method.

c. If the iterator is pointing to a row of the result table, execute an SQL

UPDATE... WHERE CURRENT OF :iterator-object statement in an executable

clause to update the columns in the current row. Execute an SQL DELETE...

WHERE CURRENT OF :iterator-object statement in an executable clause to

delete the current row.

For a named iterator, do this by performing the following actions in a loop:

a. Invoke the next method to move the iterator forward.

b. Test whether the iterator is pointing to a row of the result table by checking

whether next returns true.

c. Execute an SQL UPDATE... WHERE CURRENT OF iterator-object statement

in an executable clause to update the columns in the current row. Execute

102 Developing Java Applications

an SQL DELETE... WHERE CURRENT OF iterator-object statement in an

executable clause to delete the current row.
6. Close the iterator.

Use the close method to do this.

The following code shows how to declare a positioned iterator and use it for

positioned UPDATEs. The numbers to the right of selected statements correspond

to the previously described steps.

First, in one file, declare positioned iterator UpdByPos, specifying that you want to

use the iterator to update column SALARY:

 Then, in another file, use UpdByPos for a positioned UPDATE, as shown in the

following code fragment:

import java.math.*; // Import this class for BigDecimal data type

#sql public iterator UpdByPos implements sqlj.runtime.ForUpdate �1�

 with(updateColumns="SALARY") (String, BigDecimal);

Figure 39. Declaring a positioned iterator for a positioned UPDATE

Chapter 3. Programming SQLJ applications 103

The following code shows how to declare a named iterator and use it for

positioned UPDATEs. The numbers to the right of selected statements correspond

to the previously described steps.

First, in one file, declare named iterator UpdByName, specifying that you want to use

the iterator to update column SALARY:

import sqlj.runtime.*; // Import files for SQLJ and JDBC APIs

import java.sql.*;

import java.math.*; // Import this class for BigDecimal data type

import UpdByPos; // Import the generated iterator class that

 // was created by the iterator declaration clause

 // for UpdByName in another file

#sql context HSCtx; // Create a connnection context class HSCtx

public static void main (String args[])

{

 try {

 Class.forName("com.ibm.db2.jcc.DB2Driver");

 }

 catch (ClassNotFoundException e) {

 e.printStackTrace();

 }

 Connection HSjdbccon=

 DriverManager.getConnection("jdbc:db2:SANJOSE");

 // Create a JDBC connection object

 HSjdbccon.setAutoCommit(false);

 // Set autocommit off so automatic commits �2�

 // do not destroy the cursor between updates

 HSCtx myConnCtx=new HSCtx(HSjdbccon);

 // Create a connection context object

 UpdByPos upditer; // Declare iterator object of UpdByPos class �3�

 String enum; // Declares host variable to receive EMPNO

 BigDecimal sal; // and SALARY column values

 #sql [myConnCtx]

 upditer = {SELECT EMPNO, SALARY FROM EMPLOYEE �4�

 WHERE WORKDEPT='D11'};

 // Assign result table to iterator object

 #sql {FETCH :upditer INTO :enum,:sal}; �5a�

 // Move cursor to next row

 while (!upditer.endFetch()) �5b�

 // Check if on a row

 {

 #sql [myConnCtx] {UPDATE EMPLOYEE SET SALARY=SALARY*1.05

 WHERE CURRENT OF :upditer}; �5c�

 // Perform positioned update

 System.out.println("Updating row for " + enum);

 #sql {FETCH :upditer INTO :enum,:sal};

 // Move cursor to next row

 }

 upditer.close(); // Close the iterator �6�

 #sql [myConnCtx] {COMMIT};

 // Commit the changes

 myConnCtx.close(); // Close the connection context

}

Figure 40. Performing a positioned UPDATE with a positioned iterator

import java.math.*; // Import this class for BigDecimal data type

#sql public iterator UpdByName implements sqlj.runtime.ForUpdate �1�

 with(updateColumns="SALARY") (String EmpNo, BigDecimal Salary);

Figure 41. Declaring a named iterator for a positioned UPDATE

104 Developing Java Applications

Then, in another file, use UpdByName for a positioned UPDATE, as shown in the

following code fragment:

Related concepts:

v “Iterators as passed variables for positioned UPDATE or DELETE operations in

an SQLJ application” on page 106

v “How an SQLJ application retrieves data from DB2 tables” on page 111

 Related tasks:

v “Connecting to a data source using SQLJ” on page 92

import sqlj.runtime.*; // Import files for SQLJ and JDBC APIs

import java.sql.*;

import java.math.*; // Import this class for BigDecimal data type

import UpdByName; // Import the generated iterator class that

 // was created by the iterator declaration clause

 // for UpdByName in another file

#sql context HSCtx; // Create a connnection context class HSCtx

public static void main (String args[])

{

 try {

 Class.forName("com.ibm.db2.jcc.DB2Driver");

 }

 catch (ClassNotFoundException e) {

 e.printStackTrace();

 }

 Connection HSjdbccon=

 DriverManager.getConnection("jdbc:db2:SANJOSE");

 // Create a JDBC connection object

 HSjdbccon.setAutoCommit(false);

 // Set autocommit off so automatic commits �2�

 // do not destroy the cursor between updates

 HSCtx myConnCtx=new HSCtx(HSjdbccon);

 // Create a connection context object

 UpdByName upditer; �3�

 // Declare iterator object of UpdByName class

 String enum; // Declare host variable to receive EmpNo

 // column values

 #sql [myConnCtx]

 upditer = {SELECT EMPNO, SALARY FROM EMPLOYEE �4�

 WHERE WORKDEPT='D11'};

 // Assign result table to iterator object

 while (upditer.next()) �5a, 5b�

 // Move cursor to next row and

 // check ifon a row

 {

 enum = upditer.EmpNo(); // Get employee number from current row

 #sql [myConnCtx]

 {UPDATE EMPLOYEE SET SALARY=SALARY*1.05

 WHERE CURRENT OF :upditer}; �5c�

 // Perform positioned update

 System.out.println("Updating row for " + enum);

 }

 upditer.close(); // Close the iterator �6�

 #sql [myConnCtx] {COMMIT};

 // Commit the changes

 myConnCtx.close(); // Close the connection context

}

Figure 42. Performing a positioned UPDATE with a named iterator

Chapter 3. Programming SQLJ applications 105

Iterators as passed variables for positioned UPDATE or DELETE

operations in an SQLJ application

 SQLJ allows iterators to be passed between methods as variables. An iterator that

is used for a positioned UPDATE or DELETE statement can be identified only at

runtime. The same SQLJ positioned UPDATE or DELETE statement can be used

with different iterators at runtime. If you specify a value of YES for

-staticpositioned when you customize your SQLJ application as part of the

program preparation process, the SQLJ customizer prepares positioned UPDATE or

DELETE statements to execute statically. In this case, the customizer must

determine which iterators belong with which positioned UPDATE or DELETE

statements. The SQLJ customizer does this by matching iterator data types to data

types in the UPDATE or DELETE statements. However, if there is not a unique

mapping of tables in UPDATE or DELETE statements to iterator classes, the SQLJ

customizer cannot determine exactly which iterators and UPDATE or DELETE

statements go together. The SQLJ customizer must arbitrarily pair iterators with

UPDATE or DELETE statements, which can sometimes result in SQL errors. The

following code fragments illustrate this point.

In this example, only one iterator is defined. Two instances of that iterator are

defined, and each is associated with a different SELECT statement that retrieves

data from a different table. During customization and binding with

-staticpositioned YES, SQLJ creates two DECLARE CURSOR statements, one for

each SELECT statement, and attempts to bind an UPDATE statement for each

cursor. However, the bind process fails with SQLCODE -509 when UPDATE TABLE1

... WHERE CURRENT OF :iter is bound for the cursor for SELECT CHAR_COL2 FROM

TABLE2 because the table for the UPDATE does not match the table for the cursor.

You can avoid a bind time error for a program like the one in Figure 43 by

specifying the bind option SQLERROR(CONTINUE). However, this technique has

the drawback that it causes the DB2 database manager to build a package,

regardless of the SQL errors that are in the program. A better technique is to write

the program so that there is a one-to-one mapping between tables in positioned

UPDATE or DELETE statements and iterator classes. Figure 44 on page 107 shows

an example of how to do this.

#sql iterator GeneralIter implements sqlj.runtime.ForUpdate

 (String);

 public static void main (String args[])

 {

...

 GeneralIter iter1 = null;

 #sql [ctxt] iter1 = { SELECT CHAR_COL1 FROM TABLE1 };

 GeneralIter iter2 = null;

 #sql [ctxt] iter2 = { SELECT CHAR_COL2 FROM TABLE2 };

...

 doUpdate (iter1);

 }

 public static void doUpdate (GeneralIter iter)

 {

 #sql [ctxt] { UPDATE TABLE1 ... WHERE CURRENT OF :iter };

 }

Figure 43. Static positioned UPDATE that fails

106 Developing Java Applications

With this method of coding, each iterator class is associated with only one table.

Therefore, the DB2 bind process can always associate the positioned UPDATE

statement with a valid iterator.

 Related tasks:

v “Performing positioned UPDATE and DELETE operations in an SQLJ

application” on page 101

 Related reference:

v “db2sqljcustomize - SQLJ profile customizer” on page 351

Making batch updates in SQLJ applications

 The IBM DB2 Driver for JDBC and SQLJ supports batch updates in SQLJ. With

batch updates, instead of updating rows of a DB2 table one at a time, you can

direct SQLJ to execute a group of updates at the same time. You can include the

following types of statements in a batch update:

v Searched INSERT, UPDATE, or DELETE statements

v CREATE, ALTER, DROP, GRANT, or REVOKE statements

v CALL statements with input parameters only

Unlike JDBC, SQLJ allows heterogeneous batches that contain statements with

input parameters or host expressions. You can therefore combine any of the

following items in an SQLJ batch:

v Instances of the same statement

v Different statements

v Statements with different numbers of input parameters or host expressions

v Statements with different data types for input parameters or host expressions

v Statements with no input parameters or host expressions

#sql iterator Table2Iter(String);

#sql iterator Table1Iter(String);

 public static void main (String args[])

 {

...

 Table2Iter iter2 = null;

 #sql [ctxt] iter2 = { SELECT CHAR_COL2 FROM TABLE2 };

 Table1Iter iter1 = null;

 #sql [ctxt] iter1 = { SELECT CHAR_COL1 FROM TABLE1 };

...

 doUpdate(iter1);

 }

 public static void doUpdate (Table1Iter iter)

 {

 ...

 #sql [ctxt] { UPDATE TABLE1 ... WHERE CURRENT OF :iter };

 ...

 }

 public static void doUpdate (Table2Iter iter)

 {

 ...

 #sql [ctxt] { UPDATE TABLE2 ... WHERE CURRENT OF :iter };

 ...

 }

Figure 44. Static positioned UPDATE that succeeds

Chapter 3. Programming SQLJ applications 107

The basic steps for creating, executing, and deleting a batch of statements are:

1. Disable AutoCommit for the connection.

2. Acquire an execution context.

All statements that execute in a batch must use this execution context.

3. Invoke the ExecutionContext.setBatching(true) method to create a batch.

Subsequent batchable statements that are associated with the execution context

that you created in step 2 are added to the batch for later execution.

If you want to batch sets of statements that are not batch compatible in parallel,

you need to create an execution context for each set of batch compatible

statements.

4. Include SQLJ executable clauses for SQL statements that you want to batch.

These clauses must include the execution context that you created in step 2.

If an SQLJ executable clause has input parameters or host expressions, you can

include the statement in the batch multiple times with different values for the

input parameters or host expressions.

To determine whether a statement was added to an existing batch, was the first

statement in a new batch, or was executed inside or outside a batch, invoke the

ExecutionContext.getUpdateCount method. This method returns one of the

following values:

ExecutionContext.ADD_BATCH_COUNT

This is a constant that is returned if the statement was added to an existing

batch.

ExecutionContext.NEW_BATCH_COUNT

This is a constant that is returned if the statement was the first statement in

a new batch.

ExecutionContext.EXEC_BATCH_COUNT

This is a constant that is returned if the statement was part of a batch, and

the batch was executed.

Other integer

This value is the number of rows that were updated by the statement. This

value is returned if the statement was executed rather than added to a

batch.
5. Execute the batch explicitly or implicitly.

v Invoke the ExecutionContext.executeBatch method to execute the batch

explicitly.

executeBatch returns an integer array that contains the number of rows that

were updated by each statement in the batch. The order of the elements in

the array corresponds to the order in which you added statements to the

batch.

v Alternatively, a batch executes implicitly under the following circumstances:

– You include a batchable statement in your program that is not compatible

with statements that are already in the batch. In this case, SQLJ executes

the statements that are already in the batch and creates a new batch that

includes the incompatible statement. SQLJ also executes the statement that

is not compatible with the statements in the batch.

– You include a statement in your program that is not batchable. In this

case, SQLJ executes the statements that are already in the batch. SQLJ also

executes the statement that is not batchable.

108 Developing Java Applications

– After you invoke the ExecutionContext.setBatchLimit(n) method, you

add a statement to the batch that brings the number of statements in the

batch to n or greater. n can have one of the following values:

ExecutionContext.UNLIMITED_BATCH

This constant indicates that implicit execution occurs only when SQLJ

encounters a statement that is batchable but incompatible, or not

batchable. Setting this value is the same as not invoking

setBatchLimit.

ExecutionContext.AUTO_BATCH

This constant indicates that implicit execution occurs when the

number of statements in the batch reaches a number that is set by

SQLJ.

Positive integer

When this number of statements have been added to the batch, SQLJ

executes the batch implicitly. However, the batch might be executed

before this many statements have been added if SQLJ encounters a

statement that is batchable but incompatible, or not batchable.
To determine the number of rows that were updated by a batch that was

executed implicitly, invoke the ExecutionContext.getBatchUpdateCounts

method. getBatchUpdateCounts returns an integer array that contains the

number of rows that were updated by each statement in the batch. The order

of the elements in the array corresponds to the order in which you added

statements to the batch. Each array element can be one of the following

values:

-2 This value indicates that the SQL statement executed successfully, but the

number of rows that were updated could not be determined.

-3 This value indicates that the SQL statement failed.

Other integer

This value is the number of rows that were updated by the statement.
6. Optionally, when all statements have been added to the batch, disable batching.

Do this by invoking the ExecutionContext.setBatching(false) method. When

you disable batching, you can still execute the batch implicitly or explicitly, but

no more statements are added to the batch. Disabling batching is useful when a

batch already exists, and you want to execute a batch compatible statement,

rather than adding it to the batch.

If you want to clear a batch without executing it, invoke the

ExecutionContext.cancel method.

7. If batch execution was implicit, perform a final, explicit executeBatch to ensure

that all statements have been executed.

Example of a batch update: In the following code fragment, raises are given to all

managers by performing UPDATEs in a batch. The numbers to the right of selected

statements correspond to the previously-described steps.

Chapter 3. Programming SQLJ applications 109

When an error occurs during execution of a statement in a batch, the remaining

statements are executed, and a BatchUpdateException is thrown after all the

statements in the batch have executed. See Make batch updates in a JDBC

application for information on how to process a BatchUpdateException.

To obtain information about warnings, use the Statement.getWarnings method on

the object on which you ran the executeBatch method. You can then retrieve an

error description, SQLSTATE, and error code for each SQLWarning object.

When a batch is executed implicitly because the program contains a statement that

cannot be added to the batch, the batch is executed before the new statement is

processed. If an error occurs during execution of the batch, the statement that

caused the batch to execute does not execute.

Recommendation: Turn autocommit off when you do batch updates so that you

can control whether to commit changes to already-executed statements when an

error occurs during batch execution.

 Related tasks:

v “Making batch updates in JDBC applications” on page 42

v “Connecting to a data source using SQLJ” on page 92

v “Controlling the execution of SQL statements in SQLJ” on page 130

 Related reference:

#sql iterator GetMgr(String); // Declare positioned iterator

{

 GetMgr deptiter; // Declare object of GetMgr class

 String mgrnum = null; // Declare host variable for manager number

 int raise = 400; // Declare raise amount

 int currentSalary; // Declare current salary

 String url, username, password; // Declare url, user ID, password

 ...

 TestContext c1 = new TestContext (url, username, password, false); �1�

 ExecutionContext ec = new ExecutionContext(); �2�

 ec.setBatching(true); �3�

 #sql [c1] deptiter =

 {SELECT MGRNO FROM DEPARTMENT};

 // Assign the result table of the SELECT

 // to iterator object deptiter

 #sql {FETCH :deptiter INTO :mgrnum};

 // Retrieve the first manager number

 while (!deptiter.endFetch()) { // Check whether the FETCH returned a row

 #sql [c1]

 {SELECT SALARY INTO :currentSalary FROM EMPLOYEE

 WHERE EMPNO=:mgrnum};

 #sql [c1, ec] �4�

 {UPDATE EMPLOYEE SET SALARY=:(currentSalary+raise)

 WHERE EMPNO=:mgrnum};

 #sql {FETCH :deptiter INTO :mgrnum };

 // Fetch the next row

 }

 ec.executeBatch(); �5�

 ec.setBatching(false); �6�

 #sql [c1] {COMMIT};

 deptiter.close(); // Close the iterator

 ec.close(); // Close the execution context

 c1.close(); // Close the connection

}

Figure 45. Performing a batch update

110 Developing Java Applications

v “sqlj.runtime.SQLNullException class” on page 298

Retrieving data from DB2 tables in SQLJ applications

The topics that follow contain information about retrieving data from DB2 tables in

SQLJ applications.

v “How an SQLJ application retrieves data from DB2 tables”

v “Using a named iterator in an SQLJ application” on page 112

v “Using a positioned iterator in an SQLJ application” on page 114

v “Multiple open iterators for the same SQL statement in an SQLJ application” on

page 116

v “Multiple open instances of an iterator in an SQLJ application” on page 117

v “Using scrollable iterators in an SQLJ application” on page 118

How an SQLJ application retrieves data from DB2 tables

 Just as in DB2 applications in other languages, if you want to retrieve a single row

from a DB2 table in an SQLJ application, you can write a SELECT INTO statement

with a WHERE clause that defines a result table that contains only that row:

#sql [myConnCtx] {SELECT DEPTNO INTO :hvdeptno

 FROM DEPARTMENT WHERE DEPTNAME="OPERATIONS"};

However, most SELECT statements that you use create result tables that contain

many rows. In DB2 applications in other languages, you use a cursor to select the

individual rows from the result table. That cursor can be non-scrollable, which

means that when you use it to fetch rows, you move the cursor serially, from the

beginning of the result table to the end. Alternatively, the cursor can be scrollable,

which means that when you use it to fetch rows, you can move the cursor

forward, backward, or to any row in the result table.

The SQLJ equivalent of a cursor is a result set iterator. Like a cursor, a result set

iterator can be non-scrollable or scrollable. This topic discusses how to use

non-scrollable iterators. For information on using scrollable iterators, see Use

scrollable iterators in an SQLJ application.

A result set iterator is a Java object that you use to retrieve rows from a result

table. Unlike a cursor, a result set iterator can be passed as a parameter to a

method.

The basic steps in using a result set iterator are:

1. Declare the iterator, which results in an iterator class

2. Define an instance of the iterator class.

3. Assign the result table of a SELECT to an instance of the iterator.

4. Retrieve rows.

5. Close the iterator.

There are two types of iterators: positioned iterators and named iterators. Postitioned

iterators extend the interface sqlj.runtime.PositionedIterator. Positioned

iterators identify the columns of a result table by their position in the result table.

Named iterators extend the interface sqlj.runtime.NamedIterator. Named iterators

identify the columns of the result table by result table column names.

 Related tasks:

v “Performing positioned UPDATE and DELETE operations in an SQLJ

application” on page 101

v “Using a named iterator in an SQLJ application” on page 112

Chapter 3. Programming SQLJ applications 111

v “Using a positioned iterator in an SQLJ application” on page 114

 Related reference:

v “SQLJ iterator-declaration-clause” on page 269

Using a named iterator in an SQLJ application

 The steps in using a named iterator are:

1. Declare the iterator.

You declare any result set iterator using an iterator declaration clause. This causes

an iterator class to be created that has the same name as the iterator. For a

named iterator, the iterator declaration clause specifies the following

information:

v The name of the iterator

v A list of column names and Java data types

v Information for a Java class declaration, such as whether the iterator is

public or static

v A set of attributes, such as whether the iterator is holdable, or whether its

columns can be updated

When you declare a named iterator for a query, you specify names for each of

the iterator columns. Those names must match the names of columns in the

result table for the query. An iterator column name and a result table column

name that differ only in case are considered to be matching names. The named

iterator class that results from the iterator declaration clause contains accessor

methods. There is one accessor method for each column of the iterator. Each

accessor method name is the same as the corresponding iterator column name.

You use the accessor methods to retrieve data from columns of the result table.

You need to specify Java data types in the iterators that closely match the

corresponding DB2 column data types. See Java, JDBC, and SQL data types for

a list of the best mappings between Java data types and DB2 data types.

You can declare an iterator in a number of ways. However, because a Java class

underlies each iterator, you need to ensure that when you declare an iterator,

the underlying class obeys Java rules. For example, iterators that contain a

with-clause must be declared as public. Therefore, if an iterator needs to be

public, it can be declared only where a public class is allowed. The following

list describes some alternative methods of declaring an iterator:

v As public, in a source file by itself

This method lets you use the iterator declaration in other code modules, and

provides an iterator that works for all SQLJ applications. In addition, there

are no concerns about having other top-level classes or public classes in the

same source file.

v As a top-level class in a source file that contains other top-level class

definitions

Java allows only one public, top-level class in a code module. Therefore, if

you need to declare the iterator as public, such as when the iterator includes

a with-clause, no other classes in the code module can be declared as public.

v As a nested static class within another class

Using this alternative lets you combine the iterator declaration with other

class declarations in the same source file, declare the iterator and other

classes as public, and make the iterator class visible to other code modules or

112 Developing Java Applications

packages. However, when you reference the iterator from outside the nesting

class, you must fully-qualify the iterator name with the name of the nesting

class.

v As an inner class within another class

When you declare an iterator in this way, you can instantiate it only within

an instance of the nesting class. However, you can declare the iterator and

other classes in the file as public.

You cannot cast a JDBC ResultSet to an iterator if the iterator is declared as

an inner class. This restriction does not apply to an iterator that is declared

as a static nested class. See Use SQLJ and JDBC in the same application for

more information on casting a ResultSet to a iterator.
2. Create an instance of the iterator class.

You declare an object of the named iterator class to retrieve rows from a result

table.

3. Assign the result table of a SELECT to an instance of the iterator.

To assign the result table of a SELECT to an iterator, you use an SQLJ

assignment clause. The format of the assignment clause for a named iterator is:

#sql context-clause iterator-object={select-statement};

See SQLJ assignment-clause and SQLJ context-clause for more information.

4. Retrieve rows.

Do this by invoking accessor methods in a loop. Accessor methods have the

same names as the corresponding columns in the iterator, and have no

parameters. An accessor method returns the value from the corresponding

column of the current row in the result table. Use the NamedIterator.next()

method to move the cursor forward through the result table.

To test whether you have retrieved all rows, check the value that is returned

when you invoke the next method. next returns a boolean with a value of

false if there is no next row.

5. Close the iterator.

Use the NamedIterator.close method to do this.

The following code demonstrates how to declare and use a named iterator. The

numbers to the right of selected statements correspond to the previously-described

steps.

 Related concepts:

#sql iterator ByName(String LastName, Date HireDate); �1�

 // Declare named iterator ByName

{

 ByName nameiter; // Declare object of ByName class �2�

 #sql [ctxt]

 nameiter={SELECT LASTNAME, HIREDATE FROM EMPLOYEE}; �3�

 // Assign the result table of the SELECT

 // to iterator object nameiter

 while (nameiter.next()) // Move the iterator through the result �4�

 // table and test whether all rows retrieved

 {

 System.out.println(nameiter.LastName() + " was hired on "

 + nameiter.HireDate()); // Use accessor methods LastName and

 // HireDate to retrieve column values

 }

 nameiter.close(); // Close the iterator �5�

}

Figure 46. Using a named iterator

Chapter 3. Programming SQLJ applications 113

v “Using SQLJ and JDBC in the same application” on page 127

 Related tasks:

v “Performing positioned UPDATE and DELETE operations in an SQLJ

application” on page 101

v “Using a positioned iterator in an SQLJ application” on page 114

 Related reference:

v “Data types that map to SQL data types in JDBC applications” on page 227

v “SQLJ assignment-clause” on page 275

v “SQLJ context-clause” on page 272

Using a positioned iterator in an SQLJ application

 The steps in using a positioned iterator are:

1. Declare the iterator.

You declare any result set iterator using an iterator declaration clause. This causes

an iterator class to be created that has the same name and attributes as the

iterator. For a positioned iterator, the iterator declaration clause specifies the

following information:

v The name of the iterator

v A list of Java data types

v Information for a Java class declaration, such as whether the iterator is

public or static

v A set of attributes, such as whether the iterator is holdable, or whether its

columns can be updated

The data type declarations represent columns in the result table and are

referred to as columns of the result set iterator. The columns of the result set

iterator correspond to the columns of the result table, in left-to-right order. For

example, if an iterator declaration clause has two data type declarations, the

first data type declaration corresponds to the first column in the result table,

and the second data type declaration corresponds to the second column in the

result table.

You need to specify Java data types in the iterators that closely match the

corresponding DB2 column data types. SeeJava, JDBC, and SQL data types for a

list of the best mappings between Java data types and DB2 data types.

You can declare an iterator in a number of ways. However, because a Java class

underlies each iterator, you need to ensure that when you declare an iterator,

the underlying class obeys Java rules. For example, iterators that contain a

with-clause must be declared as public. Therefore, if an iterator needs to be

public, it can be declared only where a public class is allowed. The following

list describes some alternative methods of declaring an iterator:

v As public, in a source file by itself

This is the most versatile method of declaring an iterator. This method lets

you use the iterator declaration in other code modules, and provides an

iterator that works for all SQLJ applications. In addition, there are no

concerns about having other top-level classes or public classes in the same

source file.

v As a top-level class in a source file that contains other top-level class

definitions

114 Developing Java Applications

Java allows only one public, top-level class in a code module. Therefore, if

you need to declare the iterator as public, such as when the iterator includes

a with-clause, no other classes in the code module can be declared as public.

v As a nested static class within another class

Using this alternative lets you combine the iterator declaration with other

class declarations in the same source file, declare the iterator and other

classes as public, and make the iterator class visible from other code modules

or packages. However, when you reference the iterator from outside the

nesting class, you must fully-qualify the iterator name with the name of the

nesting class.

v As an inner class within another class

When you declare an iterator in this way, you can instantiate it only within

an instance of the nesting class. However, you can declare the iterator and

other classes in the file as public.

You cannot cast a JDBC ResultSet to an iterator if the iterator is declared as

an inner class. This restriction does not apply to an iterator that is declared

as a static nested class. See Use SQLJ and JDBC in the same application for

more information on casting a ResultSet to a iterator.
2. Create an instance of the iterator class.

You declare an object of the positioned iterator class to retrieve rows from a

result table.

3. Assign the result table of a SELECT to an instance of the iterator.

To assign the result table of a SELECT to an iterator, you use an SQLJ

assignment clause. The format of the assignment clause for a positioned iterator

is:

#sql context-clause iterator-object={select-statement};

4. Retrieve rows.

Do this by executing FETCH statements in executable clauses in a loop. The

FETCH statements looks the same as a FETCH statements in other languages.

To test whether you have retrieved all rows, invoke the

PositionedIterator.endFetch method after each FETCH. endFetch returns a

boolean with the value true if the FETCH failed because there are no rows to

retrieve.

5. Close the iterator.

Use the PositionedIterator.close method to do this.

The following code demonstrates how to declare and use a positioned iterator. The

numbers to the right of selected statements correspond to the previously-described

steps.

Chapter 3. Programming SQLJ applications 115

Related concepts:

v “Using SQLJ and JDBC in the same application” on page 127

v “How an SQLJ application retrieves data from DB2 tables” on page 111

 Related tasks:

v “Using a named iterator in an SQLJ application” on page 112

 Related reference:

v “Data types that map to SQL data types in JDBC applications” on page 227

Multiple open iterators for the same SQL statement in an SQLJ

application

 With the IBM DB2 Driver for JDBC and SQLJ, your application can have multiple

concurrently open iterators for a single SQL statement in an SQLJ application. With

this capability, you can perform one operation on a table using one iterator while

you perform a different operation on the same table using another iterator.

When you use concurrently open iterators in an application, you should close

iterators when you no longer need them to prevent excessive storage consumption

in the Java heap.

The following examples demonstrate how to perform the same operations on a

table without concurrently open iterators on a single SQL statement and with

concurrently open iterators on a single SQL statement. These examples use the

following iterator declaration:

import java.math.*;

#sql public iterator MultiIter(String EmpNo, BigDecimal Salary);

Without the capability for multiple, concurrently open iterators for a single SQL

statement, if you want to select employee and salary values for a specific employee

number, you need to define a different SQL statement for each employee number,

as shown in Figure 48 on page 117.

#sql iterator ByPos(String,Date); // Declare positioned iterator ByPos �1�

{

 ByPos positer; // Declare object of ByPos class �2�

 String name = null; // Declare host variables

 Date hrdate;

 #sql [ctxt] positer =

 {SELECT LASTNAME, HIREDATE FROM EMPLOYEE}; �3�

 // Assign the result table of the SELECT

 // to iterator object positer

 #sql {FETCH :positer INTO :name, :hrdate }; �4�

 // Retrieve the first row

 while (!positer.endFetch()) // Check whether the FETCH returned a row

 { System.out.println(name + " was hired in " +

 hrdate);

 #sql {FETCH :positer INTO :name, :hrdate };

 // Fetch the next row

 }

 positer.close(); // Close the iterator �5�

}

Figure 47. Using a positioned iterator

116 Developing Java Applications

Figure 49 demonstrates how you can perform the same operations when you have

the capability for multiple, concurrently open iterators for a single SQL statement.

 Related concepts:

v “How an SQLJ application retrieves data from DB2 tables” on page 111

Multiple open instances of an iterator in an SQLJ application

 Multiple instances of an iterator can be open concurrently in a single SQLJ

application. One application for this ability is to open several instances of an

iterator that uses host expressions. Each instance can use a different set of host

expression values.

The following example shows an application with two concurrently open instances

of an iterator.

MultiIter iter1 = null; // Iterator instance for retrieving

 // data for first employee

String EmpNo1 = "000100"; // Employee number for first employee

#sql [ctx] iter2 =

 {SELECT EMPNO, SALARY FROM EMPLOYEE WHERE EMPNO = :EmpNo1};

 // Assign result table to first iterator

MultiIter iter2 = null; // Iterator instance for retrieving

 // data for second employee

String EmpNo2 = "000200"; // Employee number for second employee

#sql [ctx] iter2 =

 {SELECT EMPNO, SALARY FROM EMPLOYEE WHERE EMPNO = :EmpNo2};

 // Assign result table to second iterator

// Process with iter1

// Process with iter2

iter1.close(); // Close the iterators

iter2.close();

Figure 48. Example of concurrent table operations using iterators with different SQL

statements

...

MultiIter iter1 = openIter("000100"); // Invoke openIter to assign the result table

 // (for employee 100) to the first iterator

MultiIter iter2 = openIter("000200"); // Invoke openIter to assign the result

 // table to the second iterator

 // iter1 stays open when iter2 is opened

// Process with iter1

// Process with iter2

...

iter1.close(); // Close the iterators

iter2.close();

...

public MultiIter openIter(String EmpNo)

 // Method to assign a result table

 // to an iterator instance

{

 MultiIter iter;

 #sql [ctxt] iter =

 {SELECT EMPNO, SALARY FROM EMPLOYEE WHERE EMPNO = :EmpNo};

 return iter; // Method returns an iterator instance

}

Figure 49. Example of concurrent table operations using iterators with the same SQL

statement

Chapter 3. Programming SQLJ applications 117

As with any other iterator, you need to remember to close this iterator after the last

time you use it to prevent excessive storage consumption.

 Related concepts:

v “How an SQLJ application retrieves data from DB2 tables” on page 111

Using scrollable iterators in an SQLJ application

 In addition to moving forward, one row at a time, through a result table, you

might want to move backward or go directly to a specific row. The IBM DB2

Driver for JDBC and SQLJ provides this capability.

An iterator in which you can move forward, backward, or to a specific row is

called a scrollable iterator. A scrollable iterator in SQLJ is equivalent to the result

table of a DB2 cursor that is declared as SCROLL.

Like a scrollable cursor, a scrollable iterator can be insensitive or sensitive. A

sensitive scrollable iterator can be static or dynamic. Insensitive means that changes

to the underlying table after the iterator is opened are not visible to the iterator.

Insensitive iterators are read-only. Sensitive means that changes that the iterator or

other processes make to the underlying table are visible to the iterator. Asensitive

means that if the cursor is a read-only cursor, it behaves as an insensitive cursor. If

it is not a read-only cursor, it behaves as a sensitive cursor.

If a scrollable iterator is static, the size of the result table and the order of the rows

in the result table do not change after the iterator is opened. This means that you

cannot insert into result tables, and if you delete a row of a result table, a delete

hole occurs. If you update a row of the result table so that the row no longer

qualifies for the result table, an update hole occurs. Fetching from a hole results in

an SQLException.

If a scrollable iterator is dynamic, the size of the result table and the order of the

rows in the result table can change after the iterator is opened. Rows that are

inserted or deleted with INSERT and DELETE statements that are executed by the

same application process are immediately visible. Rows that are inserted or deleted

with INSERT and DELETE statements that are executed by other application

processes are visible after the changes are committed.

Important: DB2 Database for Linux, UNIX, and Windows servers do not support

dynamic scrollable cursors. You can use dynamic scrollable iterators in your SQLJ

applications only if those applications access data on DB2 for z/OS servers, at

Version 9 or later.

...

ResultSet myFunc(String empid) // Method to open an iterator and get a resultSet

{

 MyIter iter;

 #sql iter = {SELECT * FROM EMPLOYEE WHERE EMPNO = :empid};

 return iter.getResultSet();

}

// An application can call this method to get a resultSet for each

// employee ID. The application can process each resultSet separately.

...

ResultSet rs1 = myFunc("000100"); // Get employee record for employee ID 000100

...

ResultSet rs2 = myFunc("000200"); // Get employee record for employee ID 000200

Figure 50. Example of opening more than one instance of an iterator in a single application

118 Developing Java Applications

To create and use a scrollable iterator, you need to follow these steps:

1. Specify an iterator declaration clause that includes the following clauses:

v implements sqlj.runtime.Scrollable

This indicates that the iterator is scrollable.

v with (sensitivity=INSENSITIVE|SENSITIVE|ASENSITIVE) or with

(sensitivity=SENSITIVE, dynamic=true|false)

sensitivity=INSENSITIVE|SENSITIVE|ASENSITIVE indicates whether update or

delete operations on the underlying table can be visible to the iterator. The

default sensitivity is INSENSITIVE.

dynamic=true|false indicates whether the size of the result table or the order

of the rows in the result table can change after the iterator is opened. The

default value of dynamic is false.

The iterator can be a named or positioned iterator. For example, the following

iterator declaration clause declares a positioned, sensitive, dynamic, scrollable

iterator:

#sql public iterator ByPos

 implements sqlj.runtime.Scrollable

 with (sensitivity=SENSITIVE, dynamic=true) (String);

The following iterator declaration clause declares a named, insensitive,

scrollable iterator:

#sql public iterator ByName

 implements sqlj.runtime.Scrollable

 with (sensitivity=INSENSITIVE) (String EmpNo);

Restriction: You cannot use a scrollable iterator to select columns with the

following data types from a table on a DB2 Database for Linux, UNIX, and

Windows server:

v LONG VARCHAR

v LONG VARGRAPHIC

v DATALINK

v BLOB

v CLOB

v A distinct type that is based on any of the previous data types in this list

v A structured type
2. Create an iterator object, which is an instance of your iterator class.

3. If you want to give the SQLJ runtime environment a hint about the initial fetch

direction, use the setFetchDirection(int direction) method. direction can be

FETCH_FORWARD or FETCH_REVERSE. If you do not invoke setFetchDirection, the

fetch direction is FETCH_FORWARD.

4. For each row that you want to access:

v For a named iterator, perform the following steps:

a. Position the cursor using one of the methods listed in Table 15.

 Table 15. sqlj.runtime.Scrollable methods for positioning a scrollable cursor

Method Positions the cursor

first() On the first row of the result table

last() On the last row of the result table

previous()1 On the previous row of the result table

next() On the next row of the result table

Chapter 3. Programming SQLJ applications 119

Table 15. sqlj.runtime.Scrollable methods for positioning a scrollable cursor (continued)

Method Positions the cursor

absolute(int n)2 If n>0, on row n of the result table. If n<0, and m is

the number of rows in the result table, on row m+n+1

of the result table.

relative(int n)3 If n>0, on the row that is n rows after the current row.

If n<0, on the row that is n rows before the current

row. If n=0, on the current row.

afterLast() After the last row in the result table

beforeFirst() Before the first row in the result table

Notes:

1. If the cursor is after the last row of the result table, this method positions the cursor on

the last row.

2. If the absolute value of n is greater than the number of rows in the result table, this

method positions the cursor after the last row if n is positive, or before the first row if n

is negative.

3. Suppose that m is the number of rows in the result table and x is the current row

number in the result table. If n>0 and x+n>m, the iterator is positioned after the last row.

If n<0 and x+n<1, the iterator is positioned before the first row.

b. If you need to know the current cursor position, use the getRow, isFirst,

isLast, isBeforeFirst, or isAfterLast method to obtain this information.

If you need to know the current fetch direction, invoke the

getFetchDirection method.

c. Use accessor methods to retrieve the current row of the result table.

d. If update or delete operations by the iterator or by other means are

visible in the result table, invoke the getWarnings method to check

whether the current row is a hole.
v For a positioned iterator, perform the following steps:

a. Use a FETCH statement with a fetch orientation clause to position the

iterator and retrieve the current row of the result table. Table 16 lists the

clauses that you can use to position the cursor.

 Table 16. FETCH clauses for positioning a scrollable cursor

Method Positions the cursor

FIRST On the first row of the result table

LAST On the last row of the result table

PRIOR1 On the previous row of the result table

NEXT On the next row of the result table

ABSOLUTE(n)2 If n>0, on row n of the result table. If n<0, and m is

the number of rows in the result table, on row m+n+1

of the result table.

RELATIVE(n)3 If n>0, on the row that is n rows after the current row.

If n<0, on the row that is n rows before the current

row. If n=0, on the current row.

AFTER4 After the last row in the result table

BEFORE4 Before the first row in the result table

120 Developing Java Applications

Table 16. FETCH clauses for positioning a scrollable cursor (continued)

Method Positions the cursor

Notes:

1. If the cursor is after the last row of the result table, this method positions the cursor on

the last row.

2. If the absolute value of n is greater than the number of rows in the result table, this

method positions the cursor after the last row if n is positive, or before the first row if n

is negative.

3. Suppose that m is the number of rows in the result table and x is the current row

number in the result table. If n>0 and x+n>m, the iterator is positioned after the last row.

If n<0 and x+n<1, the iterator is positioned before the first row.

4. Values are not assigned to host expressions.

b. If update or delete operations by the iterator or by other means are

visible in the result table, invoke the getWarnings method to check

whether the current row is a hole.
5. Invoke the close method to close the iterator.

For example, the following code demonstrates how to use a named iterator to

retrieve the employee number and last name from all rows from the employee

table in reverse order. The numbers to the right of selected statements correspond

to the previously-described steps.

 Related concepts:

v “How an SQLJ application retrieves data from DB2 tables” on page 111

 Related tasks:

v “Using a named iterator in an SQLJ application” on page 112

v “Using a positioned iterator in an SQLJ application” on page 114

Calling stored procedures in SQLJ applications

The topics that follow contain information about calling stored procedures in SQLJ

applications.

v “Calling stored procedures in an SQLJ application” on page 122

v “Retrieving multiple result sets from a stored procedure in an SQLJ application”

on page 122

#sql iterator ScrollIter implements sqlj.runtime.Scrollable �1�

 (String EmpNo, String LastName);

{

 ScrollIter scrliter; �2�

 #sql [ctxt]

 scrliter={SELECT EMPNO, LASTNAME FROM EMPLOYEE};

 scrliter.afterLast();

 while (scrliter.previous()) �4a�

 {

 System.out.println(scrliter.EmpNo() + " " �4c�

 + scrliter.LastName());

 }

 scrliter.close(); �5�

}

Figure 51. Using scrollable iterators

Chapter 3. Programming SQLJ applications 121

Calling stored procedures in an SQLJ application

 To call a stored procedure, you use an executable clause that contains an SQL

CALL statement. You can execute the CALL statement with host identifier

parameters. You can execute the CALL statement with literal parameters only if the

DB2 server on which the CALL statement runs supports execution of the CALL

statement dynamically.

The basic steps in calling a stored procedure are:

1. Assign values to input (IN or INOUT) parameters.

2. Call the stored procedure.

3. Process output (OUT or INOUT) parameters.

4. If the stored procedure returns multiple result sets, retrieve those result sets.

See Retrieve multiple result sets from a stored procedure in an SQLJ

application.

The following code illustrates calling a stored procedure that has three input

parameters and three output parameters. The numbers to the right of selected

statements correspond to the previously-described steps.

 Related concepts:

v “Retrieving multiple result sets from a stored procedure in an SQLJ application”

on page 122

Retrieving multiple result sets from a stored procedure in an

SQLJ application

Some stored procedures return one or more result sets to the calling program. To

retrieve the rows from those result sets, you execute these steps:

1. Acquire an execution context for retrieving the result set from the stored

procedure.

2. Associate the execution context with the CALL statement for the stored

procedure.

Do not use this execution context for any other purpose until you have

retrieved and processed the last result set.

3. For each result set:

String FirstName="TOM"; // Input parameters �1�

String LastName="NARISINST";

String Address="IBM";

int CustNo; // Output parameters

String Mark;

String MarkErrorText;

...

#sql [myConnCtx] {CALL ADD_CUSTOMER(:IN FirstName, �2�

 :IN LastName,

 :IN Address,

 :OUT CustNo,

 :OUT Mark,

 :OUT MarkErrorText)};

 // Call the stored procedure

System.out.println("Output parameters from ADD_CUSTOMER call: ");

System.out.println("Customer number for " + LastName + ": " + CustNo); �3�

System.out.println(Mark);

If (MarkErrorText != null)

 System.out.println(" Error messages:" + MarkErrorText);

Figure 52. Calling a stored procedure in an SQLJ application

122 Developing Java Applications

a. Use the ExecutionContext method getNextResultSet to retrieve the result

set.

b. If you do not know the contents of the result set, use ResultSetMetaData

methods to retrieve this information.

c. Use an SQLJ result set iterator or JDBC ResultSet to retrieve the rows from

the result set.

Result sets are returned to the calling program in the same order that their cursors

are opened in the stored procedure. When there are no more result sets to retrieve,

getNextResultSet returns a null value.

getNextResultSet has two forms:

getNextResultSet();

getNextResultSet(int current);

When you invoke the first form of getNextResultSet, SQLJ closes the

currently-open result set and advances to the next result set. When you invoke the

second form of getNextResultSet, the value of current indicates what SQLJ does

with the currently-open result set before it advances to the next result set:

java.sql.Statement.CLOSE_CURRENT_RESULT

Specifies that the current ResultSet object is closed when the next ResultSet

object is returned.

java.sql.Statement.KEEP_CURRENT_RESULT

Specifies that the current ResultSet object stays open when the next ResultSet

object is returned.

java.sql.Statement.CLOSE_ALL_RESULTS

Specifies that all open ResultSet objects are closed when the next ResultSet

object is returned.

The following code calls a stored procedure that returns multiple result sets. For

this example, it is assumed that the caller does not know the number of result sets

to be returned or the contents of those result sets. It is also assumed that

autoCommit is false. The numbers to the right of selected statements correspond to

the previously-described steps.

ExecutionContext execCtx=myConnCtx.getExecutionContext(); �1�

#sql [myConnCtx, execCtx] {CALL MULTRSSP()}; �2�

 // MULTRSSP returns multiple result sets

ResultSet rs;

while ((rs = execCtx.getNextResultSet()) != null) �3a�

{

 ResultSetMetaData rsmeta=rs.getMetaData(); �3b�

 int numcols=rsmeta.getColumnCount();

 while (rs.next()) �3c�

 {

 for (int i=1; i<=numcols; i++)

 {

 String colval=rs.getString(i);

 System.out.println("Column " + i + "value is " + colval);

 }

 }

}

Figure 53. Retrieving result sets from a stored procedure

Chapter 3. Programming SQLJ applications 123

Working with LOBs in SQLJ applications

The topics that follow contain information about updating and retrieving LOB data

in SQLJ applications.

v “LOBs in SQLJ applications with the IBM DB2 Driver for JDBC and SQLJ”

v “Java data types for retrieving or updating LOB column data in SQLJ

applications” on page 125

LOBs in SQLJ applications with the IBM DB2 Driver for JDBC

and SQLJ

 With the IBM DB2 Driver for JDBC and SQLJ, you can retrieve LOB data into Clob

or Blob host expressions or update CLOB, BLOB, or DBCLOB columns from Clob

or Blob host expressions. You can also declare iterators with Clob or Blob data

types to retrieve data from CLOB, BLOB, or DBCLOB columns.

Retrieving or updating LOB data: To retrieve data from a BLOB column, declare

an iterator that includes a data type of Blob or byte[]. To retrieve data from a

CLOB or DBCLOB column, declare an iterator in which the corresponding column

has a Clob data type.

To update data in a BLOB column, use a host expression with data type Blob. To

update data in a CLOB or DBCLOB column, use a host expression with data type

Clob.

Progressive streaming support: If the database server supports progressive

streaming, the IBM DB2 Driver for JDBC and SQLJ can use progressive streaming

to retrieve data in LOB or XML columns. With progressive streaming, the database

server dynamically determines the most efficient mode in which to return LOB or

XML data, based on the size of the LOBs or XML objects. To cause SQLJ to use

progressive streaming to retrieve data, you need to set the progressiveStreaming

property to DB2DatabaseMetaData.YES. When you use progressive streaming, you

can control when the JDBC driver materializes LOBs with the streamBufferSize

property. If a LOB or XML object is less than or equal to the streamBufferSize

value, the object is materialized.

Use of progressive streaming is the preferred method of LOB or XML data

retrieval. To determine whether a database server supports progressive streaming,

invoke the JDBC DB2DatabaseMetaData.supportsDB2ProgressiveStreaming method.

LOB locator support: The IBM DB2 Driver for JDBC and SQLJ can use LOB

locators to retrieve data in LOB columns. You should use LOB locators only if the

database server does not support progressive streaming. To cause SQLJ to use LOB

locators to retrieve data from LOB columns, you need to set the

fullyMaterializeLobData property to false and set the progressiveStreaming

property to DB2BaseDataSource.NO. If you do not set progressiveStreaming to

DB2BaseDataSource.NO, and the database serve supports progressive streaming, the

JDBC driver ignores the fullyMaterializeLobData value.

fullyMaterializeLobData has no effect on stored procedure output parameters or

LOBs that are fetched using scrollable cursors. You cannot call a stored procedure

that has LOB locator parameters. When you fetch from scrollable cursors, SQLJ

always uses LOB locators to retrieve data from LOB columns.

As in any other language, a LOB locator in a Java application is associated with

only one database. You cannot use a single LOB locator to move data between two

124 Developing Java Applications

different databases. To move LOB data between two databases, you need to

materialize the LOB data when you retrieve it from a table in the first database

and then insert that data into the table in the second database.

 Related reference:

v “Data types that map to SQL data types in JDBC applications” on page 227

v “Properties for the IBM DB2 Driver for JDBC and SQLJ” on page 232

Java data types for retrieving or updating LOB column data in

SQLJ applications

 When the deferPrepares property is set to true, and the IBM DB2 Driver for JDBC

and SQLJ processes an uncustomized SQLJ statement that includes host

expressions, the driver might need to do extra processing to determine data types.

This extra processing can impact performance.

When the JDBC driver cannot immediately determine the data type of a parameter

that is used with a LOB column, you need to choose a parameter data type that is

compatible with the LOB data type.

 Input parameters for BLOB columns:

 For input parameters for BLOB columns, you can use either of the following

techniques:

v Use a java.sql.Blob input variable, which is an exact match for a BLOB column:

java.sql.Blob blobData;

#sql {CALL STORPROC(:IN blobData)};

Before you can use a java.sql.Blob input variable, you need to create a

java.sql.Blob object, and then populate that object. For example, if you are using

the IBM DB2 Driver for JDBC and SQLJ, you can use the DB2-only method

com.ibm.db2.jcc.t2zos.DB2LobFactory.createBlob to create a java.sql.Blob

object and populate the object with byte[] data:

byte[] byteArray = {0, 1, 2, 3};

java.sql.Blob blobData =

 com.ibm.db2.jcc.t2zos.DB2LobFactory.createBlob(byteArray);

v Use an input parameter of type of sqlj.runtime.BinaryStream. A

sqlj.runtime.BinaryStream object is compatible with a BLOB data type. For this

call, you need to specify the exact length of the input data:

java.io.ByteArrayInputStream byteStream =

 new java.io.ByteArrayInputStream(byteData);

int numBytes = byteData.length;

sqlj.runtime.BinaryStream binStream =

 new sqlj.runtime.BinaryStream(byteStream, numBytes);

#sql {CALL STORPROC(:IN binStream)};

You cannot use this technique for input/output parameters.

 Output parameters for BLOB columns:

 For output or input/output parameters for BLOB columns, you can use the

following technique:

v Declare the output parameter or input/output variable with a java.sql.Blob data

type:

java.sql.Blob blobData = null;

#sql CALL STORPROC (:OUT blobData)};

Chapter 3. Programming SQLJ applications 125

java.sql.Blob blobData = null;

#sql CALL STORPROC (:INOUT blobData)};

 Input parameters for CLOB columns:

 For input parameters for CLOB columns, you can use one of the following

techniques:

v Use a java.sql.Clob input variable, which is an exact match for a CLOB column:

#sql CALL STORPROC(:IN clobData)};

Before you can use a java.sql.Clob input variable, you need to create a

java.sql.Clob object, and then populate that object. For example, if you are using

the IBM DB2 Driver for JDBC and SQLJ, you can use the DB2-only method

com.ibm.db2.jcc.t2zos.DB2LobFactory.createClob to create a java.sql.Clob

object and populate the object with String data:

String stringVal = "Some Data";

java.sql.Clob clobData =

 com.ibm.db2.jcc.t2zos.DB2LobFactory.createClob(stringVal);

v Use one of the following types of stream input parameters:

– A sqlj.runtime.CharacterStream input parameter:

java.lang.String charData;

java.io.StringReader reader = new java.io.StringReader(charData);

sqlj.runtime.CharacterStream charStream =

 new sqlj.runtime.CharacterStream (reader, charData.length);

#sql {CALL STORPROC(:IN charStream)};

– A sqlj.runtime.UnicodeStream parameter, for Unicode UTF-16 data:

byte[] charDataBytes = charData.getBytes("UnicodeBigUnmarked");

java.io.ByteArrayInputStream byteStream =

 new java.io.ByteArrayInputStream(charDataBytes);

sqlj.runtime.UnicodeStream uniStream =

 new sqlj.runtime.UnicodeStream(byteStream, charDataBytes.length);

#sql {CALL STORPROC(:IN uniStream)};

– A sqlj.runtime.AsciiStream parameter, for ASCII data:

byte[] charDataBytes = charData.getBytes("US-ASCII");

java.io.ByteArrayInputStream byteStream =

 new java.io.ByteArrayInputStream (charDataBytes);

sqlj.runtime.AsciiStream asciiStream =

 new sqlj.runtime.AsciiStream (byteStream, charDataBytes.length);

#sql {CALL STORPROC(:IN asciiStream)};

For these calls, you need to specify the exact length of the input data. You

cannot use this technique for input/output parameters.

v Use a java.lang.String input parameter:

java.lang.String charData;

#sql {CALL STORPROC(:IN charData)};

 Output parameters for CLOB columns:

 For output or input/output parameters for CLOB columns, you can use one of the

following techniques:

v Use a java.sql.Clob output variable, which is an exact match for a CLOB column:

java.sql.Clob clobData = null;

#sql CALL STORPROC(:OUT clobData)};

v Use a java.lang.String output variable:

java.lang.String charData = null;

#sql CALL STORPROC(:OUT charData)};

126 Developing Java Applications

This technique should be used only if you know that the length of the retrieved

data is less than or equal to 32KB. Otherwise, the data is truncated.

 Output parameters for DBCLOB columns:

 DBCLOB output or input/output parameters for stored procedures are not

supported.

 Related concepts:

v “LOBs in SQLJ applications with the IBM DB2 Driver for JDBC and SQLJ” on

page 124

 Related reference:

v “Data types that map to SQL data types in JDBC applications” on page 227

Using SQLJ and JDBC in the same application

You can combine SQLJ clauses and JDBC calls in a single program. To do this

effectively, you need to be able to do the following things:

v Use a JDBC Connection to build an SQLJ ConnectionContext, or obtain a JDBC

Connection from an SQLJ ConnectionContext.

v Use an SQLJ iterator to retrieve data from a JDBC ResultSet or generate a JDBC

ResultSet from an SQLJ iterator.

Building an SQLJ ConnectionContext from a JDBC Connection: To do that:

1. Execute an SQLJ connection declaration clause to create a ConnectionContext

class.

2. Load the driver or obtain a DataSource instance.

3. Invoke the JDBC DriverManager.getConnection or DataSource.getConnection

method to obtain a JDBC Connection.

4. Invoke the ConnectionContext constructor with the Connection as its argument

to create the ConnectionContext object.

Obtaining a JDBC Connection from an SQLJ ConnectionContext: To do this,

1. Execute an SQLJ connection declaration clause to create a ConnectionContext

class.

2. Load the driver or obtain a DataSource instance.

3. Invoke the ConnectionContext constructor with the URL of the driver and any

other necessary parameters as its arguments to create the ConnectionContext

object.

4. Invoke the JDBC ConnectionContext.getConnection method to create the JDBC

Connection object.

See Connect to a data source using SQLJ for more information on SQLJ

connections.

Retrieving JDBC result sets using SQLJ iterators: Use the iterator conversion

statement to manipulate a JDBC result set as an SQLJ iterator. The general form of

an iterator conversion statement is:

#sql iterator={CAST :result-set};

Before you can successfully cast a result set to an iterator, the iterator must

conform to the following rules:

Chapter 3. Programming SQLJ applications 127

v The iterator must be declared as public.

v If the iterator is a positioned iterator, the number of columns in the result set

must match the number of columns in the iterator. In addition, the data type of

each column in the result set must match the data type of the corresponding

column in the iterator.

v If the iterator is a named iterator, the name of each accessor method must match

the name of a column in the result set. In addition, the data type of the object

that an accessor method returns must match the data type of the corresponding

column in the result set.

The code in Figure 54 builds and executes a query using a JDBC call, executes an

iterator conversion statement to convert the JDBC result set to an SQLJ iterator,

and retrieves rows from the result table using the iterator.

 Notes to Figure 54:

 Note Description

�1� This SQLJ clause creates the named iterator class ByName, which has accessor

methods LastName() and HireDate() that return the data from result table columns

LASTNAME and HIREDATE.

�2� This statement and the following two statements build and prepare a query for

dynamic execution using JDBC.

�3� This JDBC statement executes the SELECT statement and assigns the result table

to result set rs.

�4� This iterator conversion clause converts the JDBC ResultSet rs to SQLJ iterator

nameiter, and the following statements use nameiter to retrieve values from the

result table.

�5� The nameiter.close() method closes the SQLJ iterator and JDBC ResultSet rs.

Generating JDBC ResultSets from SQLJ iterators: Use the getResultSet method to

generate a JDBC ResultSet from an SQLJ iterator. Every SQLJ iterator has a

getResultSet method. After you convert an iterator to a result set, you need to fetch

rows using only the result set.

#sql public iterator ByName(String LastName, Date HireDate); �1�

public void HireDates(ConnectionContext connCtx, String whereClause)

{

 ByName nameiter; // Declare object of ByName class

 Connection conn=connCtx.getConnection();

 // Create JDBC connection

 Statement stmt = conn.createStatement(); �2�

 String query = "SELECT LASTNAME, HIREDATE FROM EMPLOYEE";

 query+=whereClause; // Build the query

 ResultSet rs = stmt.executeQuery(query); �3�

 #sql [connCtx] nameiter = {CAST :rs}; �4�

 while (nameiter.next())

 {

 System.out.println(nameiter.LastName() + " was hired on "

 + nameiter.HireDate());

 }

 nameiter.close(); �5�

 stmt.close();

}

Figure 54. Converting a JDBC result set to an SQLJ iterator

128 Developing Java Applications

The code in Figure 55 generates a positioned iterator for a query, converts the

iterator to a result set, and uses JDBC methods to fetch rows from the table.

 Notes to Figure 55:

 Note Description

�1� This SQLJ clause executes the SELECT statement, constructs an iterator object that

contains the result table for the SELECT statement, and assigns the iterator object

to variable iter.

�2� The getResultSet() method converts iterator iter to ResultSet rs.

�3� The JDBC getString() and getDate() methods retrieve values from the ResultSet.

The next() method moves the cursor to the next row in the ResultSet.

�4� The rs.close() method closes the SQLJ iterator as well as the ResultSet.

Rules and restrictions for using JDBC ResultSets in SQLJ applications: When you

write SQLJ applications that include JDBC result sets, observe the following rules

and restrictions:

v You cannot cast a ResultSet to an SQLJ iterator if the ResultSet and the iterator

have different holdability attributes.

A JDBC ResultSet or an SQLJ iterator can remain open after a COMMIT

operation. For a JDBC ResultSet, this characteristic is controlled by the IBM DB2

Driver for JDBC and SQLJ property resultSetHoldability. For an SQLJ iterator,

this characteristic is controlled by the with holdability parameter of the iterator

declaration. Casting a ResultSet that has holdability to an SQLJ iterator that

does not, or casting a ResultSet that does not have holdability to an SQLJ

iterator that does, is not supported.

v Close a generated ResultSet object or the underlying iterator at the end of the

program.

Closing the iterator object from which a ResultSet object is generated also closes

the ResultSet object. Closing the generated ResultSet object also closes the

iterator object. In general, it is best to close the object that is used last.

v For the IBM DB2 Driver for JDBC and SQLJ, which supports scrollable iterators

and scrollable and updatable ResultSets, the following restrictions apply:

– Scrollable iterators have the same restrictions as their underlying JDBC

ResultSets. For example, because scrollable ResultSets do not support

INSERTs, scrollable iterators do not support INSERTs.

– You cannot cast a JDBC ResultSet that is not updatable to an SQLJ iterator

that is updatable.

 Related tasks:

#sql iterator EmpIter(String, java.sql.Date);

{

...

 EmpIter iter=null;

 #sql [connCtx] iter=

 {SELECT LASTNAME, HIREDATE FROM EMPLOYEE}; �1�

 ResultSet rs=iter.getResultSet(); �2�

 while (rs.next()) �3�

 { System.out.println(rs.getString(1) + " was hired in " +

 rs.getDate(2));

 }

 rs.close(); �4�

}

Figure 55. Converting an SQLJ iterator to a JDBC ResultSet

Chapter 3. Programming SQLJ applications 129

v “Connecting to a data source using SQLJ” on page 92

Controlling the execution of SQL statements in SQLJ

 You can use selected methods of the SQLJ ExecutionContext class to control or

monitor the execution of SQL statements.

To use ExecutionContext methods, follow these steps:

1. Acquire an execution context.

There are two ways to acquire an execution context:

v Acquire the default execution context from the connection context. For

example:

ExecutionContext execCtx = connCtx.getExecutionContext();

v Create a new execution context by invoking the constructor for

ExecutionContext. For example:

ExecutionContext execCtx=new ExecutionContext();

2. Associate the execution context with an SQL statement.

To do that, specify an execution context after the connection context in the

execution clause that contains the SQL statement. For example:

#sql [connCtx, execCtx] {DELETE FROM EMPLOYEE WHERE SALARY > 10000};

3. Invoke ExecutionContext methods.

Some ExecutionContext methods are applicable before the associated SQL

statement is executed, and some are applicable only after their associated SQL

statement is executed.

For example, you can use method getUpdateCount to count the number of rows

that are deleted by a DELETE statement after you execute the DELETE

statement:

#sql [connCtx, execCtx] {DELETE FROM EMPLOYEE WHERE SALARY > 10000};

System.out.println("Deleted " + execCtx.getUpdateCount() + " rows");

ROWIDs in SQLJ with the IBM DB2 Driver for JDBC and SQLJ

 DB2 for z/OS and DB2 UDB for iSeries support the ROWID data type for a

column in a DB2 table. A ROWID is a value that uniquely identifies a row in a

table.

If you use ROWIDs in SQLJ programs, you need to customize those programs.

The IBM DB2 Driver for JDBC and SQLJ provides the DB2-only class

com.ibm.db2.jcc.DB2RowID that you can use in iterators and in CALL statement

parameters. For an iterator, you can also use the byte[] object type to retrieve

ROWID values.

Figure 56 on page 131 shows an example of an iterator that is used to select values

from a ROWID column:

130 Developing Java Applications

Figure 57 shows an example of calling a stored procedure that takes three ROWID

parameters: an IN parameter, an OUT parameter, and an INOUT parameter.

 Related reference:

v “Data types that map to SQL data types in JDBC applications” on page 227

Distinct types in SQLJ applications

 In DB2, a distinct type is a user-defined data type that is internally represented as

a built-in SQL data type. You create a distinct type by executing the SQL statement

CREATE DISTINCT TYPE.

#sql iterator PosIter(int,String,com.ibm.db2.jcc.DB2RowId);

 // Declare positioned iterator

 // for retrieving ITEM_ID (INTEGER),

 // ITEM_FORMAT (VARCHAR), and ITEM_ROWID (ROWID)

 // values from table ROWIDTAB

{

 PosIter positrowid; // Declare object of PosIter class

 com.ibm.db2.jcc.DB2RowId rowid = null;

 int id = 0;

 String i_fmt = null;

 // Declare host expressions

 #sql [ctxt] positrowid =

 {SELECT ITEM_ID, ITEM_FORMAT, ITEM_ROWID FROM ROWIDTAB

 WHERE ITEM_ID=3};

 // Assign the result table of the SELECT

 // to iterator object positrowid

 #sql {FETCH :positrowid INTO :id, :i_fmt, :rowid};

 // Retrieve the first row

 while (!positrowid.endFetch())

 // Check whether the FETCH returned a row

 {System.out.println("Item ID " + id + " Item format " +

 i_fmt + " Item ROWID ");

 printBytes(rowid.getBytes());

 // Use the DB2-only method getBytes to

 // convert the value to bytes for printing

 #sql {FETCH :positrowid INTO :id, :i_fmt, :rowid};

 // Retrieve the next row

 }

 positrowid.close(); // Close the iterator

}

Figure 56. Example of using an iterator to retrieve ROWID values

com.ibm.db2.jcc.DB2RowId in_rowid = rowid;

com.ibm.db2.jcc.DB2RowId out_rowid = null;

com.ibm.db2.jcc.DB2RowId inout_rowid = rowid;

 // Declare an input, output, and

 // input/output ROWID parameter

...

#sql [myConnCtx] {CALL SP_ROWID(:IN in_rowid,

 :OUT out_rowid,

 :INOUT inout_rowid)};

 // Call the stored procedure

System.out.println("Parameter values from SP_ROWID call: ");

System.out.println("Output parameter value ");

printBytes(out_rowid.getBytes());

 // Use the DB2-only method getBytes to

 // convert the value to bytes for printing

System.out.println("Input/output parameter value ");

printBytes(inout_rowid.getBytes());

Figure 57. Example of calling a stored procedure with a ROWID parameter

Chapter 3. Programming SQLJ applications 131

In an SQLJ program, you can create a distinct type using the CREATE DISTINCT

TYPE statement in an executable clause. You can also use CREATE TABLE in an

executable clause to create a table that includes a column of that type. When you

retrieve data from a column of that type, or update a column of that type, you use

Java identifiers with data types that correspond to the built-in types on which the

distinct types are based.

The following example creates a distinct type that is based on an INTEGER type,

creates a table with a column of that type, inserts a row into the table, and

retrieves the row from the table:

 Related reference:

v “CREATE DISTINCT TYPE statement” in SQL Reference, Volume 2

Savepoints in SQLJ applications

 An SQL savepoint represents the state of data and schemas at a particular point in

time within a unit of work. SQL statements exist to set a savepoint, release a

savepoint, and restore data and schemas to the state that the savepoint represents.

Under the IBM DB2 Driver for JDBC and SQLJ, you can include any form of the

SQL SAVEPOINT statement in your SQLJ program.

The following example demonstrates how to set a savepoint, roll back to the

savepoint, and release the savepoint.

String empNumVar;

int shoeSizeVar;

...

#sql [myConnCtx] {CREATE DISTINCT TYPE SHOESIZE AS INTEGER WITH COMPARISONS};

 // Create distinct type

#sql [myConnCtx] {COMMIT}; // Commit the create

#sql [myConnCtx] {CREATE TABLE EMP_SHOE

 (EMPNO CHAR(6), EMP_SHOE_SIZE SHOESIZE)};

 // Create table using distinct type

#sql [myConnCtx] {COMMIT}; // Commit the create

#sql [myConnCtx] {INSERT INTO EMP_SHOE

 VALUES(’000010’,6)}; // Insert a row in the table

#sql [myConnCtx] {COMMIT}; // Commit the INSERT

#sql [myConnCtx] {SELECT EMPNO, EMP_SHOE_SIZE

 INTO :empNumVar, :shoeSizeVar

 FROM EMP_SHOE}; // Retrieve the row

System.out.println("Employee number: " + empNumVar +

 " Shoe size: " + shoeSizeVar);

Figure 58. Defining and using a distinct type

132 Developing Java Applications

Related tasks:

v “Committing or rolling back SQLJ transactions” on page 138

 Related reference:

v “RELEASE SAVEPOINT statement” in SQL Reference, Volume 2

v “ROLLBACK statement” in SQL Reference, Volume 2

v “SAVEPOINT statement” in SQL Reference, Volume 2

Working with XML data in SQLJ applications

The topics that follow contain information about updating and retrieving XML

data in SQLJ applications.

v “XML data in SQLJ applications”

v “XML column updates in SQLJ applications” on page 134

v “XML data retrieval in SQLJ applications” on page 136

XML data in SQLJ applications

 In DB2 tables, the XML built-in data type is used to store XML data in a column as

a structured set of nodes in a tree format.

#sql context Ctx; // Create connection context class Ctx

String empNumVar;

int shoeSizeVar;

...

try { // Load the JDBC driver

 Class.forName("com.ibm.db2.jcc.DB2Driver");

}

catch (ClassNotFoundException e) {

 e.printStackTrace();

}

Connection jdbccon=

 DriverManager.getConnection("jdbc:db2://sysmvs1.stl.ibm.com:5021/NEWYORK",

 userid,password);

 // Create JDBC connection object jdbccon

jdbccon.setAutoCommit(false); // Do not autocommit

Ctx ctxt=new Ctx(jdbccon);

 // Create connection context object myConnCtx

 // for the connection to NEWYORK

... // Perform some SQL

#sql [ctxt] {COMMIT}; // Commit the transaction

 // Commit the create

#sql [ctxt]

 {INSERT INTO EMP_SHOE VALUES (’000010’, 6)};

 // Insert a row

#sql [ctxt]

 {SAVEPOINT SVPT1 ON ROLLBACK RETAIN CURSORS};

 // Create a savepoint

...

#sql [ctxt]

 {INSERT INTO EMP_SHOE VALUES (’000020’, 10)};

 // Insert another row

#sql [ctxt] {ROLLBACK TO SAVEPOINT SVPT1};

 // Roll back work to the point

 // after the first insert

...

#sql [ctxt] {RELEASE SAVEPOINT SVPT1};

 // Release the savepoint

ctx.close(); // Close the connection context

Figure 59. Setting, rolling back to, and releasing a savepoint in an SQLJ application

Chapter 3. Programming SQLJ applications 133

In applications, XML data is in the serialized string format.

In SQLJ applications, you can:

v Store an entire XML document in an XML column using INSERT or UPDATE

statements.

v Retrieve an entire XML document from an XML column using single-row

SELECT statements or iterators.

v Retrieve a sequence from a document in an XML column by using the SQL

XMLQUERY function to retrieve the sequence into a serialized XML string in the

database, and then using using single-row SELECT statements or iterators to

retrieve the data into an application variable.

v Retrieve a sequence from a document in an XML column by using an XQuery

expression, prepended with the string 'XQUERY', to retrieve the elements of the

sequence into a result table in the database, in which each row of the result table

represents an item in the sequence. Then use using single-row SELECT

statements or iterators to retrieve the data into application variables.

v Retrieve a sequence from a document in an XML column as a user-defined table

by using the SQL XMLTABLE function to define the result table and retrieve it.

Then use using single-row SELECT statements or iterators to retrieve the data

from the result table into application variables.

Java has no XML data type, and invocations of metadata methods, such as

ResultSetMetaData.getColumnTypeName return a type of java.sql.Types.OTHER for

an XML column type.

 Related concepts:

v “Encoding considerations for XML data in JDBC, SQLJ, and .NET applications”

in XML Guide

v “XML column updates in SQLJ applications” on page 134

v “XML data retrieval in SQLJ applications” on page 136

XML column updates in SQLJ applications

 When you update or insert data into XML columns of a DB2 table, the input data

must be in the serialized string format. The host expression data types that you

can use to update XML columns are:

v com.ibm.db2.jcc.DB2Xml

v String

v byte

v Blob

v Clob

v sqlj.runtime.AsciiStream

v sqlj.runtime.BinaryStream

v sqlj.runtime.CharacterStream

For stream types, you need to use an sqlj.runtime.typeStream host expression,

rather than a java.io.typeInputStream host expression so that you can pass the

length of the stream to the JDBC driver.

The encoding of XML data can be derived from the data itself, which is known as

internally encoded data, or from external sources, which is known as externally

encoded data. XML data that is sent to the database server as binary data is treated

134 Developing Java Applications

as internally encoded data. XML data that is sent to the database server as

character data is treated as externally encoded data. The external encoding is the

default encoding for the JVM.

External encoding for Java applications is always Unicode encoding.

Externally encoded data can have internal encoding. That is, the data might be sent

to the database server as character data, but the data contains encoding

information. The database server handles incompatibilities between internal and

external encoding as follows:

v If the database server is DB2 Database for Linux, UNIX, and Windows, the

database server generates an error if the external and internal encoding are

incompatible, unless the external and internal encoding are Unicode. If the

external and internal encoding are Unicode, the database server ignores the

internal encoding.

v If the database server is DB2 for z/OS, the database server ignores internal

encoding.

Data in XML columns is stored in UTF-8 encoding.

Example: Suppose that you use the following statement to insert data from String

host expression xmlString into an XML column in a table on a DB2 database

server. xmlString is a character type, so its external encoding is used, whether or

not it has an internal encoding specification.

#sql [ctx] {INSERT INTO CUSTACC VALUES (1, :xmlString)};

Example: Suppose that you copy the data from xmlString into a byte array with

CP500 encoding. The data contains an XML declaration with an encoding

declaration for Cp500. Then you insert the data from the byte[] host expression

into an XML column in a table on a DB2 database server.

byte[] xmlBytes = xmlString.getBytes("CP500");

#sql[ctx] {INSERT INTO CUSTACC VALUES (4, :xmlBytes)};

A byte string is considered to be internally encoded data. The data is converted

from its internal encoding scheme to UTF-8, if necessary, and stored in its

hierarchical format on the DB2 database server.

Example: Suppose that you copy the data from xmlString into a byte array with

US-ASCII encoding. Then you construct an sqlj.runtime.AsciiStream host

expression, and insert data from the sqlj.runtime.AsciiStream host expression into

an XML column in a table on a DB2 database server.

byte[] b = xmlString.getBytes("US-ASCII");

java.io.ByteArrayInputStream xmlAsciiInputStream =

 new java.io.ByteArrayInputStream(b);

sqlj.runtime.AsciiStream sqljXmlAsciiStream =

 new sqlj.runtime.AsciiStream(xmlAsciiInputStream, b.length);

#sql[ctx] {INSERT INTO CUSTACC VALUES (4, :sqljXmlAsciiStream)};

sqljXmlAsciiStream is a stream type, so its internal encoding is used. The data is

converted from its internal encoding to UTF-8 encoding and stored in its

hierarchical form on the database server.

Example: sqlj.runtime.CharacterStream host expression: Suppose that you

construct an sqlj.runtime.CharacterStream host expression, and insert data from the

sqlj.runtime.CharacterStream host expression into an XML column in a table on a

DB2 database server.

Chapter 3. Programming SQLJ applications 135

java.io.StringReader xmlReader =

 new java.io.StringReader(xmlString);

sqlj.runtime.CharacterStream sqljXmlCharacterStream =

 new sqlj.runtime.CharacterStream(xmlReader, xmlString.length());

#sql [ctx] {INSERT INTO CUSTACC VALUES (4, :sqljXmlCharacterStream)};

sqljXmlCharacterStream is a character type, so its external encoding is used,

whether or not it has an internal encoding specification.

Example: Suppose that you retrieve a document from an XML column into a

com.ibm.db2.jcc.DB2Xml host expression, and insert the data into an XML column

in a table on a DB2 database server.

java.sql.ResultSet rs = s.executeQuery ("SELECT * FROM CUSTACC");

rs.next();

com.ibm.db2.jcc.DB2Xml xmlObject = (com.ibm.db2.jcc.DB2Xml)rs.getObject(2);

#sql [ctx] {INSERT INTO CUSTACC VALUES (6, :xmlObject)};

After you retrieve the data it is still in UTF-8 encoding, so when you insert the

data into another XML column, no conversion occurs.

XML data retrieval in SQLJ applications

 When you retrieve data from XML columns of a DB2 table, the output data is in

the serialized string format.

The host expression or iterator data types that you can use to retrieve data from

XML columns are:

v com.ibm.db2.jcc.DB2Xml

v String

v byte[]

v sqlj.runtime.AsciiStream

v sqlj.runtime.BinaryStream

v sqlj.runtime.CharacterStream

If the application does not call the XMLSERIALIZE function before data retrieval,

the data is converted from UTF-8 to the external application encoding for the

character data types, or the internal encoding for the binary data types. No XML

declaration is added. If the host expression is an object of the

com.ibm.db2.jcc.DB2Xml type, you need to call an additional method to retrieve

the data from this object. The method that you call determines the encoding of the

output data and whether an XML declaration with an encoding specification is

added. Table 17 lists the methods that you can call to retrieve data from an

com.ibm.db2.jcc.DB2Xml object, and the corresponding output data types and type

of encoding in the XML declarations.

 Table 17. DB2Xml methods, data types, and added encoding specifications

Method Output data type Type of XML internal encoding declaration added

DB2Xml.getDB2AsciiStream InputStream None

DB2Xml.getDB2BinaryStream InputStream None

DB2Xml.getDB2Bytes byte[] None

DB2Xml.getDB2CharacterStream Reader None

DB2Xml.getDB2String String None

DB2Xml.getDB2XmlAsciiStream InputStream US-ASCII

136 Developing Java Applications

Table 17. DB2Xml methods, data types, and added encoding specifications (continued)

Method Output data type Type of XML internal encoding declaration added

DB2Xml.getDB2XmlBinaryStream InputStream Specified by getDB2XmlBinaryStream targetEncoding

parameter

DB2Xml.getDB2XmlBytes byte[] Specified by DB2Xml.getDB2XmlBytes targetEncoding

parameter

DB2Xml.getDB2XmlCharacterStream Reader ISO-10646-UCS-2

DB2Xml.getDB2XmlString String ISO-10646-UCS-2

If the application executes the XMLSERIALIZE function on the data that is to be

returned, after execution of the function, the data has the data type that is specified

in the XMLSERIALIZE function, not the XML data type. Therefore, the driver

handles the data as the specified type and ignores any internal encoding

declarations.

Example: Suppose that you retrieve data from an XML column into a String host

expression.

#sql iterator XmlStringIter (int, String);

#sql [ctx] siter = {SELECT C1, CADOC from CUSTACC};

#sql {FETCH :siter INTO :row, :outString};

The String type is a character type, so the data is converted from UTF-8 to the

external encoding, which is the default JVM encoding, and returned without any

XML declaration.

Example: Suppose that you retrieve data from an XML column into a byte[] host

expression.

#sql iterator XmlByteArrayIter (int, byte[]);

XmlByteArrayIter biter = null;

#sql [ctx] biter = {SELECT c1, CADOC from CUSTACC};

#sql {FETCH :biter INTO :row, :outBytes};

The byte[] type is a binary type, so the data is converted from UTF-8 to the

internal encoding, and returned without any XML declaration.

Example: Suppose that you retrieve a document from an XML column into a

com.ibm.db2.jcc.DB2Xml host expression, but you need the data in a byte string

with an XML declaration that includes an internal encoding specification for

UTF-8.

#sql iterator DB2XmlIter (int, com.ibm.db2.jcc.DB2Xml);

DB2XmlIter db2xmliter = null;

com.ibm.db2.jcc.DB2Xml outDB2Xml = null;

#sql [ctx] db2xmliter = {SELECT c1, CADOC from CUSTACC};

#sql {FETCH :db2xmliter INTO :row, :outDB2Xml};

byte[] byteArray = outDB2XML.getDB2XmlBytes("UTF-8");

The FETCH statement retrieves the data into the DB2Xml object in UTF-8

encoding. The getDB2XmlBytes method with the UTF-8 argument adds an XML

declaration with a UTF-8 encoding specification and stores the data in a byte array.

Transaction control in SQLJ applications

The topics that follow discuss control of DB2 transactions in SQLJ applications.

v “Setting the isolation level for an SQLJ transaction” on page 138

v “Committing or rolling back SQLJ transactions” on page 138

Chapter 3. Programming SQLJ applications 137

Setting the isolation level for an SQLJ transaction

 To set the isolation level for a unit of work within an SQLJ program, use the SET

TRANSACTION ISOLATION LEVEL clause. Table 18 shows the values that you

can specify in the SET TRANSACTION ISOLATION LEVEL clause and their DB2

equivalents.

 Table 18. Equivalent SQLJ and DB2 isolation levels

SET TRANSACTION value DB2 isolation level

SERIALIZABLE Repeatable read

REPEATABLE READ Read stability

READ COMMITTED Cursor stability

READ UNCOMMITTED Uncommitted read

The isolation level affects the underlying JDBC connection as well as the SQLJ

connection.

 Related concepts:

v “Isolation levels” in SQL Reference, Volume 1

Committing or rolling back SQLJ transactions

 If you disable autocommit for an SQLJ connection, you need to perform explicit

commit or rollback operations. You do this using execution clauses that contain the

SQL COMMIT or ROLLBACK statements:

#sql [myConnCtx] {COMMIT};

#sql [myConnCtx] {ROLLBACK};

 Related concepts:

v “Savepoints in SQLJ applications” on page 132

 Related tasks:

v “Connecting to a data source using SQLJ” on page 92

Handling errors and warnings in SQLJ applications

The topics that follow explain how to handle SQL errors and warnings in SQLJ

applications.

v “Handling SQL errors in an SQLJ application”

v “Handling SQL warnings in an SQLJ application” on page 139

Handling SQL errors in an SQLJ application

 SQLJ clauses use the JDBC class java.sql.SQLException for error handling. SQLJ

generates an SQLException under the following circumstances:

v When any SQL statement returns a negative SQL error code

v When a SELECT INTO SQL statement returns a +100 SQL error code

You can use the getErrorCode method to retrieve SQL error codes and the

getSQLState method to retrieve SQLSTATEs.

138 Developing Java Applications

To handle SQL errors in your SQLJ application, import the java.sql.SQLException

class, and use the Java error handling try/catch blocks to modify program flow

when an SQL error occurs. For example:

try {

 #sql [ctxt] {SELECT LASTNAME INTO :empname

 FROM EMPLOYEE WHERE EMPNO='000010'};

}

catch(SQLException e) {

 System.out.println("Error code returned: " + e.getErrorCode());

}

With the IBM DB2 Driver for JDBC and SQLJ, you can retrieve the SQLCA. For

information on writing code to retrieve the SQLCA with the IBM DB2 Driver for

JDBC and SQLJ, see Handle an SQLException under the IBM DB2 Driver for JDBC

and SQLJ.

For the DB2 JDBC Type 2 Driver for Linux, UNIX and Windows (DB2 JDBC Type 2

Driver), use the standard SQLException to retrieve SQL error information.

 Related tasks:

v “Handling an SQLException under the IBM DB2 Driver for JDBC and SQLJ” on

page 77

Handling SQL warnings in an SQLJ application

 Other than a +100 SQL error code on a SELECT INTO statement, DB2 warnings do

not throw SQLExceptions. To handle DB2 warnings, you need to give the program

access to the java.sql.SQLWarning class. If you want to retrieve DB2-specific

information about a warning, you also need to give the program access to the

com.ibm.db2.jcc.DB2Diagnosable interface and the com.ibm.db2.jcc.DB2Sqlca

class. To check for a DB2 warning, invoke the getWarnings method after you

execute an SQLJ clause. getWarnings returns the first SQLWarning object that an

SQL statement generates. Subsequent SQLWarning objects are chained to the first

one.

To retrieve DB2-specific information from the SQLWarning object with the IBM DB2

Driver for JDBC and SQLJ, follow the instructions in Handle an SQLException

under the IBM DB2 Driver for JDBC and SQLJ.

Before you can execute getWarnings for an SQL clause, you need to set up an

execution context for that SQL clause. See Control the execution of SQL statements

in SQLJ for information on how to set up an execution context. The following

example demonstrates how to retrieve an SQLWarning object for an SQL clause with

execution context execCtx:

ExecutionContext execCtx=myConnCtx.getExecutionContext();

 // Get default execution context from

 // connection context

SQLWarning sqlWarn;

...

#sql [myConnCtx,execCtx] {SELECT LASTNAME INTO :empname

 FROM EMPLOYEE WHERE EMPNO='000010'};

if ((sqlWarn = execCtx.getWarnings()) != null)

System.out.println("SQLWarning " + sqlWarn);

 Related tasks:

v “Handling an SQLException under the IBM DB2 Driver for JDBC and SQLJ” on

page 77

Chapter 3. Programming SQLJ applications 139

v “Controlling the execution of SQL statements in SQLJ” on page 130

v “Handling SQL errors in an SQLJ application” on page 138

Closing the connection to a data source in an SQLJ application

 When you have finished with a connection to a data source, you need to close the

connection to the data source. Doing so releases the connection context object’s

DB2 and SQLJ resources immediately.

To close the connection to the data source, use one of the ConnectionContext.close

methods. If you execute ConnectionContext.close() or

ConnectionContext.close(ConnectionContext.CLOSE_CONNECTION), the connection

context, as well as the connection to the data source, are closed. If you execute

ConnectionContext.close(ConnectionContext.KEEP_CONNECTION) the connection

context is closed, but the connection to the data source is not. For example:

...

ctx = new EzSqljctx(con0); // Create a connection context object

 // from JDBC connection con0

... // Perform various SQL operations

 EzSqljctx.close(ConnectionContext.KEEP_CONNECTION);

 // Close the connection context but keep

 // the connection to the data source open

 Related tasks:

v “Connecting to a data source using SQLJ” on page 92

140 Developing Java Applications

Chapter 4. JDBC and SQLJ security

The sections that follow contain information on security mechanisms that are

available under the JDBC drivers.

v “Security under the DB2 JDBC Type 2 Driver”

v “Security under the IBM DB2 Driver for JDBC and SQLJ” on page 142

v “User ID and password security under the IBM DB2 Driver for JDBC and SQLJ”

on page 144

v “User ID-only security under the IBM DB2 Driver for JDBC and SQLJ” on page

146

v “Encrypted password security or encrypted user ID and encrypted password

security under the IBM DB2 Driver for JDBC and SQLJ” on page 146

v “Kerberos security under the IBM DB2 Driver for JDBC and SQLJ” on page 148

v “IBM DB2 Driver for JDBC and SQLJ security plugin support” on page 151

v “IBM DB2 Driver for JDBC and SQLJ trusted context support” on page 153

v “Security for preparing SQLJ applications with the IBM DB2 Driver for JDBC

and SQLJ” on page 155

Security under the DB2 JDBC Type 2 Driver

 The DB2 JDBC Type 2 Driver for Linux, UNIX and Windows (DB2 JDBC Type 2

Driver) supports user ID and password security. You must set the user ID and the

password, or set neither. If you do not set a user ID and password, the driver uses

the user ID and password of the user who is currently logged on to the operating

system.

To specify user ID and password security for a JDBC connection, use one of the

following techniques.

For the DriverManager interface: you can specify the user ID and password directly

in the DriverManager.getConnection invocation. For example:

import java.sql.*; // JDBC base

...

String id = "db2adm"; // Set user ID

Sring pw = "db2adm"; // Set password

String url = "jdbc:db2:toronto";

 // Set URL for the data source

Connection con = DriverManager.getConnection(url, id, pw);

 // Create connection

Alternatively, you can set the user ID and password by setting the user and

password properties in a Properties object, and then invoking the form of the

getConnection method that includes the Properties object as a parameter. For

example:

import java.sql.*; // JDBC base

import COM.ibm.db2.jdbc.*; // DB2 implementation of JDBC

...

Properties properties = new java.util.Properties();

 // Create Properties object

properties.put("user", "db2adm"); // Set user ID for the connection

properties.put("password", "db2adm"); // Set password for the connection

String url = "jdbc:db2:toronto";

 // Set URL for the data source

Connection con = DriverManager.getConnection(url, properties);

 // Create connection

© Copyright IBM Corp. 2006 141

For the DataSource interface: you can specify the user ID and password directly in

the DataSource.getConnection invocation. For example:

import java.sql.*; // JDBC base

import COM.ibm.db2.jdbc.*; // DB2 implementation of JDBC

...

Context ctx=new InitialContext(); // Create context for JNDI

DataSource ds=(DataSource)ctx.lookup("jdbc/sampledb");

 // Get DataSource object

String id = "db2adm"; // Set user ID

Sring pw = "db2adm"; // Set password

Connection con = ds.getConnection(id, pw);

 // Create connection

Alternatively, if you create and deploy the DataSource object, you can set the user

ID and password by invoking the DataSource.setUser and

DataSource.setPassword methods after you create the DataSource object. For

example:

import java.sql.*; // JDBC base

import COM.ibm.db2.jdbc.*; // DB2 implementation of JDBC

...

DB2DataSource db2ds = new DB2DataSource();

 // Create DataSource object

db2ds.setDatabaseName("toronto"); // Set location

db2ds.setUser("db2adm"); // Set user ID

db2ds.setPassword("db2adm"); // Set password

 Related concepts:

v “How DB2 applications connect to a data source using the DriverManager

interface with the DB2 JDBC Type 2 Driver” on page 25

 Related tasks:

v “Connecting to a data source using the DataSource interface” on page 30

v “Creating and deploying DataSource objects” on page 33

Security under the IBM DB2 Driver for JDBC and SQLJ

 When you use the IBM DB2 Driver for JDBC and SQLJ, you choose a security

mechanism by specifying a value for the securityMechanism property. You can set

this property in one of the following ways:

v If you use the DriverManager interface, set securityMechanism in a

java.util.Properties object before you invoke the form of the getConnection

method that includes the java.util.Properties parameter.

v If you use the DataSource interface, and you are creating and deploying your

own DataSource objects, invoke the DataSource.setSecurityMechanism method

after you create a DataSource object.

Table 19 on page 143 lists the security mechanisms that the IBM DB2 Driver for

JDBC and SQLJ supports, and the value that you need to specify for the

securityMechanism property to specify each security mechanism.

The default security mechanism is CLEAR_TEXT_PASSWORD_SECURITY. If the

server does not support CLEAR_TEXT_PASSWORD_SECURITY but supports

ENCRYPTED_USER_AND_PASSWORD_SECURITY, the IBM DB2 Driver for JDBC

and SQLJ driver updates the security mechanism to

142 Developing Java Applications

ENCRYPTED_USER_AND_PASSWORD_SECURITY and attempts to connect to the

server. Any other mismatch in security mechanism support between the requester

and the server results in an error.

 Table 19. Security mechanisms supported by the IBM DB2 Driver for JDBC and SQLJ

Security mechanism securityMechanism property value

User ID and password DB2BaseDataSource.CLEAR_TEXT_PASSWORD_SECURITY

User ID only DB2BaseDataSource.USER_ONLY_SECURITY

User ID and encrypted password DB2BaseDataSource.ENCRYPTED_PASSWORD_SECURITY

Encrypted user ID and encrypted

password

DB2BaseDataSource.ENCRYPTED_USER_AND_PASSWORD_SECURITY

Encrypted user ID and encrypted

security-sensitive data

DB2BaseDataSource.ENCRYPTED_USER_AND_DATA_SECURITY

Encrypted user ID, encrypted

password, and encrypted

security-sensitive data

DB2BaseDataSource.ENCRYPTED_USER_PASSWORD_AND_DATA_SECURITY

Kerberos1 DB2BaseDataSource.KERBEROS_SECURITY

Plugin2 DB2BaseDataSource.PLUGIN_SECURITY

Note:

1. Available for IBM DB2 Driver for JDBC and SQLJ type 4 connectivity only.

2. Available for IBM DB2 Driver for JDBC and SQLJ type 4 connectivity to DB2 Database for Linux, UNIX, and

Windows servers only.

Table 20Tshows possible DB2 Database for Linux, UNIX, and Windows server

authentication types and the compatible IBM DB2 Driver for JDBC and SQLJ

securityMechanism property values.

 Table 20. Compatible DB2 Database for Linux, UNIX, and Windows server authentication types and IBM DB2 Driver

for JDBC and SQLJ securityMechanism values

DB2 Database for Linux, UNIX, and

Windows server authentication type securityMechanism setting

CLIENT USER_ONLY_SECURITY

SERVER CLEAR_TEXT_PASSWORD_SECURITY

SERVER_ENCRYPT CLEAR_TEXT_PASSWORD_SECURITY,

ENCRYPTED_PASSWORD_SECURITY, or

ENCRYPTED_USER_AND_PASSWORD_SECURITY

DATA_ENCRYPT ENCRYPTED_USER_AND_DATA_SECURITY or

ENCRYPTED_USER_PASSWORD_AND_DATA_SECURITY

KERBEROS KERBEROS_SECURITY or PLUGIN_SECURITY2

KRB_SERVER_ENCRYPT KERBEROS_SECURITY , PLUGIN_SECURITY1,

ENCRYPTED_PASSWORD_SECURITY, or

ENCRYPTED_USER_AND_PASSWORD_SECURITY

GSSPLUGIN PLUGIN_SECURITY1 or KERBEROS_SECURITY

GSS_SERVER_ENCRYPT3 CLEAR_TEXT_PASSWORD_SECURITY,

ENCRYPTED_PASSWORD_SECURITY,

ENCRYPTED_USER_AND_PASSWORD_SECURITY,

PLUGIN_SECURITY, or KERBEROS_SECURITY

Chapter 4. JDBC and SQLJ security 143

Table 20. Compatible DB2 Database for Linux, UNIX, and Windows server authentication types and IBM DB2 Driver

for JDBC and SQLJ securityMechanism values (continued)

DB2 Database for Linux, UNIX, and

Windows server authentication type securityMechanism setting

Notes:

1. For PLUGIN_SECURITY, the plugin must be a Kerberos plugin.

2. For PLUGIN_SECURITY, one of the plugins at the server identifies itself as supporting Kerberos.

3. GSS_SERVER_ENCRYPT is a combination of GSSPLUGIN and SERVER_ENCRYPT.

 Related concepts:

v “Encrypted password security or encrypted user ID and encrypted password

security under the IBM DB2 Driver for JDBC and SQLJ” on page 146

v “Kerberos security under the IBM DB2 Driver for JDBC and SQLJ” on page 148

v “User ID and password security under the IBM DB2 Driver for JDBC and SQLJ”

on page 144

v “User ID-only security under the IBM DB2 Driver for JDBC and SQLJ” on page

146

 Related reference:

v “Properties for the IBM DB2 Driver for JDBC and SQLJ” on page 232

User ID and password security under the IBM DB2 Driver for JDBC

and SQLJ

 To specify user ID and password security for a JDBC connection, use one of the

following techniques.

For the DriverManager interface: You can specify the user ID and password directly

in the DriverManager.getConnection invocation. For example:

import java.sql.*; // JDBC base

...

String id = "db2adm"; // Set user ID

String pw = "db2adm"; // Set password

String url = "jdbc:db2://mvs1.sj.ibm.com:5021/san_jose";

 // Set URL for the data source

Connection con = DriverManager.getConnection(url, id, pw);

 // Create connection

Another method is to set the user ID and password directly in the URL string. For

example:

import java.sql.*; // JDBC base

...

String url =

 "jdbc:db2://mvs1.sj.ibm.com:5021/san_jose:user=db2adm;password=db2adm;";

 // Set URL for the data source

Connection con = DriverManager.getConnection(url);

 // Create connection

Alternatively, you can set the user ID and password by setting the user and

password properties in a Properties object, and then invoking the form of the

getConnection method that includes the Properties object as a parameter.

Optionally, you can set the securityMechanism property to indicate that you are

using user ID and password security. For example:

144 Developing Java Applications

import java.sql.*; // JDBC base

import com.ibm.db2.jcc.*; // DB2 implementation of JDBC

...

Properties properties = new java.util.Properties();

 // Create Properties object

properties.put("user", "db2adm"); // Set user ID for the connection

properties.put("password", "db2adm"); // Set password for the connection

properties.put("securityMechanism",

 new String("" + com.ibm.db2.jcc.DB2BaseDataSource.CLEAR_TEXT_PASSWORD_SECURITY +

 ""));

 // Set security mechanism to

 // user ID and password

String url = "jdbc:db2://mvs1.sj.ibm.com:5021/san_jose";

 // Set URL for the data source

Connection con = DriverManager.getConnection(url, properties);

 // Create connection

For the DataSource interface: you can specify the user ID and password directly in

the DataSource.getConnection invocation. For example:

import java.sql.*; // JDBC base

import com.ibm.db2.jcc.*; // DB2 implementation of JDBC

...

Context ctx=new InitialContext(); // Create context for JNDI

DataSource ds=(DataSource)ctx.lookup("jdbc/sampledb");

 // Get DataSource object

String id = "db2adm"; // Set user ID

String pw = "db2adm"; // Set password

Connection con = ds.getConnection(id, pw);

 // Create connection

Alternatively, if you create and deploy the DataSource object, you can set the user

ID and password by invoking the DataSource.setUser and

DataSource.setPassword methods after you create the DataSource object.

Optionally, you can invoke the DataSource.setSecurityMechanism method property

to indicate that you are using user ID and password security. For example:

...

com.ibm.db2.jcc.DB2SimpleDataSource db2ds = // Create DB2SimpleDataSource object

 new com.ibm.db2.jcc.DB2SimpleDataSource();

db2ds.setDriverType(4); // Set driver type

db2ds.setDatabaseName("san_jose"); // Set location

db2ds.setServerName("mvs1.sj.ibm.com"); // Set server name

db2ds.setPortNumber(5021); // Set port number

db2ds.setUser("db2adm"); // Set user ID

db2ds.setPassword("db2adm"); // Set password

db2ds.setSecurityMechanism(

 com.ibm.db2.jcc.DB2BaseDataSource.CLEAR_TEXT_PASSWORD_SECURITY);

 // Set security mechanism to

 // user ID and password

 Related tasks:

v “Connecting to a data source using the DataSource interface” on page 30

v “Connecting to a data source using the DriverManager interface with the IBM

DB2 Driver for JDBC and SQLJ” on page 27

v “Creating and deploying DataSource objects” on page 33

 Related reference:

v “Properties for the IBM DB2 Driver for JDBC and SQLJ” on page 232

Chapter 4. JDBC and SQLJ security 145

User ID-only security under the IBM DB2 Driver for JDBC and SQLJ

 To specify user ID security for a JDBC connection, use one of the following

techniques.

For the DriverManager interface: Set the user ID and security mechanism by setting

the user and securityMechanism properties in a Properties object, and then

invoking the form of the getConnection method that includes the Properties object

as a parameter. For example:

import java.sql.*; // JDBC base

import com.ibm.db2.jcc.*; // DB2 implementation of JDBC

...

Properties properties = new Properties(); // Create a Properties object

properties.put("user", "db2adm"); // Set user ID for the connection

properties.put("securityMechanism",

 new String("" + com.ibm.db2.jcc.DB2BaseDataSource.USER_ONLY_SECURITY + ""));

 // Set security mechanism to

 // user ID only

String url = "jdbc:db2://mvs1.sj.ibm.com:5021/san_jose";

 // Set URL for the data source

Connection con = DriverManager.getConnection(url, properties);

 // Create the connection

For the DataSource interface: If you create and deploy the DataSource object, you

can set the user ID and security mechanism by invoking the DataSource.setUser

and DataSource.setSecurityMechanism methods after you create the DataSource

object. For example:

import java.sql.*; // JDBC base

import com.ibm.db2.jcc.*; // DB2 implementation of JDBC

...

com.ibm.db2.jcc.DB2SimpleDataSource db2ds =

 new com.ibm.db2.jcc.DB2SimpleDataSource();

 // Create DB2SimpleDataSource object

db2ds.setDriverType(4); // Set the driver type

db2ds.setDatabaseName("san_jose"); // Set the location

db2ds.setServerName("mvs1.sj.ibm.com"); // Set the server name

db2ds.setPortNumber(5021); // Set the port number

db2ds.setUser("db2adm"); // Set the user ID

db2ds.setSecurityMechanism(

 com.ibm.db2.jcc.DB2BaseDataSource.USER_ONLY_SECURITY);

 // Set security mechanism to

 // user ID only

Encrypted password security or encrypted user ID and encrypted

password security under the IBM DB2 Driver for JDBC and SQLJ

 If you use encrypted password security or encrypted user ID and encrypted

password security, the IBM Java Cryptography Extension (ibmjceprovidere.jar)

must be installed on your client.

You can also use encrypted security-sensitive data in addition to encrypted user ID

security or encrypted password security when you access a DB2 for z/OS server.

You specify encryption of security-sensitive data through the

ENCRYPTED_USER_AND_DATA_SECURITY or

ENCRYPTED_USER_PASSWORD_AND_DATA_SECURITY securityMechanism value. DB2 for

z/OS encrypts the following data when you specify encryption of

security-sensitive data:

v SQL statements that are being prepared, executed, or bound into a DB2 package

146 Developing Java Applications

v Input and output parameter information

v Result sets

v LOB data

v Results of describe operations

To specify encrypted user ID or encrypted password security for a JDBC

connection, use one of the following techniques.

For the DriverManager interface: Set the user ID, password, and security

mechanism by setting the user, password, and securityMechanism properties in a

Properties object, and then invoking the form of the getConnection method that

includes the Properties object as a parameter. For example, use code like this to

set the user ID and encrypted password security mechanism:

import java.sql.*; // JDBC base

import com.ibm.db2.jcc.*; // DB2 implementation of JDBC

...

Properties properties = new Properties(); // Create a Properties object

properties.put("user", "db2adm"); // Set user ID for the connection

properties.put("password", "db2adm"); // Set password for the connection

properties.put("securityMechanism",

 new String("" + com.ibm.db2.jcc.DB2BaseDataSource.ENCRYPTED_PASSWORD_SECURITY +

 ""));

 // Set security mechanism to

 // user ID and encrypted password

String url = "jdbc:db2://mvs1.sj.ibm.com:5021/san_jose";

 // Set URL for the data source

Connection con = DriverManager.getConnection(url, properties);

 // Create the connection

For the DataSource interface: If you create and deploy the DataSource object, you

can set the user ID, password, and security mechanism by invoking the

DataSource.setUser, DataSource.setPassword, and

DataSource.setSecurityMechanism methods after you create the DataSource object.

For example, use code like this to set the encrypted user ID and encrypted

password security mechanism:

import java.sql.*; // JDBC base

import com.ibm.db2.jcc.*; // DB2 implementation of JDBC

...

com.ibm.db2.jcc.DB2SimpleDataSource db2ds =

 new com.ibm.db2.jcc.DB2SimpleDataSource();

 // Create the DataSource object

db2ds.setDriverType(4); // Set the driver type

db2ds.setDatabaseName("san_jose"); // Set the location

db2ds.setServerName("mvs1.sj.ibm.com");

 // Set the server name

db2ds.setPortNumber(5021); // Set the port number

db2ds.setUser("db2adm"); // Set the user ID

db2ds.setPassword("db2adm"); // Set the password

db2ds.setSecurityMechanism(

 com.ibm.db2.jcc.DB2BaseDataSource.ENCRYPTED_PASSWORD_SECURITY);

 // Set security mechanism to

 // User ID and encrypted password

 Related tasks:

v “Connecting to a data source using the DataSource interface” on page 30

v “Connecting to a data source using the DriverManager interface with the IBM

DB2 Driver for JDBC and SQLJ” on page 27

v “Creating and deploying DataSource objects” on page 33

 Related reference:

Chapter 4. JDBC and SQLJ security 147

v “Properties for the IBM DB2 Driver for JDBC and SQLJ” on page 232

Kerberos security under the IBM DB2 Driver for JDBC and SQLJ

 JDBC support for Kerberos security is available for IBM DB2 Driver for JDBC and

SQLJ type 4 connectivity only.

To enable JDBC support for Kerberos security, you also need to enable the

following components of your software development kit (SDK) for Java:

v Java Cryptography Extension

v Java Generic Security Service (JGSS)

v Java Authentication and Authorization Service (JAAS)

See the documentation for your SDK for Java for information on how to enable

these components.

There are three ways to specify Kerberos security for a connection:

v With a user ID and password

v Without a user ID or password

v With a delegated credential

 Using Kerberos security with a user ID and password:

 For this case, Kerberos uses the specified user ID and password to obtain a

ticket-granting ticket (TGT) that lets you authenticate to the DB2 server.

You need to set the user, password, kerberosServerPrincipal, and

securityMechanism properties. The kerberosServerPrincipal property specifies the

principal name that the DB2 server registers with a Kerberos Key Distribution

Center (KDC).

For the DriverManager interface: Set the user ID, password, Kerberos server, and

security mechanism by setting the user, password, kerberosServerPrincipal, and

securityMechanism properties in a Properties object, and then invoking the form

of the getConnection method that includes the Properties object as a parameter.

For example, use code like this to set the Kerberos security mechanism with a user

ID and password:

import java.sql.*; // JDBC base

import com.ibm.db2.jcc.*; // DB2 implementation of JDBC

...

Properties properties = new Properties(); // Create a Properties object

properties.put("user", "db2adm"); // Set user ID for the connection

properties.put("password", "db2adm"); // Set password for the connection

properties.put("kerberosServerPrincipal",

 "sample/srvlsj.ibm.com@SRVLSJ.SJ.IBM.COM");

 // Set the Kerberos server

properties.put("securityMechanism",

 new String("" +

 com.ibm.db2.jcc.DB2BaseDataSource.KERBEROS_SECURITY + ""));

 // Set security mechanism to

 // Kerberos

String url = "jdbc:db2://mvs1.sj.ibm.com:5021/san_jose";

 // Set URL for the data source

Connection con = DriverManager.getConnection(url, properties);

 // Create the connection

For the DataSource interface: If you create and deploy the DataSource object, set

the Kerberos server and security mechanism by invoking the

148 Developing Java Applications

DataSource.setKerberosServerPrincipal and DataSource.setSecurityMechanism

methods after you create the DataSource object. For example:

import java.sql.*; // JDBC base

import com.ibm.db2.jcc.*; // DB2 implementation of JDBC

...

com.ibm.db2.jcc.DB2SimpleDataSource db2ds =

 new com.ibm.db2.jcc.DB2SimpleDataSource();

 // Create the DataSource object

db2ds.setDriverType(4); // Set the driver type

db2ds.setDatabaseName("san_jose"); // Set the location

db2ds.setUser("db2adm"); // Set the user

db2ds.setPassword("db2adm"); // Set the password

db2ds.setServerName("mvs1.sj.ibm.com");

 // Set the server name

db2ds.setPortNumber(5021); // Set the port number

db2ds.setKerberosServerPrincipal(

 "sample/srvlsj.ibm.com@SRVLSJ.SJ.IBM.COM");

 // Set the Kerberos server

db2ds.setSecurityMechanism(

 com.ibm.db2.jcc.DB2BaseDataSource.KERBEROS_SECURITY);

 // Set security mechanism to

 // Kerberos

 Using Kerberos security with no user ID or password:

 For this case, the Kerberos default credentials cache must contain a ticket-granting

ticket (TGT) that lets you authenticate to the DB2 server.

You need to set the kerberosServerPrincipal and securityMechanism properties.

For the DriverManager interface: Set the Kerberos server and security mechanism

by setting the kerberosServerPrincipal and securityMechanism properties in a

Properties object, and then invoking the form of the getConnection method that

includes the Properties object as a parameter. For example, use code like this to

set the Kerberos security mechanism without a user ID and password:

import java.sql.*; // JDBC base

import com.ibm.db2.jcc.*; // DB2 implementation of JDBC

...

Properties properties = new Properties(); // Create a Properties object

properties.put("kerberosServerPrincipal",

 “sample/srvlsj.ibm.com@SRVLSJ.SJ.IBM.COM");

 // Set the Kerberos server

properties.put("securityMechanism",

 new String("" +

 com.ibm.db2.jcc.DB2BaseDataSource.KERBEROS_SECURITY + ""));

 // Set security mechanism to

 // Kerberos

String url = "jdbc:db2://mvs1.sj.ibm.com:5021/san_jose";

 // Set URL for the data source

Connection con = DriverManager.getConnection(url, properties);

 // Create the connection

For the DataSource interface: If you create and deploy the DataSource object, set

the Kerberos server and security mechanism by invoking the

DataSource.setKerberosServerPrincipal and DataSource.setSecurityMechanism

methods after you create the DataSource object. For example:

import java.sql.*; // JDBC base

import com.ibm.db2.jcc.*; // DB2 implementation of JDBC

...

DB2SimpleDataSource db2ds =

 new com.ibm.db2.jcc.DB2SimpleDataSource();

 // Create the DataSource object

Chapter 4. JDBC and SQLJ security 149

db2ds.setDriverType(4); // Set the driver type

db2ds.setDatabaseName("san_jose"); // Set the location

db2ds.setServerName("mvs1.sj.ibm.com");

 // Set the server name

db2ds.setPortNumber(5021); // Set the port number

db2ds.setKerberosServerPrincipal(

 "sample/srvlsj.ibm.com@SRVLSJ.SJ.IBM.COM");

 // Set the Kerberos server

db2ds.setSecurityMechanism(

 com.ibm.db2.jcc.DB2BaseDataSource.KERBEROS_SECURITY);

 // Set security mechanism to

 // Kerberos

 Using Kerberos security with a delegated credential from another principal:

 For this case, you authenticate to the DB2 server using a delegated credential that

another principal passes to you.

You need to set the kerberosServerPrincipal, gssCredential, and

securityMechanism properties.

For the DriverManager interface: Set the Kerberos server, delegated credential, and

security mechanism by setting the kerberosServerPrincipal, and

securityMechanism properties in a Properties object. Then invoke the form of the

getConnection method that includes the Properties object as a parameter. For

example, use code like this to set the Kerberos security mechanism without a user

ID and password:

import java.sql.*; // JDBC base

import com.ibm.db2.jcc.*; // DB2 implementation of JDBC

...

Properties properties = new Properties(); // Create a Properties object

properties.put("kerberosServerPrincipal",

 “sample/srvlsj.ibm.com@SRVLSJ.SJ.IBM.COM");

 // Set the Kerberos server

properties.put("gssCredential",delegatedCredential);

 // Set the delegated credential

properties.put("securityMechanism",

 new String("" +

 com.ibm.db2.jcc.DB2BaseDataSource.KERBEROS_SECURITY + ""));

 // Set security mechanism to

 // Kerberos

String url = "jdbc:db2://mvs1.sj.ibm.com:5021/san_jose";

 // Set URL for the data source

Connection con = DriverManager.getConnection(url, properties);

 // Create the connection

For the DataSource interface: If you create and deploy the DataSource object, set

the Kerberos server, delegated credential, and security mechanism by invoking the

DataSource.setKerberosServerPrincipal, DataSource.setGssCredential, and

DataSource.setSecurityMechanism methods after you create the DataSource object.

For example:

DB2SimpleDataSource db2ds = new com.ibm.db2.jcc.DB2SimpleDataSource();

 // Create the DataSource object

db2ds.setDriverType(4); // Set the driver type

db2ds.setDatabaseName("san_jose"); // Set the location

db2ds.setServerName("mvs1.sj.ibm.com"); // Set the server name

db2ds.setPortNumber(5021); // Set the port number

db2ds.setKerberosServerPrincipal(

 "sample/srvlsj.ibm.com@SRVLSJ.SJ.IBM.COM");

 // Set the Kerberos server

db2ds.setGssCredential(delegatedCredential);

 // Set the delegated credential

150 Developing Java Applications

db2ds.setSecurityMechanism(

 com.ibm.db2.jcc.DB2BaseDataSource.KERBEROS_SECURITY);

 // Set security mechanism to

 // Kerberos

 Related tasks:

v “Connecting to a data source using the DataSource interface” on page 30

v “Connecting to a data source using the DriverManager interface with the IBM

DB2 Driver for JDBC and SQLJ” on page 27

v “Creating and deploying DataSource objects” on page 33

 Related reference:

v “Properties for the IBM DB2 Driver for JDBC and SQLJ” on page 232

IBM DB2 Driver for JDBC and SQLJ security plugin support

 You can create your own authentication mechanisms in the form of loadable

libraries, or plugins, that DB2 Database for Linux, UNIX, and Windows loads to

perform user authentication. To support development of security plugins in Java,

the IBM DB2 Driver for JDBC and SQLJ provides security plugin support. This

support is available for IBM DB2 Driver for JDBC and SQLJ type 4 connectivity to

DB2 Database for Linux, UNIX, and Windows servers only.

To use plugin security, you need a security plugin on the client and another plugin

on the database server.

The security plugins need to include the following things:

v A class that extends the com.ibm.db2.jcc.DB2JCCPlugin abstract class

The com.ibm.db2.jcc.DB2JCCPlugin abstract class is provided with the IBM DB2

Driver for JDBC and SQLJ.

v Within the com.ibm.db2.jcc.DB2JCCPlugin class, a

com.ibm.db2.jcc.DB2JCCPlugin.getTicket method

This method retrieves a Kerberos ticket for a user and returns security context

information in a byte array. The information in the byte array is used by the

IBM DB2 Driver for JDBC and SQLJ to access the DB2 database server.

v Implementations of several methods that are defined in the

org.ietf.jgss.GSSContext and org.ietf.jgss.GSSCredential interfaces

These method implementations need to follow the Generic Security Service

Application Program Interface, Version 2 (IETF RFC2743) and Generic Security

Service API Version 2: Java-Bindings (IETF RFC2853) specifications. The plugin

must implement and call the following methods:

GSSContext.dispose

Releases any system resources and cryptographic information that are

stored in a context object, and invalidates the context.

GSSContext.getCredDelegState

Determines wheter credential delegation is enabled on a context.

GSSContext.getMutualAuthState

Determines whether mutual authentication is enabled on the context.

GSSContext.initSecContext

Starts the context creation phase, and processes any tokens that are

generated by the peer's acceptSecContext method.

Chapter 4. JDBC and SQLJ security 151

GSSContext.requestCredDeleg

Requests that the credentials of the initiator are delegated to the acceptor

when a context is established.

GSSContext.requestMutualAuth

Requests mutual authentication when a context is established.

GSSCredential.dispose

Releases any sensitive information that the GSSCredential object

contains.

Two Java plugin samples are provided in sqllib/samples/java/jdbc to help you

write Java security plugins:

JCCSimpleGSSPlugin.java

An implementation of a GSS-API plugin for the database server, which

performs user ID and password checking. This sample is a Java version of the

C language sample program gssapi_simple.c.

JCCKerberosPlugin.java

A Kerberos security plugin for the client. This sample is a Java version of the C

language sample program IBMkrb5.c.

When an application program obtains a connection using JDBC plugin security, it

needs to set the following Connection or DataSource properties:

 Table 21. Connection or DataSource property settings for Java security plugin use

Property Setting

com.ibm.db2.jcc.DB2BaseDataSource.user The user ID under which the Connection is to be obtained

com.ibm.db2.jcc.DB2BaseDataSource.password The password for the user ID

com.ibm.db2.jcc.DB2BaseDataSource.securityMechanism com.ibm.db2.jcc.DB2BaseDataSource.PLUGIN_SECURITY

com.ibm.db2.jcc.DB2BaseDataSource.pluginName The name of the plugin module for a server-side security

plugin

com.ibm.db2.jcc.DB2BaseDataSource.plugin The plugin object for a client-side security plugin

Example: The following code sets the properties for a connection that uses GSS-API

plugin security. The connection uses the JCCSimpleGSSPlugin sample plugin on

the client side, and the gssapi_simple sample plugin on the server side.

java.util.Properties properties = new java.util.Properties();

properties.put("user", "db2admin");

properties.put("password", "admindb2");

properties.put("pluginName", "gssapi_simple");

properties.put("securityMechanism",

 new String(""+com.ibm.db2.jcc.DB2BaseDataSource.PLUGIN_SECURITY+""));

com.ibm.db2.jcc.DB2JCCPlugin plugin =

 new com.ibm.db2.jcc.samples.plugins.JCCSimpleGSSplugin();

properties.put("plugin", plugin);

Connection con = java.sql.DriverManager.getConnection(url,

 properties);

 Related concepts:

v “Kerberos authentication details” in Administration Guide: Implementation

v “Security plug-ins” in Administrative API Reference

 Related reference:

v “DB2JCCPlugin class” on page 321

152 Developing Java Applications

v “Java plug-in samples” on page 178

IBM DB2 Driver for JDBC and SQLJ trusted context support

 A three-tiered application model consists of a database server, a middleware server

such as WebSphere Application Server, and end users. With this model, the

middleware server is responsible for accessing the database server on behalf of end

users. Trusted context support ensures that an end user’s database identity and

database privileges are used when the middleware server performs any database

requests on behalf of that end user.

A trusted context is an object that the database administrator defines that contains

a system authorization ID and a set of trust attributes. Currently, for DB2 database

servers, a database connection is the only type of context that is supported. The

trust attributes identify a set of characteristics of a connection that are required for

the connection to be considered a trusted connection. The relationship between a

database connection and a trusted context is established when the connection to

the database server is first created, and that relationship remains for the life of the

database connection.

After a trusted context is defined, and an initial trusted connection to the DB2

database server is made, the middleware server can use that database connection

under a different user without reauthenticating the new user at the database

server.

The IBM DB2 Driver for JDBC and SQLJ provides methods that allow you to

establish and use trusted connections in Java programs.

To avoid vulnerability to security breaches, an application server that uses these

trusted methods should not use untrusted connection methods.

The DB2ConnectionPoolDataSource class provides several versions of the

getDB2TrustedPooledConnection method, and the DB2XADataSource class provides

several versions of the getDB2XAConnection method, which allow an application

server to establish the initial trusted connection. You choose a method based on the

types of connection properties that you pass and whether you use Kerberos

security. When an application server calls one of these methods, the IBM DB2

Driver for JDBC and SQLJ returns an Object[] array with two elements:

v The first element contains a connection instance for the initial connection.

v The second element contains a unique cookie for the connection instance. The

cookie is generated by the JDBC driver and is used for authentication during

subsequent connection reuse.

The DB2PooledConnection class provides several versions of the getDB2Connection

method, and the DB2Connection class provides several versions of the

reuseDB2Connection method, which allow an application server to reuse an existing

trusted connection on behalf of a new user. The application server uses the method

to pass the following items to the new user:

v The cookie from the initial connection

v New connection properties for the reused connection

The JDBC driver checks that the supplied cookie matches the cookie of the

underlying trusted physical connection, to ensure that the connection request

originates from the application server that established the trusted physical

Chapter 4. JDBC and SQLJ security 153

connection. If the cookies match, the connection becomes available for immediate

use by this new user, with the new properties.

Example: Obtain the initial trusted connection:

// Create a DB2ConnectionPoolDataSource instance

com.ibm.db2.jcc.DB2ConnectionPoolDataSource dataSource =

 new com.ibm.db2.jcc.DB2ConnectionPoolDataSource();

// Set properties for this instance

dataSource.setDatabaseName ("STLEC1");

dataSource.setServerName ("v7ec167.svl.ibm.com");

dataSource.setDriverType (4);

dataSource.setPortNumber(446);

java.util.Properties properties = new java.util.Properties();

// Set other properties using

// properties.put("property", "value");

// Supply the user ID and password for the connection

String user = "user";

String password = "password";

// Call getDB2TrustedPooledConnection to get the trusted connection

// instance and the cookie for the connection

Object[] objects = dataSource.getDB2TrustedPooledConnection(

 user,password, properties);

Example: Reuse an existing trusted connection:

// The first item that was obtained from the previous getTrustedPooledConnection

// call is a connection object. Cast it to a PooledConnection object.

javax.sql.PooledConnection pooledCon =

 (javax.sql.PooledConnection)objects[0];

properties = new java.util.Properties();

// Set new properties for the reused object using

// properties.put("property", "value");

// The second item that was obtained from the previous getTrustedPooledConnection

// call is the cookie for the connection. Cast it as a byte array.

byte[] cookie = ((byte[])(objects[1]);

// Supply the user ID for the new connection.

String newuser = "newuser";

// Supply the name of a mapping service that maps a workstation user

// ID to a z/OS RACF ID

String userRegistry = "registry";

// Do not supply any security token data to be traced.

byte[] userSecTkn = null;

// Do not supply a previous user ID.

String originalUser = null;

// Call getDB2Connection to get the connection object for the new

// user.

java.sql.Connection con =

 ((com.ibm.db2.jcc.DB2PooledConnection)pooledCon).getDB2Connection(

 cookie,newuser,password,userRegistry,userSecTkn,originalUser,properties);

 Related reference:

v “DB2PooledConnection class” on page 322

v “DB2XADataSource class” on page 331

v “Properties for the IBM DB2 Driver for JDBC and SQLJ” on page 232

v “DB2Connection interface” on page 306

v “DB2ConnectionPoolDataSource class” on page 318

154 Developing Java Applications

Security for preparing SQLJ applications with the IBM DB2 Driver for

JDBC and SQLJ

 This topic contains information about the following aspects of SQLJ security:

v Allowing users to customize only

v Limiting access to a specific set of tables during customization

 Allowing users to customize only:

 You can use one of the following techniques to allow a set of users to customize

SQLJ applications, but not to bind or run those applications:

v Create a DB2 system for customization only (recommended solution): Follow

these steps:

1. Create a new database manager instance. This is the customization-only

system.

2. On the customization-only system, define all the tables and views that are

accessed by the SQLJ applications. The table or view definitions must be the

same as the definitions on the database manager instance where the

application will be bound and will run (the bind-and-run system). Executing

the DESCRIBE statement on the tables or views must give the same results

on the customization-only system and the bind-and-run system.

3. On the customization-only system, grant the necessary table or view

privileges to users who will customize SQLJ applications.

4. On the customization-only system, users run the sqlj command with the

-compile=true option to create Java byte codes and serialized profiles for

their programs. Then they run the db2sqljcustomize command with the

-automaticbind NO option to create customized serialized profiles.

5. Copy the java byte code files and customized serialized profiles to the

bind-and-run system.

6. A user with authority to bind packages on the bind-and-run system runs the

db2sqljbind command on the customized serialized profiles that were copied

from the customization-only system.
v Use a stored procedure to do customization: Write a Java stored procedure that

customizes serialized profiles and binds packages for SQLJ applications on

behalf of the end user. This Java stored procedure needs to use a JDBC driver

package that was bound with one of the DYNAMICRULES options that causes

dynamic SQL to be performed under a different user ID from the end user’s

authorization ID. For example, you might use the DYNAMICRULES option

DEFINEBIND or DEFINERUN to execute dynamic SQL under the authorization

ID of the creator of the Java stored procedure. You need to grant EXECUTE

authority on the stored procedure to users who need to do SQLJ customization.

The stored does the following things:

1. Receives the compiled SQLJ program and serialized profiles in BLOB input

parameters

2. Copies the input parameters to its file system

3. Runs db2sqljcustomize to customize the serialized profiles and bind the

packages for the SQLJ program

4. Returns the customized serialized profiles in output parameters
v Use a stand-alone program to do customization: This technique involves

writing a program that performs the same steps as a Java stored procedure that

customizes serialized profiles and binds packages for SQLJ applications on

Chapter 4. JDBC and SQLJ security 155

behalf of the end user. However, instead of running the program as a stored

procedure, you run the program as a stand-alone program under a library

server.

 Restricting table access during customization:

 When you customize serialized profiles, you should do online checking, to give the

application program information about the data types and lengths of table columns

that the program accesses. By default, customization includes online checking.

Online checking requires that the user who customizes a serialized profile has

authorization to execute PREPARE and DESCRIBE statements against SQL

statements in the SQLJ program. That authorization includes the SELECT privilege

on tables and views that are accessed by the SQL statements. If SQL statements

contain unqualified table names, the qualifier that is used during online checking

is the value of the db2sqljcustomize -qualifier parameter. Therefore, for online

checking of tables and views with unqualified names in an SQLJ application, you

can grant the SELECT privilege only on tables and views with a qualifier that

matches the value of the -qualifier parameter.

 Related reference:

v “db2sqljbind - SQLJ profile binder” on page 361

v “db2sqljcustomize - SQLJ profile customizer” on page 351

156 Developing Java Applications

Chapter 5. Building Java database applications

The following topics contain information on building JDBC and SQLJ applications.

v “Building JDBC applets”

v “Building JDBC applications” on page 158

v “Building JDBC routines” on page 158

v “Building SQLJ applets” on page 160

v “Building SQLJ applications” on page 162

v “Java applet considerations” on page 163

v “SQLJ application and applet options for UNIX” on page 164

v “SQLJ application and applet options for Windows” on page 164

v “Building SQLJ routines” on page 165

v “SQLJ routine options for UNIX” on page 166

v “SQLJ routine options for Windows” on page 167

Building JDBC applets

 Applt demonstrates a dynamic SQL Java applet to access a DB2 database server.

 Procedure:

 To build and run the JDBC applet, Applt, by commands entered at the command

line, either ensure that a web server is installed and running on your DB2 database

(server or client), or use the applet viewer that comes with the software

development kit for Java by entering the following command in the working

directory of your client machine:

 appletviewer Applt.html

Connecting with the IBM DB2 Driver for JDBC and SQLJ: To connect with the IBM

DB2 Driver for JDBC and SQLJ, modify the Applt.html file according to the

instructions in the file. For the TCP/IP port number, you can use the database port

number, ″50000″.

Building the applet:

1. Compile Applt.java to produce the file Applt.class with this command:

 javac Applt.java

Alternatively, you can use the Java makefile to build this program.

2. Ensure that your working directory is accessible by your web browser. If it is

not, copy Applt.class and Applt.html into a directory that is accessible.

3. Copy sqllib\java\db2jcc.jar on Windows or sqllib/java/db2jcc.jar on

UNIX, into the same directory as Applt.class and Applt.html.

4. On your client machine, start your web browser and load Applt.html.

 Related concepts:

v “Java applet considerations” on page 163

 Related tasks:

v “Building JDBC applications” on page 158

v “Building JDBC routines” on page 158

© Copyright IBM Corp. 2006 157

v “Building SQLJ applets” on page 160

 Related reference:

v “JDBC samples” on page 169

 Related samples:

v “Applt.java -- A Java applet that use JDBC applet driver to access a database

(JDBC)”

Building JDBC applications

 DbInfo demonstrates a dynamic SQL Java application accessing a DB2 database

server.

 Procedure:

 To build and run this application by commands entered at the command line:

1. Compile DbInfo.java to produce the file DbInfo.class with this command:

 javac DbInfo.java

2. Run the Java interpreter on the application with this command:

 java DbInfo

You can also use the Java makefile to build this program.

If you are running a Java application on UNIX in a 64-bit DB2 instance but the

software development kit for Java is 32-bit, you need to change the DB2 library

path before running the application. For example, on AIX:

v If using bash or Korn shell:

 export LIBPATH=$HOME/sqllib/lib32

v If using C shell:

 setenv LIBPATH $HOME/sqllib/lib32

 Related tasks:

v “Building JDBC applets” on page 157

v “Building JDBC routines” on page 158

v “Building SQLJ applications” on page 162

 Related reference:

v “JDBC samples” on page 169

 Related samples:

v “DbInfo.java -- How to get/set info in a database (JDBC)”

Building JDBC routines

 DB2 provides sample programs demonstrating JDBC routines (stored procedures

and user-defined functions) in the samples/java/jdbc directory on UNIX, and the

samples\java\jdbc directory on Windows. Routines are compiled and stored on a

server. When called by a client application, they access the server database and

return information to the client application.

158 Developing Java Applications

Procedure:

 The following examples show you how to build routines comprising:

v stored procedures

v user-defined functions without SQL statements

v user-defined functions with SQL statements

Stored Procedures

SpServer demonstrates dynamic SQL PARAMETER STYLE JAVA stored

procedures.

To build and run this program on the server from the command line:

1. Compile SpServer.java to produce the file SpServer.class with this command:

 javac SpServer.java

2. Copy SpServer.class to the sqllib\function directory on Windows operating

systems, or to the sqllib/function directory on UNIX.

3. Next, catalog the routines by running the spcat script on the server. Enter:

 spcat

This script connects to the sample database, uncatalogs the routines if they

were previously cataloged by calling SpDrop.db2, then catalogs them by calling

SpCreate.db2, and finally disconnects from the database. You can also run the

SpDrop.db2 and SpCreate.db2 scripts individually.

4. Then, stop and restart the database to allow the new class file to be recognized.

If necessary, set the file mode for the class file to ″read″ so it is readable by the

fenced user.

5. Compile and run the SpClient client application to access the stored procedure

class.

User-defined functions without SQL statements

UDFsrv is a user-defined function library that does not contain SQL statements. DB2

provides both a JDBC client application, UDFcli, and an SQLJ client application,

UDFcli, that can access the UDFsrv library.

To build and run the UDF program on the server from the command line:

1. Compile UDFsrv.java to produce the file UDFsrv.class with this command:

 javac UDFsrv.java

2. Copy UDFsrv.class to the sqllib\function directory on Windows operating

systems, or to the sqllib/function directory on UNIX.

3. To access the UDFsrv library, you can use either JDBC or SQLJ client

applications. Both versions of the client program contain the CREATE FUNCTION

SQL statement that you use to register the UDFs contained in UDFsrv with the

database, and also contain SQL statements that make use of the UDFs, once

they have been registered.

User-defined functions with SQL statements

UDFsqlsv is a user-defined function library that contains SQL statements. DB2

provides a JDBC client application, UDFsqlcl, to access the UDFsqlsv library.

To build and run the UDF program on the server from the command line:

Chapter 5. Building Java database applications 159

1. Compile UDFsqlsv.java to produce the file UDFsqlsv.class with this command:

 javac UDFsqlsv.java

2. Copy UDFsqlsv.class to the sqllib\function directory on Windows operating

systems, or to the sqllib/function directory on UNIX.

3. To access the UDFsqlsv library, use the client program, UDFsqlcl, which contains

the CREATE FUNCTION SQL statement that you use to register the UDFs contained

in UDFsqlsv with the database. The client program also contains SQL statements

that make use of the UDFs, once they have been registered.

You can also use the Java makefile to build the above programs.

 Related tasks:

v “Building JDBC applets” on page 157

v “Building JDBC applications” on page 158

v “Building SQLJ routines” on page 165

 Related reference:

v “JDBC samples” on page 169

 Related samples:

v “spcat -- To catalog SQLj stored procedures on UNIX”

v “SpClient.java -- Call a variety of types of stored procedures from SpServer.java

(JDBC)”

v “SpCreate.db2 -- How to catalog the stored procedures contained in

SpServer.java ”

v “SpDrop.db2 -- How to uncatalog the stored procedures contained in

SpServer.java”

v “SpServer.java -- Provide a variety of types of stored procedures to be called

from (JDBC)”

v “UDFcli.java -- Call the UDFs in UDFsrv.java (JDBC)”

v “UDFCreate.db2 -- How to catalog the Java UDFs contained in UDFsrv.java ”

v “UDFDrop.db2 -- How to uncatalog the Java UDFs contained in UDFsrv.java ”

v “UDFsCreate.db2 -- How to catalog the UDFs contained in UDFsqlsv.java ”

v “UDFsDrop.db2 -- How to uncatalog the UDFs contained in UDFsqlsv.java ”

v “UDFsqlcl.java -- Call the UDFs in UDFsqlsv.java (JDBC)”

v “UDFsqlsv.java -- Provide UDFs to be called by UDFsqlcl.java (JDBC)”

v “UDFsrv.java -- Provide UDFs to be called by UDFcli.java (JDBC)”

Building SQLJ applets

 The following steps show how to build the Applt sample that demonstrates an

SQLJ applet accessing a DB2 database. These steps use the build file, bldsqlj

(UNIX), or bldsqlj.bat (Windows), which contains commands to build either an

SQLJ applet or application.

The build file takes up to six parameters: $1, $2, $3, $4, $5, and $6 on UNIX, and

%1, %2, %3, %4, %5, and %6 on Windows. The first parameter specifies the name

of your program. The second parameter specifies the user ID for the database

instance, the third parameter specifies the password. The fourth parameter

specifies the server name. The fifth parameter specifies the port number. And the

160 Developing Java Applications

sixth parameter specifies the database name. For all but the first parameter,

program name, default values can be used. See the build file for details about

using default parameter values.

 Procedure:

 To run this applet, either ensure that a web server is installed and running on your

DB2 machine (server or client), or you can use the applet viewer that comes with

the Java Development Kit by entering the following command in the working

directory of your client machine:

 appletviewer Applt.html

Connecting with the IBM DB2 Driver for JDBC and SQLJ

To connect with the IBM DB2 Driver for JDBC and SQLJ, modify the Applt.html

file according to the instructions in the file. For the TCP/IP port number, you

should use the database port number, ″50000″.

Building the Applet

1. Build the applet with this command:

 bldsqlj Applt <userid> <password> <server_name> <port_number> <db_name>

where all parameters except the program name can have default values, as

explained in the build file.

2. Ensure that your working directory is accessible by your web browser, or by

your Java applet viewer, if you are using it. If your directory is not accessible,

copy the following files into a directory that is accessible:

v Applt.html

v Applt.class

v Applt_Cursor1.class

v Applt_Cursor2.class

v Applt_SJProfileKeys.class

v Applt_SJProfile0.ser
3. Copy sqllib\java\db2jcc.jar on Windows or sqllib/java/db2jcc.jar on

UNIX, into the same directory as Applt.class and Applt.html.

4. On your client machine, start your web browser or Java applet viewer, and

load Applt.html.

You can also use the Java makefile to build this program.

 Related concepts:

v “Java applet considerations” on page 163

 Related tasks:

v “Building JDBC applets” on page 157

v “Building SQLJ applications” on page 162

v “Building SQLJ routines” on page 165

 Related reference:

v “SQLJ application and applet options for UNIX” on page 164

v “SQLJ application and applet options for Windows” on page 164

v “SQLJ samples” on page 174

Chapter 5. Building Java database applications 161

Related samples:

v “bldsqlj.bat -- Builds a Java embedded SQL (SQLJ) application or applet on

Windows”

v “Applt.sqlj -- An SQLJ applet that uses a JDBC applet driver to access a database

(SQLj)”

v “bldsqlj -- Builds Java embedded SQL (SQLJ) applications and applets on UNIX”

Building SQLJ applications

 The following steps show how to build the TbMod sample that demonstrates an

SQLJ application accessing a DB2 database. These steps use the build file, bldsqlj

(UNIX), or bldsqlj.bat (Windows), which contains commands to build either an

SQLJ applet or application.

The build file takes up to six parameters: $1, $2, $3, $4, $5, and $6 on UNIX, and

%1, %2, %3, %4, %5, and %6 on Windows. The first parameter specifies the name

of your program. The second parameter specifies the user ID for the database

instance, the third parameter specifies the password. The fourth parameter

specifies the server name. The fifth parameter specifies the port number. And the

sixth parameter specifies the database name. For all but the first parameter,

program name, default values can be used. See the build file for details about

using default parameter values.

 Procedure:

 To build TbMod with the build file, bldsqlj (UNIX) or bldsqlj.bat (Windows),

enter this command:

 bldsqlj TbMod <userid> <password> <server_name> <port_number> <db_name>

where all parameters except the program name can have default values, as

explained in the build file.

Run the Java interpreter on the application with this command:

 java TbMod

You can also use the Java makefile to build this program.

If you are running a Java application on UNIX in a 64-bit DB2 instance but the

software development kit for Java is 32-bit, you need to change the DB2 library

path before running the application. For example on AIX:

v If using bash or Korn shell:

 export LIBPATH=$HOME/sqllib/lib32

v If using C shell:

 setenv LIBPATH $HOME/sqllib/lib32

 Related tasks:

v “Building JDBC applications” on page 158

v “Building SQLJ applets” on page 160

v “Building SQLJ routines” on page 165

 Related reference:

v “SQLJ application and applet options for UNIX” on page 164

162 Developing Java Applications

v “SQLJ application and applet options for Windows” on page 164

v “SQLJ samples” on page 174

 Related samples:

v “bldsqlj.bat -- Builds a Java embedded SQL (SQLJ) application or applet on

Windows”

v “TbMod.sqlj -- How to modify table data (SQLj)”

v “bldsqlj -- Builds Java embedded SQL (SQLJ) applications and applets on UNIX”

Java applet considerations

 DB2 databases can be accessed by using Java applets. Keep the following points in

mind when using them:

v For a larger JDBC or SQLJ applet that consists of several Java classes, you might

choose to package all its classes in a single JAR file. For an SQLJ applet, you

would also have to package its serialized profiles along with its classes. If you

choose to do this, add your JAR file into the archive parameter in the ″applet″

tag. For details, see the documentation for your software development kit for

Java.

For SQLJ applets, some browsers do not yet have support for loading a

serialized object from a resource file associated with the applet. For example,

you will get the following error message when trying to load the supplied

sample applet Applt in those browsers:

 java.lang.ClassNotFoundException: Applt_SJProfile0

As a workaround, there is a utility which converts a serialized profile into a

profile stored in Java class format. The utility is a Java class called

sqlj.runtime.profile.util.SerProfileToClass. It takes a serialized profile

resource file as input and produces a Java class containing the profile as output.

Your profile can be converted using one of the following commands:

 profconv Applt_SJProfile0.ser

or

 java sqlj.runtime.profile.util.SerProfileToClass Applt_SJProfile0.ser

The class Applt_SJProfile0.class is created as a result. Replace all profiles in

.ser format used by the applet with profiles in .class format, and the problem

should go away.

v You can place the file db2jcc.jar into a directory that is shared by several

applets that might be loaded from your Web site. db2jcc.jar is for applets using

the IBM DB2 Driver for JDBC and SQLJ or for any SQLJ applet. This file is in

the sqllib\java directory on Windows operating systems, and in the

sqllib/java directory on UNIX. You might need to add a codebase parameter

into the ″applet″ tag in the HTML file to identify the directory. For details, see

the documentation for your software development kit for Java.

v The JDBC applet server (listener), db2jd, contains signal handling to make it

more robust. As a result, you cannot use the CTRL-C key sequence to terminate

db2jd. Therefore, the only way to terminate the listener is to kill the process by

using kill -9 (for UNIX) or the Task Manager (for Windows).

 Related tasks:

v “Building JDBC applets” on page 157

Chapter 5. Building Java database applications 163

v “Building SQLJ applets” on page 160

SQLJ application and applet options for UNIX

 The SQLJ translator and customizer options are used in the bldsqlj build script on

UNIX. These are the options DB2 recommends that you use to build SQLJ

applications and applets on UNIX platforms.

sqlj The SQLJ translator (also compiles the program).

"${progname}.sqlj"

The SQLJ source file. The progname=${1%.sqlj} command removes the

extension if it was included in the input file name, so when the extension

is added back again, it is not duplicated.

db2sqljcustomize

The SQLJ profile customizer.

-url Specifies a JDBC URL for establishing a database connection, such as

jdbc:db2://servername:50000/sample.

-user Specifies a user ID.

-password

Specifies a password.

"${progname}_SJProfile0"

Specifies a serialized profile for the program.

 Related tasks:

v “Building SQLJ applets” on page 160

v “Building SQLJ applications” on page 162

 Related reference:

v “SQLJ routine options for UNIX” on page 166

 Related samples:

v “bldsqlj -- Builds Java embedded SQL (SQLJ) applications and applets on UNIX”

SQLJ application and applet options for Windows

 The following SQLJ translator and customizer options are used in the bldsqlj.bat

batch file on Windows operating systems. These are the options DB2 recommends

that you use to build SQLJ applications and applets on Windows.

sqlj The SQLJ translator (also compiles the program).

%1.sqlj

The SQLJ source file.

db2sqljcustomize

The DB2 for Java profile customizer.

-url Specifies a JDBC URL for establishing a database connection, such as

jdbc:db2://servername:50000/sample.

-user Specifies a user ID.

-password

Specifies a password.

164 Developing Java Applications

%1_SJProfile0

Specifies a serialized profile for the program.

 Related tasks:

v “Building SQLJ applets” on page 160

v “Building SQLJ applications” on page 162

 Related reference:

v “SQLJ routine options for Windows” on page 167

 Related samples:

v “bldsqlj.bat -- Builds a Java embedded SQL (SQLJ) application or applet on

Windows”

Building SQLJ routines

 DB2 provides sample programs demonstrating SQLJ routines (stored procedures

and user-defined functions) in the samples/java/sqlj directory on UNIX, and the

samples\java\sqlj directory on Windows. Routines are compiled and stored on a

server. When called by a client application, they access the server database and

return information to the client application.

In the same directory, DB2 also supplies the build file, bldsqljs (UNIX), or

bldsqljs.bat (Windows), which contains commands to build routines.

The build file takes up to six parameters: $1, $2, $3, $4, $5, and $6 on UNIX, and

%1, %2, %3, %4, %5, and %6 on Windows. The first parameter specifies the name

of your program. The second parameter specifies the user ID for the database

instance, the third parameter specifies the password. The fourth parameter

specifies the server name. The fifth parameter specifies the port number. And the

sixth parameter specifies the database name. For all but the first parameter,

program name, default values can be used. See the build file for details about

using default parameter values.

 Procedure:

 The following example shows you how to build a class file with stored procedures.

SpServer demonstrates PARAMETER STYLE JAVA stored procedures using the

JDBC application driver to access a DB2 database.

To build this stored procedure class with the build file, bldsqljs (UNIX) or

bldsqljs.bat (Windows):

1. Enter the following command:

 bldsqljs SpServer <userid> <password> <server_name> \

 <port_number> <db_name>

where all parameters except the program name can have default values, as

explained in the build file.

2. Next, catalog the routines by running the spcat script on the server. Enter:

 spcat

This script connects to the sample database, uncatalogs the routines if they

were previously cataloged by calling SpDrop.db2, then catalogs them by calling

Chapter 5. Building Java database applications 165

SpCreate.db2, and finally disconnects from the database. You can also run the

SpDrop.db2 and SpCreate.db2 scripts individually.

3. Then, stop and restart the database to allow the new class file to be recognized.

If necessary, set the file mode for the class file to ″read″ so it is readable by the

fenced user.

4. Build and run the SpClient client application to call the stored procedures. You

can build SpClient with the application build file, bldsqlj (UNIX) or

bldsqlj.bat (Windows).

You can also use the Java makefile to build the above programs.

 Related tasks:

v “Building JDBC routines” on page 158

v “Building SQLJ applets” on page 160

v “Building SQLJ applications” on page 162

 Related reference:

v “SQLJ samples” on page 174

v “SQLJ routine options for UNIX” on page 166

v “SQLJ routine options for Windows” on page 167

 Related samples:

v “bldsqljs.bat -- Builds a Java embedded SQL (SQLJ) stored procedure on

Windows”

v “SpClient.sqlj -- Call a variety of types of stored procedures from SpServer.sqlj

(SQLj)”

v “SpCreate.db2 -- How to catalog the stored procedures contained in SpServer.sqlj

”

v “SpDrop.db2 -- How to uncatalog the stored procedures contained in

SpServer.sqlj”

v “SpServer.sqlj -- Provide a variety of types of stored procedures to be called

from (SQLj)”

v “SpIterat.sqlj -- Iterator class file for SpServer.sqlj (SQLj)”

v “bldsqljs -- Builds Java embedded SQL (SQLJ) stored procedures on UNIX”

v “spcat -- To catalog SQLj stored procedures on UNIX”

SQLJ routine options for UNIX

 The following SQLJ translator and customizer options are used in the bldsqljs

build script on UNIX. These are the recommended options for building SQLJ

routines (stored procedures and user-defined functions) on UNIX platforms.

Translator and customizer options for bldsqljs:

sqlj The SQLJ translator (also compiles the program).

"${progname}.sqlj"

The SQLJ source file. The progname=${1%.sqlj} command removes the

extension if it was included in the input file name, so when the extension

is added back again, it is not duplicated.

db2sqljcustomize

The DB2 for Java profile customizer.

166 Developing Java Applications

-url Specifies a JDBC URL for establishing a database connection, such as

jdbc:db2://servername:50000/sample.

-user Specifies a user ID.

-password

Specifies a password.

"${progname}_SJProfile0"

Specifies a serialized profile for the program.

 Related tasks:

v “Building SQLJ routines” on page 165

 Related reference:

v “SQLJ application and applet options for UNIX” on page 164

 Related samples:

v “bldsqljs -- Builds Java embedded SQL (SQLJ) stored procedures on UNIX”

SQLJ routine options for Windows

 The following SQLJ translator and customizer options are used in the bldsqljs.bat

batch file on Windows operating systems. These are the options DB2 recommends

that you use to build SQLJ routines (stored procedures and user-defined functions).

sqlj The SQLJ translator (also compiles the program).

%1.sqlj

The SQLJ source file.

db2sqljcustomize

The DB2 for Java profile customizer.

-url Specifies a JDBC URL for establishing a database connection, such as

jdbc:db2://servername:50000/sample.

-user Specifies a user ID.

-password

Specifies a password.

%1_SJProfile0

Specifies a serialized profile for the program.

 Related tasks:

v “Building SQLJ routines” on page 165

 Related reference:

v “SQLJ application and applet options for Windows” on page 164

 Related samples:

v “bldsqljs.bat -- Builds a Java embedded SQL (SQLJ) stored procedure on

Windows”

Chapter 5. Building Java database applications 167

168 Developing Java Applications

Chapter 6. Java sample applications

The following topics contain information about the Java sample applications that

are provided with DB2 Database for Linux, UNIX, and Windows.

v “JDBC samples”

v “SQLJ samples” on page 174

v “Java plug-in samples” on page 178

v “Java WebSphere samples” on page 179

JDBC samples

 UNIX directory: sqllib/samples/java/jdbc.

Windows directory: sqllib\samples\java\jdbc.

JDBC samples include the following types of programs:

ADMIN_CMD routine samples

Samples that demonstrate the use of ADMIN_CMD stored procedure for

administration tasks via SQL interface

Installation-image-level samples

Programs that deal with the installation image level of the database

product.

Database-level samples

Programs that deal with database objects.

Table-level samples

Programs that deal with table objects.

Data type samples

Programs that deal with data types.

Applet samples

Samples that demonstrate Java applets.

Stored procedure samples

Samples that demonstrate stored procedures.

User-defined function samples

Samples that demonstrate user-defined functions.

Java bean samples

Samples that demonstrate Java bean classes.

Java GSS-API Plugin samples

Samples that demonstrate the JCC GCC_API plugin

Other samples

Samples that do not fall into any of the previous categories.

© Copyright IBM Corp. 2006 169

Table 22. JDBC sample program files

Type of sample Sample program name Program Description

ADMIN_CMD

stored

procedure

samples

AdmCmdAutoCfg.java How to autoconfigure a database using

ADMIN_CMD routine.

AdmCmdContacts.java How to add, update and drop contacts

and contactgroups using

ADMIN_CMD routine.

AdmCmdOnlineBackup.java How to perform online backup using

ADMIN_CMD routine.

AdmCmdUpdateCfg.java How to update and reset the Database

and Database Manager configuration

parameters using ADMIN_CMD

routine.

AdmCmdExport.java How to export data using

ADMIN_CMD routine.

AdmCmdImport.java How to import data using

ADMIN_CMD routine.

AdmCmdQuiesce.java How to quiesce tablespace and

database using ADMIN_CMD routine.

AdmCmdDescribe.java How to describe table and indices

using ADMIN_CMD routine.

Installation-
image-level

samples

IlInfo.java How to get and set installation level

information.

170 Developing Java Applications

Table 22. JDBC sample program files (continued)

Type of sample Sample program name Program Description

Database-level

samples

DbAuth.java How to grant/display/revoke

authorities at the database level.

DbConn.java How to connect and disconnect from a

database.

DbInfo.java How to get and set information at a

database level.

DbMCon.java How to connect and disconnect from

multiple databases.

DbNative.java How to translate a statement that

contains an ODBC escape clause to a

data source specific format.

DbRsHold.java How to use result set cursor

holdability in the DB2 JDBC Type 2

Driver for Linux, UNIX and Windows

and the IBM DB2 Driver for JDBC and

SQLJ. To compile this sample, you

need Java Developer Kit 1.4 or above.

To run this sample, you need Java

Runtime Environment 1.4 or above.

DbSeq.java How to create, alter and drop a

sequence in a database.

DbUse.java How to use database objects.

GetDBCfgParams.java How to get database configuration

parameters.

GetDBMCfgParams.java How to get database manager

configuration parameters.

GetLogs.java How to get customer view of

diagnostic log file entries.

Chapter 6. Java sample applications 171

Table 22. JDBC sample program files (continued)

Type of sample Sample program name Program Description

Table-level

samples

GetMessage.java How to get error message in the

required locale with token

replacement.

LargeRid.java How to enable Large RIDs support on

both new tables / tablespaces and

existing tables/tablespaces.

SetIntegrity.java How to perform online SET

INTEGRITY on a table.

TbAST.java How to use staging table for updating

deferred AST.

TbCompress.java How to create tables with null and

default value compression option.

TbConstr.java How to work with table constraints.

TbCreate.java How to create, alter and drop tables.

TbGenCol.java How to use generated columns.

TbIdent.java How to use Identity Columns.

TbInfo.java How to get and set information at a

table level.

TbInTrig.java How to use an ’INSTEAD OF’ trigger

on a view.

TbMerge.java How to use the MERGE statement.

TbMod.java How to modify information in a table.

TbOnlineInx.java How to create and reorg indexes on a

table.

TbPriv.java How to grant/display/revoke table

level privileges.

TbRead.java How to read information in a table.

TbRowcompress.java How to perform row compression on a

table

TbSel.java How to select from each of: insert,

update, delete.

TbTemp.java How to use Declared Temporary

Tables.

TbTrig.java How to use a trigger on a table.

TbUMQT.java How to use user materialzed query

tables (summary tables).

TbUnion.java How to insert through a UNION ALL

view.

Data types DtInfo.java How to get information about data

types.

DtLob.java How to read and write LOB data.

DtUdt.java How to create, use, and drop

user-defined distinct types.

Applet samples Applt.java How to use applets.

172 Developing Java Applications

Table 22. JDBC sample program files (continued)

Type of sample Sample program name Program Description

Stored

procedure

samples

spcat Stored procedure catalog script for the

spserver program. This script calls

SpDrop.db2 and SpCreate.db2.

SpCreate.db2 CLP script to issue CREATE

PROCEDURE statements.

SpDrop.db2 CLP script to drop stored procedures

from the catalog.

SpClient.java Client program used to call the server

functions declared in SpServer.java.

SpServer.java Stored procedure functions built and

run on the server.

User-defined

function

samples

UDFcli.java Client application which calls the

user-defined function library UDFsrv.

UDFsrv.java User-defined functions called by

UDFcli.java.

udfcat UDF catalog script for the UDFsrv

program. This script calls

UDFDrop.db2 and UDFCreate.db2.

UDFDrop.db2 CLP script to drop UDFs from the

catalog.

UDFCreate.db2 CLP script to issue CREATE

PROCEDURE statements.

UDFjcli.java Client application which calls the

user-defined function library UDFjsrv.

UDFjsrv.java User-defined functions called by

UDFjcli.java.

udfjcat UDF catalog script for the UDFjsrv

program. This script calls

UDFjDrop.db2 and UDFjCreate.db2.

UDFjDrop.db2 CLP script to drop UDFs from the

catalog.

UDFjCreate.db2 CLP script to issue CREATE

PROCEDURE statements.

UDFsCreate.db2 How to catalog the UDFs contained in

UDFsqlsv.java

UDFsDrop.db2 How to uncatalog the UDFs contained

in UDFsqlsv.java

UDFsqlcl.java Call the UDFs in UDFsqlsv.java

UDFsqlsv.java User-Defined Functions with SQL

statements called by UDFsqlcl.java

Java bean

samples

CreateEmployee.java How to create an employee record.

GeneratePayroll.java How to generate payroll reports by

department.

Chapter 6. Java sample applications 173

Table 22. JDBC sample program files (continued)

Type of sample Sample program name Program Description

Java GSS-API

Plugin samples

JCCKerberosPlugin.java Implement a GSS-API Plugin that does

Kerberos authentication using IBM

DB2 Universal Driver.

JCCKerberosPluginTest.java Use JCCKerberosPlugin to get a DB2

Connection using IBM DB2 Universal

Driver.

JCCSimpleGSSPlugin.java Implement a GSS-API Plugin that does

userid and password checking using

IBM DB2 Universal Driver.

JCCSimpleGSSContext.java Implement a GSSContext to be used by

JCCSimpleGSSPlugin

JCCSimpleGSSCredential.java Implement a GSSCredential to be used

by JCCSimpleGSSPlugin

JCCSimpleGSSException.java Implement a GSSException to be used

by JCCSimpleGSSPlugin

JCCSimpleGSSName.java Implement a GSSName to be used by

JCCSimpleGSSPlugin

JCCSimpleGSSPluginTest.java Use JCCSimpleGSSPlugin to get a DB2

Connection using IBM DB2 Universal

Driver.

Other samples Util.java Utilities for JDBC sample programs.

 Related concepts:

v “Java sample programs” in Samples Topics

v “Sample files” in Samples Topics

 Related reference:

v “Java plug-in samples” on page 178

v “Java WebSphere samples” on page 179

v “SQLJ samples” on page 174

SQLJ samples

 UNIX directory: sqllib/samples/java/sqlj.

Windows directory: sqllib\samples\java\sqlj.

SQLJ samples include the following types of programs:

Database-level samples

Programs that deal with database objects.

Table-level samples

Programs that deal with table objects.

Data type samples

Programs that deal with data types.

Applet samples

Samples that demonstrate Java applets.

174 Developing Java Applications

Stored procedure samples

Samples that demonstrate stored procedures.

User-defined function samples

Samples that demonstrate user-defined functions.

Java bean samples

Samples that demonstrate Java bean classes.

Data source samples

Samples that demonstrate data sources.

Other samples

Samples that do not fall into any of the previous categories.

 Table 23. SQLJ sample program files

Type of

sample Sample program name Program Description

Database-level

sample

DbAuth.sqlj How to grant/display/revoke authorities

at the database level.

DbConn.sqlj How to connect and disconnect from a

database.

DbMCon.sqlj How to connect and disconnect from

multiple databases.

DbUse.sqlj How to use database objects.

Chapter 6. Java sample applications 175

Table 23. SQLJ sample program files (continued)

Type of

sample Sample program name Program Description

Table-level

sample

LargeRid.sqlj How to enable Large RIDs support on

both new tables/ tablespaces and

existing tables/tablespaces.

SetIntegrity.sqlj How to perform online SET INTEGRITY

on a table.

TbAST.sqlj How to use staging table for updating

deferred AST.

TbCompress.sqlj How to create tables with null and

default value compression option.

TbConstr.sqlj How to work with table constraints.

TbCreate.sqlj How to create, alter and drop tables.

TbIdent.sqlj How to use identity columns.

TbInfo.sqlj How to get and set information at a table

level.

TbMod.sqlj How to modify information in a table.

TbOnlineInx.sqlj How to create and reorg indexes on a

table.

TbPriv.sqlj How to grant/display/revoke table level

privileges.

TbRowcompress.sqlj How to perform row compression on a

table

TbRunstats.sqlj How to perform runstats on a table.

TbRead.sqlj How to read information in a table.

TbSel.sqlj How to select from each of: insert,

update, delete.

TbTrig.sqlj How to use a trigger on a table.

TbUMQT.sqlj How to use user materialzed query

tables (summary tables).

Data type

sample

DtUdt.sqlj How to create, use, and drop

user-defined distinct types.

Applet sample Applt.sqlj How to use applets.

Stored

procedure

sample

spcat Stored procedure catalog script for the

SpServer program. This script calls

SpDrop.db2 and SpCreate.db2.

SpCreate.db2 CLP script to issue CREATE

PROCEDURE statements.

SpDrop.db2 CLP script to drop stored procedures

from the catalog.

SpClient.sqlj Client program used to call the server

functions declared in SpServer.sqlj.

SpServer.sqlj Stored procedure functions built and run

on the server.

SpIterat.sqlj Iterator class file for SpServer.sqlj.

176 Developing Java Applications

Table 23. SQLJ sample program files (continued)

Type of

sample Sample program name Program Description

User-defined

function

sample

UDFcli.sqlj Client application which calls the

user-defined function library UDFsrv.

UDFsrv.java User-defined functions called by UDFcli.

udfcat UDF catalog script for the UDFsrv

program. This script calls UDFDrop.db2

and UDFCreate.db2.

UDFDrop.db2 CLP script to drop UDFs from the

catalog.

UDFCreate.db2 CLP script to issue CREATE

PROCEDURE statements.

UDFjcli.sqlj Client application which calls the

user-defined function library UDFjsrv.

UDFjsrv.java User-defined functions called by UDFjcli.

udfjcat UDF catalog script for the UDFjsrv

program. This script calls UDFjDrop.db2

and UDFjCreate.db2.

UDFjDrop.db2 CLP script to drop UDFs from the

catalog.

UDFjCreate.db2 CLP script to issue CREATE

PROCEDURE statements.

Java bean

sample

CreateEmployee.sqlj How to create an employee record.

GeneratePayroll.sqlj How to generate payroll reports by

department.

Data source

sample

Batch1Demo.sqlj SQLJ batching -- How SQLJ batching

works.

Batch2Demo.sqlj SQLJ batching - Association of

ExecutionContext with BatchContext.

Batch3Demo.sqlj SQLJ Batching - When do we need to

implicitly execute a batch.

BlobClobDemo.sqlj How to access Blob or Clob fields in DB2

tables.

createRegisterDS.java Create and Register DataSources as

specified by the DataSource property

files.

CreateDemoSchema.sqlj This program creates the schema for the

DataSource Demo programs.

DbConnDataSource.sqlj How to connect to a database using

DataSource with the IBM DB2 Driver for

JDBC and SQLJ.

DbConMDataSources.sqlj How to connect to a database using

Multiple DataSources with the IBM DB2

Driver for JDBC and SQLJ.

ScrollIterDemo.sqlj How to use Named and Positional

Scrollable Iterators in SQLJ.

Other sample Util.sqlj Utilities for SQLJ sample programs.

Chapter 6. Java sample applications 177

Related concepts:

v “Java sample programs” in Samples Topics

v “Sample files” in Samples Topics

 Related reference:

v “Java plug-in samples” on page 178

v “Java WebSphere samples” on page 179

v “JDBC samples” on page 169

Java plug-in samples

 UNIX directory: sqllib/samples/java/plugin.

Windows directory: sqllib\samples\java\plugin.

 Table 24. Java Control Center plug-in sample files

Sample program

name Program description

Example1.java How to add a new toolbar button to the Control Center toolbar.

Example2.java How to add new menu actions to Control Center Database objects.

Example3.java How to add new objects under Database objects in the Control

Center tree.

Example3Child.java How to add plug-in objects under Database objects in the Control

Center tree.

Example3Folder.java How to add new objects under Database objects in the Control

Center tree.

 Related concepts:

v “Compiling and running the example plugins” in Administration Guide:

Implementation

v “Introducing the plug-in architecture for the Control Center” in Administration

Guide: Implementation

v “Writing plugins as Control Center extensions” in Administration Guide:

Implementation

v “Java sample programs” in Samples Topics

v “Sample files” in Samples Topics

 Related tasks:

v “Creating a plugin that adds a toolbar button” in Administration Guide:

Implementation

v “Setting attributes for a plugin tree object” in Administration Guide:

Implementation

 Related reference:

v “Java WebSphere samples” on page 179

v “JDBC samples” on page 169

v “SQLJ samples” on page 174

178 Developing Java Applications

Java WebSphere samples

UNIX directory: sqllib/samples/java/Websphere.

Windows directory: sqllib\samples\java\Websphere.

 Table 25. Java WebSphere sample files

Sample program

name Program description

AccessEmployee.ear This Enterprise ARchive (.EAR) file consists of four modules

containing 32 different .class, .JSP and .HTML files. This EAR file,

easily deployed using IBM WebSphere Application Server,

demonstrates how Java clients can interact with Enterprise Java

Beans (EJBs) to access data stored in DB2.

 Related concepts:

v “Java sample programs” in Samples Topics

v “Sample files” in Samples Topics

 Related reference:

v “Java plug-in samples” on page 178

v “JDBC samples” on page 169

v “SQLJ samples” on page 174

Chapter 6. Java sample applications 179

180 Developing Java Applications

Chapter 7. Diagnosing JDBC and SQLJ problems

The topics that follow contain information on diagnosing JDBC and SQLJ

problems.

v “Diagnosing JDBC and SQLJ problems under the IBM DB2 Driver for JDBC and

SQLJ”

v “Diagnosing JDBC and SQLJ problems under the DB2 JDBC Type 2 Driver” on

page 192

Diagnosing JDBC and SQLJ problems under the IBM DB2 Driver for

JDBC and SQLJ

The topics that follow contain information on diagnosing JDBC and SQLJ problems

under the IBM DB2 Driver for JDBC and SQLJ.

v “JDBC and SQLJ problem diagnosis with the IBM DB2 Driver for JDBC and

SQLJ”

v “Example of using configuration properties to start a JDBC trace” on page 184

v “Example of a trace program under the IBM DB2 Driver for JDBC and SQLJ” on

page 184

v “System monitoring for the IBM DB2 Driver for JDBC and SQLJ” on page 189

JDBC and SQLJ problem diagnosis with the IBM DB2 Driver

for JDBC and SQLJ

 To obtain data for diagnosing SQLJ or JDBC problems with the IBM DB2 Driver

for JDBC and SQLJ, collect trace data and run utilities that format the trace data.

You should run the trace and diagnostic utilities only under the direction of IBM

software support.

If your application connects to a DB2 for z/OS server, a number of stored

procedures need to be installed on that server before you can collect trace data.

Those stored procedures are also used for some DatabaseMetaData calls. The stored

procedures are:

v SQLCOLPRIVILEGES

v SQLCOLUMNS

v SQLFOREIGNKEYS

v SQLGETTYPEINFO

v SQLPRIMARYKEYS

v SQLPROCEDURECOLS

v SQLPROCEDURES

v SQLSPECIALCOLUMNS

v SQLSTATISTICS

v SQLTABLEPRIVILEGES

v SQLTABLES

v SQLUDTS

v SQLCAMESSAGE

For DB2 UDB for OS/390 and z/OS, Version 7, the stored procedures are shipped

in a PTF. The PTF is orderable through normal service channels using the

following PTF numbers:

© Copyright IBM Corp. 2006 181

Table 26. PTFs for DB2 for z/OS

DB2 for z/OS Version PTF number

Version 7 UQ72083

Ask your DB2 for z/OS system administrator whether these stored procedures are

installed.

 Collecting JDBC trace data:

 Use one of the following procedures to start the trace:

Procedure 1: For IBM DB2 Driver for JDBC and SQLJ type 4 connectivity or IBM

DB2 Driver for JDBC and SQLJ type 2 connectivity for DB2 for Linux, UNIX and

Windows , the recommended method is to start the trace by setting the

db2.jcc.override.traceFile property or the db2.jcc.override.traceDirectory property in

the IBM DB2 Driver for JDBC and SQLJ configuration properties file.

Procedure 2:

1. If you use the DataSource interface to connect to a data source, invoke the

DB2BaseDataSource.setTraceLevel method to set the type of tracing that you

need. The default trace level is TRACE_ALL. See Properties for the IBM DB2

Driver for JDBC and SQLJ for information on how to specify more than one

type of tracing.

2. Invoke the DB2BaseDataSource.setJccLogWriter method to specify the trace

destination and turn the trace on.

Procedure 3:

If you use the DataSource interface to connect to a data source, invoke the

javax.sql.DataSource.setLogWriter method to turn the trace on. With this

method, TRACE_ALL is the only available trace level.

If you use the DriverManager interface to connect to a data source, follow this

procedure to start the trace.

1. Invoke the DriverManager.getConnection method with the traceLevel property

set in the info parameter or url parameter for the type of tracing that you need.

The default trace level is TRACE_ALL. See Properties for the IBM DB2 Driver for

JDBC and SQLJ for information on how to specify more than one type of

tracing.

2. Invoke the DriverManager.setLogWriter method to specify the trace destination

and turn the trace on.

After a connection is established, you can turn the trace off or back on, change the

trace destination, or change the trace level with the

DB2Connection.setJccLogWriter method. To turn the trace off, set the logWriter

value to null.

The logWriter property is an object of type java.io.PrintWriter. If your

application cannot handle java.io.PrintWriter objects, you can use the traceFile

property to specify the destination of the trace output. To use the traceFile

property, set the logWriter property to null, and set the traceFile property to the

name of the file to which the driver writes the trace data. This file and the

directory in which it resides must be writable. If the file already exists, the driver

overwrites it.

182 Developing Java Applications

Procedure 4: If you are using the DriverManager interface, specify the traceFile and

traceLevel properties as part of the URL when you load the driver. For example:

String url = "jdbc:db2://sysmvs1.stl.ibm.com:5021/san_jose" +

 ":traceFile=/u/db2p/jcctrace;" +

 "traceLevel=" + com.ibm.db2.jcc.DB2BaseDataSource.TRACE_DRDA_FLOWS + ";";

Example of starting a trace using configuration properties: For a complete example of

using configuration parameters to collect trace data, see Example of using

configuration properties to start a JDBC trace.

Trace example program: For a complete example of a program for tracing under the

IBM DB2 Driver for JDBC and SQLJ, see Example of a trace program under the

IBM DB2 Driver for JDBC and SQLJ.

 Collecting SQLJ trace data during customization or bind:

 To collect trace data to diagnose problems during the SQLJ customization or bind

process, specify the -tracelevel and -tracefile options when you run the

db2sqljcustomize or db2sqljbind bind utility.

 Formatting information about an SQLJ serialized profile:

 The profp utility formats information about each SQLJ clause in a serialized

profile. The format of the profp utility is:

�� profp serialized-profile-name ��

Run the profp utility on the serialized profile for the connection in which the error

occurs. If an exception is thrown, a Java stack trace is generated. You can

determine which serialized profile was in use when the exception was thrown

from the stack trace.

 Formatting information about an SQLJ customized serialized profile:

 The db2sqljprint utility formats information about each SQLJ clause in a

serialized profile that is customized for the IBM DB2 Driver for JDBC and SQLJ.

Run the db2sqljprint utility on the customized serialized profile for the

connection in which the error occurs.

 Related concepts:

v “Example of a trace program under the IBM DB2 Driver for JDBC and SQLJ” on

page 184

v “Example of using configuration properties to start a JDBC trace” on page 184

 Related reference:

v “db2sqljbind - SQLJ profile binder” on page 361

v “db2sqljcustomize - SQLJ profile customizer” on page 351

v “Properties for the IBM DB2 Driver for JDBC and SQLJ” on page 232

Chapter 7. Diagnosing JDBC and SQLJ problems 183

Example of using configuration properties to start a JDBC

trace

 Suppose that you want to collect trace data for a program named Test.java, which

uses IBM DB2 Driver for JDBC and SQLJ type 4 connectivity. Test.java does no

tracing, and you do not want to modify the program, so you enable tracing using

configuration properties. You want your trace output to have the following

characteristics:

v Trace information for each connection on the same DataSource is written to a

separate trace file. Output goes into a directory named /Trace.

v Each trace file name begins with jccTrace1.

v If trace files with the same names already exist, the trace data is appended to

them.

Although Test1.java does not contain any code to do tracing, you want to set the

configuration properties so that if the application is modified in the future to do

tracing, the settings within the program will take precedence over the settings in

the configuration properties. To do that, use the set of configuration properties that

begin with db2.jcc, not db2.jcc.override.

The configuration property settings look like this:

v db2.jcc.traceDirectory=/Trace

v db2.jcc.traceFile=jccTrace1

v db2.jcc.traceFileAppend=true

You want the trace settings to apply only to your stand-alone program Test1.java,

so you create a file with these settings, and then refer to the file when you invoke

the Java program by specifying the -Ddb2.jcc.propertiesFile option. Suppose that

the file that contains the settings is /Test/jcc.properties. To enable tracing when

you run Test1.java, you issue a command like this:

java -Ddb2.jcc.propertiesFile=/Test/jcc.properties Test1

Suppose that Test1.java creates two connections for one DataSource. The program

does not define a logWriter object, so the driver creates a global logWriter object

for the trace output. When the program completes, the following files contain the

trace data:

v /Trace/jccTrace1_global_0

v /Trace/jccTrace1_global_1

 Related concepts:

v “IBM DB2 Driver for JDBC and SQLJ configuration properties customization” on

page 11

v “JDBC and SQLJ problem diagnosis with the IBM DB2 Driver for JDBC and

SQLJ” on page 181

Example of a trace program under the IBM DB2 Driver for

JDBC and SQLJ

 The following example shows a class for establishing a connection using IBM DB2

Driver for JDBC and SQLJ type 4 connectivity and gathering and displaying trace

data under the IBM DB2 Driver for JDBC and SQLJ. The class includes a method

for the DriverManager interface and a method for the DataSource interface.

184 Developing Java Applications

public class TraceExample

{

 public static void main(String[] args)

 {

 sampleConnectUsingSimpleDataSource();

 sampleConnectWithURLUsingDriverManager();

 }

 private static void sampleConnectUsingSimpleDataSource()

 {

 java.sql.Connection c = null;

 java.io.PrintWriter printWriter =

 new java.io.PrintWriter(System.out, true);

 // Prints to console, true means

 // auto-flush so you don’t lose trace

 try {

 javax.sql.DataSource ds =

 new com.ibm.db2.jcc.DB2SimpleDataSource();

 ((com.ibm.db2.jcc.DB2BaseDataSource) ds).setServerName("sysmvs1.stl.ibm.com");

 ((com.ibm.db2.jcc.DB2BaseDataSource) ds).setPortNumber(5021);

 ((com.ibm.db2.jcc.DB2BaseDataSource) ds).setDatabaseName("san_jose");

 ((com.ibm.db2.jcc.DB2BaseDataSource) ds).setDriverType(4);

 ds.setLogWriter(printWriter); // This turns on tracing

 // Refine the level of tracing detail

 ((com.ibm.db2.jcc.DB2BaseDataSource) ds).

 setTraceLevel(com.ibm.db2.jcc.DB2SimpleDataSource.TRACE_CONNECTS |

 com.ibm.db2.jcc.DB2SimpleDataSource.TRACE_DRDA_FLOWS);

 // This connection request is traced using trace level

 // TRACE_CONNECTS | TRACE_DRDA_FLOWS

 c = ds.getConnection("myname", "mypass");

 // Change the trace level to TRACE_ALL

 // for all subsequent requests on the connection

 ((com.ibm.db2.jcc.DB2Connection) c).setJccLogWriter(printWriter,

 com.ibm.db2.jcc.DB2BaseDataSource.TRACE_ALL);

Figure 60. Example of tracing under the IBM DB2 Driver for JDBC and SQLJ (Part 1 of 5)

Chapter 7. Diagnosing JDBC and SQLJ problems 185

// The following INSERT is traced using trace level TRACE_ALL

 java.sql.Statement s1 = c.createStatement();

 s1.executeUpdate("INSERT INTO sampleTable(sampleColumn) VALUES(1)");

 s1.close();

 // This code disables all tracing on the connection

 ((com.ibm.db2.jcc.DB2Connection) c).setJccLogWriter(null);

 // The following INSERT statement is not traced

 java.sql.Statement s2 = c.createStatement();

 s2.executeUpdate("INSERT INTO sampleTable(sampleColumn) VALUES(1)");

 s2.close();

 c.close();

 }

 catch(java.sql.SQLException e) {

 com.ibm.db2.jcc.DB2ExceptionFormatter.printTrace(e,

 printWriter, "[TraceExample]");

 }

 finally {

 cleanup(c, printWriter);

 printWriter.flush();

 }

 }

 // If the code ran successfully, the connection should

 // already be closed. Check whether the connection is closed.

 // If so, just return.

 // If a failure occurred, try to roll back and close the connection.

 private static void cleanup(java.sql.Connection c,

 java.io.PrintWriter printWriter)

 {

 if(c == null) return;

 try {

 if(c.isClosed()) {

 printWriter.println("[TraceExample] " +

 "The connection was successfully closed");

 return;

 }

 // If we get to here, something has gone wrong.

 // Roll back and close the connection.

 printWriter.println("[TraceExample] Rolling back the connection");

 try {

 c.rollback();

 }

Figure 60. Example of tracing under the IBM DB2 Driver for JDBC and SQLJ (Part 2 of 5)

186 Developing Java Applications

catch(java.sql.SQLException e) {

 printWriter.println("[TraceExample] " +

 "Trapped the following java.sql.SQLException while trying to roll back:");

 com.ibm.db2.jcc.DB2ExceptionFormatter.printTrace(e, printWriter,

 "[TraceExample]");

 printWriter.println("[TraceExample] " +

 "Unable to roll back the connection");

 }

 catch(java.lang.Throwable e) {

 printWriter.println("[TraceExample] Trapped the " +

 "following java.lang.Throwable while trying to roll back:");

 com.ibm.db2.jcc.DB2ExceptionFormatter.printTrace(e,

 printWriter, "[TraceExample]");

 printWriter.println("[TraceExample] Unable to " +

 "roll back the connection");

 }

 // Close the connection

 printWriter.println("[TraceExample] Closing the connection");

 try {

 c.close();

 }

 catch(java.sql.SQLException e) {

 printWriter.println("[TraceExample] Exception while " +

 "trying to close the connection");

 printWriter.println("[TraceExample] Deadlocks could " +

 "occur if the connection is not closed.");

 com.ibm.db2.jcc.DB2ExceptionFormatter.printTrace(e, printWriter,

 "[TraceExample]");

 }

 catch(java.lang.Throwable e) {

 printWriter.println("[TraceExample] Throwable caught " +

 "while trying to close the connection");

 printWriter.println("[TraceExample] Deadlocks could " +

 "occur if the connection is not closed.");

 com.ibm.db2.jcc.DB2ExceptionFormatter.printTrace(e, printWriter,

 "[TraceExample]");

 }

 }

 catch(java.lang.Throwable e) {

 printWriter.println("[TraceExample] Unable to " +

 "force the connection to close");

 printWriter.println("[TraceExample] Deadlocks " +

 "could occur if the connection is not closed.");

 com.ibm.db2.jcc.DB2ExceptionFormatter.printTrace(e, printWriter,

 "[TraceExample]");

 }

 }

Figure 60. Example of tracing under the IBM DB2 Driver for JDBC and SQLJ (Part 3 of 5)

Chapter 7. Diagnosing JDBC and SQLJ problems 187

private static void sampleConnectWithURLUsingDriverManager()

 {

 java.sql.Connection c = null;

 // This time, send the printWriter to a file.

 java.io.PrintWriter printWriter = null;

 try {

 printWriter =

 new java.io.PrintWriter(

 new java.io.BufferedOutputStream(

 new java.io.FileOutputStream("/temp/driverLog.txt"), 4096), true);

 }

 catch(java.io.FileNotFoundException e) {

 java.lang.System.err.println("Unable to establish a print writer for trace");

 java.lang.System.err.flush();

 return;

 }

 try {

 Class.forName("com.ibm.db2.jcc.DB2Driver");

 }

 catch(ClassNotFoundException e) {

 printWriter.println("[TraceExample] IBM DB2 Driver for JDBC and SQLJ type 4 connectivity " +

 "is not in the application classpath. Unable to load driver.");

 printWriter.flush();

 return;

 }

 // This URL describes the target data source for Type 4 connectivity.

 // The traceLevel property is established through the URL syntax,

 // and driver tracing is directed to file "/temp/driverLog.txt"

 String databaseURL =

 "jdbc:db2://sysmvs1.stl.ibm.com:5021" +

 "/sample:traceFile=/temp/driverLog.txt;traceLevel=" +

 (com.ibm.db2.jcc.DB2BaseDataSource.TRACE_DRDA_FLOWS |

 com.ibm.db2.jcc.DB2BaseDataSource.TRACE_CONNECTS) + ";";

 // Set other properties

 java.util.Properties properties = new java.util.Properties();

 properties.setProperty("user", "myname");

 properties.setProperty("password", "mypass");

Figure 60. Example of tracing under the IBM DB2 Driver for JDBC and SQLJ (Part 4 of 5)

188 Developing Java Applications

Related tasks:

v “Connecting to a data source using the DataSource interface” on page 30

v “Connecting to a data source using the DriverManager interface with the IBM

DB2 Driver for JDBC and SQLJ” on page 27

 Related reference:

v “Properties for the IBM DB2 Driver for JDBC and SQLJ” on page 232

System monitoring for the IBM DB2 Driver for JDBC and SQLJ

 To assist you in monitoring the performance of your applications with the IBM

DB2 Driver for JDBC and SQLJ, the driver provides two methods to collect the

following information about a connection:

Core driver time

The sum of elapsed monitored API times that were collected while system

monitoring was enabled, in microseconds. In general, only APIs that might

result in network I/O or DB2 server interaction are monitored.

Network I/O time

The sum of elapsed network I/O times that were collected while system

monitoring was enabled, in microseconds.

 try {

 // This connection request is traced using trace level

 // TRACE_CONNECTS | TRACE_DRDA_FLOWS

 c = java.sql.DriverManager.getConnection(databaseURL, properties);

 // Change the trace level for all subsequent requests

 // on the connection to TRACE_ALL

 ((com.ibm.db2.jcc.DB2Connection) c).setJccLogWriter(printWriter,

 com.ibm.db2.jcc.DB2BaseDataSource.TRACE_ALL);

 // The following INSERT is traced using trace level TRACE_ALL

 java.sql.Statement s1 = c.createStatement();

 s1.executeUpdate("INSERT INTO sampleTable(sampleColumn) VALUES(1)");

 s1.close();

 // Disable all tracing on the connection

 ((com.ibm.db2.jcc.DB2Connection) c).setJccLogWriter(null);

 // The following SQL insert code is not traced

 java.sql.Statement s2 = c.createStatement();

 s2.executeUpdate("insert into sampleTable(sampleColumn) values(1)");

 s2.close();

 c.close();

 }

 catch(java.sql.SQLException e) {

 com.ibm.db2.jcc.DB2ExceptionFormatter.printTrace(e, printWriter,

 "[TraceExample]");

 }

 finally {

 cleanup(c, printWriter);

 printWriter.flush();

 }

 }

}

Figure 60. Example of tracing under the IBM DB2 Driver for JDBC and SQLJ (Part 5 of 5)

Chapter 7. Diagnosing JDBC and SQLJ problems 189

Server time

The sum of all reported DB2 server elapsed times that were collected while

system monitoring was enabled, in microseconds.

 Currently, DB2 Database for Linux, UNIX, and Windows servers do not

support this function.

Application time

The sum of the application, JDBC driver, network I/O, and DB2 server

elapsed times, in milliseconds.

The two methods are:

v The DB2SystemMonitor interface

v The TRACE_SYSTEM_MONITOR trace level

 DB2SystemMonitor method:

 To collect system monitoring data using the DB2SystemMonitor interface, perform

these basic steps:

1. Invoke the DB2Connection.getDB2SystemMonitor method to create a

DB2SystemMonitor object.

2. Invoke the DB2SystemMonitor.enable method to enable the DB2SystemMonitor

object for the connection.

3. Invoke the DB2SystemMonitor.start method to start system monitoring.

4. When the activity that is to be monitored is complete, invoke

DB2SystemMonitor.stop to stop system monitoring.

5. Invoke the DB2SystemMonitor.getCoreDriverTimeMicros,

DB2SystemMonitor.getNetworkIOTimeMicros,

DB2SystemMonitor.getServerTimeMicros, or

DB2SystemMonitor.getApplicationTimeMillis methods to retrieve the elapsed

time data.

For example, the following code demonstrates how to collect each type of elapsed

time data. The numbers to the right of selected statements correspond to the

previously described steps.

190 Developing Java Applications

Trace method:

 Start a JDBC trace, using configuration properties or Connection or DataSource

properties. Include TRACE_SYSTEM_MONITOR when you set the traceLevel

property. For example:

String url = "jdbc:db2://sysmvs1.stl.ibm.com:5021/san_jose" +

 ":traceFile=/u/db2p/jcctrace;" +

 "traceLevel=" + com.ibm.db2.jcc.DB2BaseDataSource.TRACE_SYSTEM_MONITOR + ";";

The trace records with system monitor information look similar to this:

import java.sql.*;

import com.ibm.db2.jcc.*;

public class TestSystemMonitor

{

 public static void main(String[] args)

 {

 String url = "jdbc:db2://sysmvs1.svl.ibm.com:5021/san_jose";

 String user="db2adm";

 String password="db2adm";

 try

 {

 // Load the IBM DB2 Driver for JDBC and SQLJ

 Class.forName("com.ibm.db2.jcc.DB2Driver");

 System.out.println("**** Loaded the JDBC driver");

 // Create the connection using the IBM DB2 Driver for JDBC and SQLJ

 Connection conn = DriverManager.getConnection (url,user,password);

 // Commit changes manually

 conn.setAutoCommit(false);

 System.out.println("**** Created a JDBC connection to the data source");

 DB2SystemMonitor systemMonitor = �1�

 ((DB2Connection)conn).getDB2SystemMonitor();

 systemMonitor.enable(true); �2�

 systemMonitor.start(DB2SystemMonitor.RESET_TIMES); �3�

 Statement stmt = conn.createStatement();

 int numUpd = stmt.executeUpdate(

 "UPDATE EMPLOYEE SET PHONENO='4657' WHERE EMPNO='000010'");

 systemMonitor.stop(); �4�

 System.out.println("Server elapsed time (microseconds)="

 + systemMonitor.getServerTimeMicros()); �5�

 System.out.println("Network I/O elapsed time (microseconds)="

 + systemMonitor.getNetworkIOTimeMicros());

 System.out.println("Core driver elapsed time (microseconds)="

 + systemMonitor.getCoreDriverTimeMicros());

 System.out.println("Application elapsed time (milliseconds)="

 + systemMonitor.getApplicationTimeMillis());

 conn.rollback();

 stmt.close();

 conn.close();

 }

 // Handle errors

 catch(ClassNotFoundException e)

 {

 System.err.println("Unable to load IBM DB2 Driver for JDBC and SQLJ, " + e);

 }

 catch(SQLException e)

 {

 System.out.println("SQLException: " + e);

 e.printStackTrace();

 }

 }

}

Figure 61. Example of using DB2SystemMonitor methods to collect system monitoring data

Chapter 7. Diagnosing JDBC and SQLJ problems 191

[ibm][db2][jcc][SystemMonitor:start]

...

[ibm][db2][jcc][SystemMonitor:stop] core: 565.67ms | network: 211.695ms | server: 207.771ms

 Related concepts:

v “Example of a trace program under the IBM DB2 Driver for JDBC and SQLJ” on

page 184

v “Example of using configuration properties to start a JDBC trace” on page 184

 Related reference:

v “Summary of IBM DB2 Driver for JDBC and SQLJ extensions to JDBC” on page

301

Diagnosing JDBC and SQLJ problems under the DB2 JDBC Type 2

Driver

The topics that follow contain information on diagnosing JDBC and SQLJ problems

under the DB2 JDBC Type 2 Driver for Linux, UNIX and Windows (DB2 JDBC

Type 2 Driver).

v “CLI/ODBC/JDBC trace facility”

v “CLI and JDBC trace files” on page 197

CLI/ODBC/JDBC trace facility

 This topic discusses the following subjects:

v “DB2 CLI and DB2 JDBC trace configuration” on page 193

v “DB2 CLI trace options and the db2cli.ini file” on page 193

v “DB2 JDBC trace options and the db2cli.ini file” on page 194

v “DB2 CLI driver trace versus ODBC driver manager trace” on page 196

v “DB2 CLI driver, DB2 JDBC Type 2 Driver, and DB2 traces” on page 196

v “DB2 CLI and DB2 JDBC traces and CLI or Java stored procedures” on page 196

The DB2 CLI and the DB2 JDBC Type 2 Driver for Linux, UNIX, and Windows

offer comprehensive tracing facilities. By default, these facilities are disabled and

use no additional computing resources. When enabled, the trace facilities generate

one or more text log files whenever an application accesses the appropriate driver

(DB2 CLI or DB2 JDBC Type 2 Driver). These log files provide detailed information

about:

v the order in which CLI or JDBC functions were called by the application

v the contents of input and output parameters passed to and received from CLI or

JDBC functions

v the return codes and any error or warning messages generated by CLI or JDBC

functions

Note: This trace facility does not apply to the DB2 Universal JDBC Driver.

DB2 CLI and DB2 JDBC trace file analysis can benefit application developers in a

number of ways. First, subtle program logic and parameter initialization errors are

often evident in the traces. Second, DB2 CLI and DB2 JDBC traces might suggest

ways of better tuning an application or the databases it accesses. For example, if a

DB2 CLI trace shows a table being queried many times on a particular set of

attributes, an index corresponding to those attributes might be created on the table

192 Developing Java Applications

to improve application performance. Finally, analysis of DB2 CLI and DB2 JDBC

trace files can help application developers understand how a third party

application or interface is behaving.

 DB2 CLI and DB2 JDBC trace configuration:

 The configuration parameters for both DB2 CLI and DB2 JDBC traces facilities are

read from the DB2 CLI configuration file db2cli.ini. By default, this file is located

in the \sqllib path on the Windows platform and the /sqllib/cfg path on UNIX

platforms. You can override the default path by setting the DB2CLIINIPATH

environment variable. On the Windows platform, an additional db2cli.ini file can

be found in the user’s profile (or home) directory if there are any user-defined data

sources defined using the ODBC Driver Manager. This db2cli.ini file will

override the default file.

To view the current db2cli.ini trace configuration parameters from the command

line processor, issue the following command:

db2 GET CLI CFG FOR SECTION COMMON

There are three ways to modify the db2cli.ini file to configure the DB2 CLI and

DB2 JDBC trace facilities:

v use the DB2 Configuration Assistant if it is available

v manually edit the db2cli.ini file using a text editor

v issue the UPDATE CLI CFG command from the command line processor

For example, the following command issued from the command line processor

updates the db2cli.ini file and enables the JDBC tracing facility:

db2 UPDATE CLI CFG FOR SECTION COMMON USING jdbctrace 1

Notes:

1. Typically the DB2 CLI and DB2 JDBC trace configuration options are only read

from the db2cli.ini configuration file at the time an application is initialized.

However, a special db2cli.ini trace option, TraceRefreshInterval, can be used

to indicate an interval at which specific DB2 CLI trace options are reread from

the db2cli.ini file.

2. The DB2 CLI tracing facility can also be configured programmatically by setting

the SQL_ATTR_TRACE environment attribute. This setting will override the

settings contained in the db2cli.ini file.

Important: Disable the DB2 CLI and DB2 JDBC trace facilities when they are not

needed. Unnecessary tracing can reduce application performance and

generate unwanted trace log files. DB2 does not delete any generated

trace files and will append new trace information to any existing trace

files.

 DB2 CLI Trace options and the db2cli.ini file:

 When an application using the DB2 CLI driver begins execution, the driver checks

for trace facility options in the [COMMON] section of the db2cli.ini file. These

trace options are specific trace keywords that are set to certain values in the

db2cli.ini file under the [COMMON] section.

Note: Because DB2 CLI trace keywords appear in the [COMMON] section of the

db2cli.ini file, their values apply to all database connections through the

DB2 CLI driver.

Chapter 7. Diagnosing JDBC and SQLJ problems 193

The DB2 CLI trace keywords that can be defined are:

v Trace

v TraceComm

v TraceErrImmediateTraceErrImmediate

v TraceFileName

v TraceFlush

v TraceFlushOnErrorTraceFlushOnError

v TraceLocks

v TracePathName

v TracePIDList

v TracePIDTID

v TraceRefreshInterval

v TraceStmtOnly

v TraceTime

v TraceTimeStamp

Note: DB2 CLI trace keywords are only read from the db2cli.ini file once at

application initialization time unless the TraceRefreshInterval keyword is set.

If this keyword is set, the Trace and TracePIDList keywords are reread from

the db2cli.ini file at the specified interval and applied, as appropriate, to

the currently executing application.

An example db2cli.ini file trace configuration using these DB2 CLI keywords and

values is:

[COMMON]

trace=1

TraceFileName=\temp\clitrace.txt

TraceFlush=1

Notes:

1. CLI trace keywords are NOT case sensitive. However, path and file name

keyword values might be case-sensitive on some operating systems (such as

UNIX).

2. If either a DB2 CLI trace keyword or its associated value in the db2cli.ini file

is invalid, the DB2 CLI trace facility will ignore it and use the default value for

that trace keyword instead.

 DB2 JDBC Trace options and the db2cli.ini file:

 When an application using the DB2 JDBC Type 2 Driver begins execution, the

driver also checks for trace facility options in the db2cli.ini file. As with the DB2

CLI trace options, DB2 JDBC trace options are specified as keyword/value pairs

located under the [COMMON] section of the db2cli.ini file.

Note: Because DB2 JDBC trace keywords appear in the [COMMON] section of the

db2cli.ini file, their values apply to all database connections through the

DB2 JDBC Type 2 Driver.

The DB2 JDBC trace keywords that can be defined are:

v JDBCTrace

v JDBCTracePathName

v JDBCTraceFlush

194 Developing Java Applications

JDBCTrace = 0 | 1

The JDBCTrace keyword controls whether or not other DB2 JDBC tracing

keywords have any effect on program execution. Setting JDBCTrace to its

default value of 0 disables the DB2 JDBC trace facility. Setting JDBCTrace

to 1 enables it.

 By itself, the JDBCTrace keyword has little effect and produces no trace

output unless the JDBCTracePathName keyword is also specified.

JDBCTracePathName = <fully_qualified_trace_path_name>

The value of JDBCTracePathName is the fully qualified path of the

directory to which all DB2 JDBC trace information is written. The DB2

JDBC trace facility attempts to generate a new trace log file each time a

JDBC application is executed using the DB2 JDBC Type 2 Driver. If the

application is multithreaded, a separate trace log file will be generated for

each thread. A concatenation of the application process ID, the thread

sequence number, and a thread-identifying string are automatically used to

name trace log files. There is no default path name to which DB2 JDBC

trace output log files are written.

JDBCTraceFlush = 0 | 1

The JDBCTraceFlush keyword specifies how often trace information is

written to the DB2 JDBC trace log file. By default, JDBCTraceFlush is set to

0 and each DB2 JDBC trace log file is kept open until the traced application

or thread terminates normally. If the application terminates abnormally,

some trace information that was not written to the trace log file might be

lost.

 To ensure the integrity and completeness of the trace information written

to the DB2 JDBC trace log file, the JDBCTraceFlush keyword can be set to

1. After each trace entry has been written to the trace log file, the DB2

JDBC driver closes the file and then reopens it, appending new trace

entries to the end of the file. This guarantees that no trace information will

be lost.

Note: Each DB2 JDBC log file close and reopen operation incurs significant

input/output overhead and can reduce application performance

considerably.

An example db2cli.ini file trace configuration using these DB2 JDBC keywords

and values is:

[COMMON]

jdbctrace=1

JdbcTracePathName=\temp\jdbctrace\

JDBCTraceFlush=1

Notes:

1. JDBC trace keywords are NOT case sensitive. However, path and file name

keyword values might be case-sensitive on some operating systems (such as

UNIX).

2. If either a DB2 JDBC trace keyword or its associated value in the db2cli.ini

file is invalid, the DB2 JDBC trace facility will ignore it and use the default

value for that trace keyword instead.

3. Enabling DB2 JDBC tracing does not enable DB2 CLI tracing. The DB2 JDBC

Type 2 Driver depends on the DB2 CLI driver to access the database.

Consequently, Java developers might also want to enable DB2 CLI tracing for

additional information on how their applications interact with the database

through the various software layers. DB2 JDBC and DB2 CLI trace options are

Chapter 7. Diagnosing JDBC and SQLJ problems 195

independent of each other and can be specified together in any order under the

[COMMON] section of the db2cli.ini file.

 DB2 CLI Driver trace versus ODBC driver manager trace:

 It is important to understand the difference between an ODBC driver manager

trace and a DB2 CLI driver trace. An ODBC driver manager trace shows the ODBC

function calls made by an ODBC application to the ODBC driver manager. In

contrast, a DB2 CLI driver trace shows the function calls made by the ODBC

driver manager to the DB2 CLI driver on behalf of the application.

An ODBC driver manager might forward some function calls directly from the

application to the DB2 CLI driver. However, the ODBC driver manager might also

delay or avoid forwarding some function calls to the driver. The ODBC driver

manager might also modify application function arguments or map application

functions to other functions before forwarding the call on to the DB2 CLI driver.

Reasons for application function call intervention by the ODBC driver manager

include:

v Applications written using ODBC 2.0 functions that have been deprecated in

ODBC 3.0 will have the old functions mapped to new functions.

v ODBC 2.0 function arguments deprecated in ODBC 3.0 will be mapped to

equivalent ODBC 3.0 arguments.

v The Microsoft® cursor library will map calls such as SQLExtendedFetch() to

multiple calls to SQLFetch() and other supporting functions to achieve the same

end result.

v ODBC driver manager connection pooling will usually defer SQLDisconnect()

requests (or avoid them altogether if the connection gets reused).

For these and other reasons, application developers might find an ODBC driver

manager trace to be a useful complement to the DB2 CLI driver trace.

For more information on capturing and interpreting ODBC driver manager traces,

refer to the ODBC driver manager documentation. On the Windows platforms,

refer to the Microsoft ODBC 3.0 Software Development Kit and Programmer’s

Reference, also available online at: http://www.msdn.microsoft.com/.

 DB2 CLI Driver, DB2 JDBC Type 2 Driver, and DB2 traces:

 Internally, the DB2 JDBC Type 2 Driver makes use of the DB2 CLI driver for

database access. For example, the Java getConnection() method is internally

mapped by the DB2 JDBC Type 2 Driver to the DB2 CLI SQLConnect() function. As

a result, Java developers might find a DB2 CLI trace to be a useful complement to

the DB2 JDBC trace.

The DB2 CLI driver makes use of many internal and DB2 specific functions to do

its work. These internal and DB2 specific function calls are logged in the DB2 trace.

Application developers will not find DB2 traces useful, as they are only meant to

assist IBM Service in problem determination and resolution.

 DB2 CLI and DB2 JDBC traces and CLI or Java stored procedures:

 On all workstation platforms, the DB2 CLI and DB2 JDBC trace facilities can be

used to trace DB2 CLI and DB2 JDBC stored procedures.

196 Developing Java Applications

Most of the DB2 CLI and DB2 JDBC trace information and instructions given in

earlier sections is generic and applies to both applications and stored procedures

equally. However, unlike applications which are clients of a database server (and

typically execute on a machine separate from the database server), stored

procedures execute at the database server. Therefore, the following additional steps

must be taken when tracing DB2 CLI or DB2 JDBC stored procedures:

v Ensure the trace keyword options are specified in the db2cli.ini file located at

the DB2 server.

v If the TraceRefreshInterval keyword is not set to a positive, non-zero value,

ensure all keywords are configured correctly prior to database startup time (that

is, when the db2start command is issued). Changing trace settings while the

database server is running can cause unpredictable results. For example, if the

TracePathName is changed while the server is running, then the next time a

stored procedure is executed, some trace files might be written to the new path,

while others are written to the original path. To ensure consistency, restart the

server any time a trace keyword other than Trace or TracePIDList is modified.

 Related concepts:

v “CLI and JDBC trace files” on page 197

v “db2cli.ini initialization file” in Call Level Interface Guide and Reference, Volume 1

 Related reference:

v “CLI/ODBC configuration keywords listing by category” in Call Level Interface

Guide and Reference, Volume 1

v “db2trc - Trace command” in Command Reference

v “GET CLI CONFIGURATION command” in Command Reference

v “Miscellaneous variables” in Performance Guide

v “SQLSetEnvAttr function (CLI) - Set environment attribute” in Call Level Interface

Guide and Reference, Volume 2

v “UPDATE CLI CONFIGURATION command” in Command Reference

CLI and JDBC trace files

 Applications that access the DB2 CLI and DB2 JDBC drivers can make use of the

DB2 CLI and DB2 JDBC trace facilities. These utilities record all function calls

made by the DB2 CLI or DB2 JDBC drivers to a log file which is useful for

problem determination. This topic discusses how to access and interpret these log

files generated by the tracing facilities:

v “CLI and JDBC trace file location”

v “CLI trace file interpretation” on page 199

v “JDBC trace file interpretation” on page 203

 CLI and JDBC trace file location:

 If the TraceFileName keyword was used in the db2cli.ini file to specify a fully

qualified file name, then the DB2 CLI trace log file will be in the location specified.

If a relative file name was specified for the DB2 CLI trace log file name, the

location of that file will depend on what the operating system considers to be the

current path of the application.

Chapter 7. Diagnosing JDBC and SQLJ problems 197

Note: If the user executing the application does not have sufficient authority to

write to the trace log file in the specified path, no file will be generated and

no warning or error is given.

If either or both of the TracePathName and JDBCTracePathName keywords were

used in the db2cli.ini file to specify fully qualified directories, then the DB2 CLI

and DB2 JDBC trace log files will be in the location specified. If a relative directory

name was specified for either or both trace directories, the operating system will

determine its location based on what it considers to be the current path of the

application.

Note: If the user executing the application does not have sufficient authority to

write trace files in the specified path, no file will be generated and no

warning or error is given. If the specified trace path does not exist, it will

not be created.

The DB2 CLI and DB2 JDBC trace facilities automatically use the application’s

process ID and thread sequence number to name the trace log files when the

TracePathName and JDBCTracePathName keywords have been set. For example, a

DB2 CLI trace of an application with three threads might generate the following

DB2 CLI trace log files: 100390.0, 100390.1, 100390.2.

Similarly, a DB2 JDBC trace of a Java application with two threads might generate

the following JDBC trace log files: 7960main.trc, 7960Thread-1.trc.

Note: If the trace directory contains both old and new trace log files, file date and

time stamp information can be used to locate the most recent trace files.

If no DB2 CLI or DB2 JDBC trace output files appear to have been created:

v Verify that the trace configuration keywords are set correctly in the db2cli.ini

file. Issuing the db2 GET CLI CFG FOR SECTION COMMON command from the

command line processor is a quick way to do this.

v Ensure the application is restarted after updating the db2cli.ini file. Specifically,

the DB2 CLI and DB2 JDBC trace facilities are initialized during application

startup. Once initialized, the DB2 JDBC trace facility cannot be reconfigured. The

DB2 CLI trace facility can be reconfigured at run time but only if the

TraceRefreshInterval keyword was appropriately specified prior to application

startup.

Note: Only the Trace and TracePIDList DB2 CLI keywords can be reconfigured

at run time. Changes made to other DB2 CLI keywords, including

TraceRefreshInterval, have no effect without an application restart.

v If the TraceRefreshInterval keyword was specified prior to application startup,

and if the Trace keyword was initially set to 0, ensure that enough time has

elapsed for the DB2 CLI trace facility to reread the Trace keyword value.

v If either or both the TracePathName and JDBCTracePathName keywords are

used to specify trace directories, ensure those directories exist prior to starting

the application.

v Ensure the application has write access to the specified trace log file or trace

directory.

v Check the DB2CLIINIPATH environment variable. If set, the DB2 CLI and DB2

JDBC trace facilities expect the db2cli.ini file to be at the location specified by

this variable.

198 Developing Java Applications

v If the application uses ODBC to interface with the DB2 CLI driver, verify that

one of the SQLConnect(), SQLDriverConnect() or SQLBrowseConnect() functions

have been successfully called. No entries will be written to the DB2 CLI trace

log files until a database connection has successfully been made.

 CLI trace file interpretation:

 DB2 CLI traces always begin with a header that identifies the process ID and

thread ID of the application that generated the trace, the time the trace began, and

product specific information such as the local DB2 build level and DB2 CLI driver

version. For example:

1 [Process: 1227, Thread: 1024]

2 [Date, Time: 01-27-2002 13:46:07.535211]

3 [Product: QDB2/LINUX 7.1.0]

4 [Level Identifier: 02010105]

5 [CLI Driver Version: 07.01.0000]

6 [Informational Tokens: "DB2 v7.1.0","n000510",""]

Note: Trace examples used in this section have line numbers added to the left

hand side of the trace. These line numbers have been added to aid the

discussion and will not appear in an actual DB2 CLI trace.

Immediately following the trace header, there are usually a number of trace entries

related to environment and connection handle allocation and initialization. For

example:

7 SQLAllocEnv(phEnv=&bffff684)

8 –––> Time elapsed - +9.200000E-004 seconds

9 SQLAllocEnv(phEnv=0:1)

10 <––– SQL_SUCCESS Time elapsed - +7.500000E-004 seconds

11 SQLAllocConnect(hEnv=0:1, phDbc=&bffff680)

12 –––> Time elapsed - +2.334000E-003 seconds

13 SQLAllocConnect(phDbc=0:1)

14 <––– SQL_SUCCESS Time elapsed - +5.280000E-004 seconds

15 SQLSetConnectOption(hDbc=0:1, fOption=SQL_ATTR_AUTOCOMMIT, vParam=0)

16 –––> Time elapsed - +2.301000E-003 seconds

17 SQLSetConnectOption()

18 <––– SQL_SUCCESS Time elapsed - +3.150000E-004 seconds

19 SQLConnect(hDbc=0:1, szDSN="SAMPLE", cbDSN=-3, szUID="", cbUID=-3,

 szAuthStr="", cbAuthStr=-3)

20 –––> Time elapsed - +7.000000E-005 seconds

21 (DBMS NAME="DB2/LINUX", Version="07.01.0000", Fixpack="0x22010105")

22 SQLConnect()

23 <––– SQL_SUCCESS Time elapsed - +5.209880E-001 seconds

24 (DSN=""SAMPLE"")

25 (UID=" ")

26 (PWD="*")

In the above trace example, notice that there are two entries for each DB2 CLI

function call (for example, lines 19-21 and 22-26 for the SQLConnect() function call).

This is always the case in DB2 CLI traces. The first entry shows the input

parameter values passed to the function call while the second entry shows the

function output parameter values and return code returned to the application.

Chapter 7. Diagnosing JDBC and SQLJ problems 199

The above trace example shows that the SQLAllocEnv() function successfully

allocated an environment handle (phEnv=0:1) at line 9. That handle was then

passed to the SQLAllocConnect() function which successfully allocated a database

connection handle (phDbc=0:1) as of line 13. Next, the SQLSetConnectOption()

function was used to set the phDbc=0:1 connection’s SQL_ATTR_AUTOCOMMIT

attribute to SQL_AUTOCOMMIT_OFF (vParam=0) at line 15. Finally,

SQLConnect() was called to connect to the target database (SAMPLE) at line 19.

Included in the input trace entry of the SQLConnect() function on line 21 is the

build and FixPak level of the target database server. Other information that might

also appear in this trace entry includes input connection string keywords and the

code pages of the client and server. For example, suppose the following

information also appeared in the SQLConnect() trace entry:

(Application Codepage=819, Database Codepage=819,

 Char Send/Recv Codepage=819, Graphic Send/Recv Codepage=819,

 Application Char Codepage=819, Application Graphic Codepage=819)

This would mean the application and the database server were using the same

code page (819).

The return trace entry of the SQLConnect() function also contains important

connection information (lines 24-26 in the above example trace). Additional

information that might be displayed in the return entry includes any PATCH1 or

PATCH2 keyword values that apply to the connection. For example, if

PATCH2=27,28 was specified in the db2cli.ini file under the COMMON section, the

following line should also appear in the SQLConnect() return entry:

(PATCH2="27,28")

Following the environment and connection related trace entries are the statement

related trace entries. For example:

27 SQLAllocStmt(hDbc=0:1, phStmt=&bffff684)

28 –––> Time elapsed - +1.868000E-003 seconds

29 SQLAllocStmt(phStmt=1:1)

30 <––– SQL_SUCCESS Time elapsed - +6.890000E-004 seconds

31 SQLExecDirect(hStmt=1:1, pszSqlStr="CREATE TABLE GREETING (MSG

 VARCHAR(10))", cbSqlStr=-3)

32 –––> Time elapsed - +2.863000E-003 seconds

33 (StmtOut="CREATE TABLE GREETING (MSG VARCHAR(10))")

34 SQLExecDirect()

35 <––– SQL_SUCCESS Time elapsed - +2.387800E-002 seconds

In the above trace example, the database connection handle (phDbc=0:1) was

used to allocate a statement handle (phStmt=1:1) at line 29. An unprepared SQL

statement was then executed on that statement handle at line 31. If the

TraceComm=1 keyword had been set in the db2cli.ini file, the SQLExecDirect()

function call trace entries would have shown additional client-server

communication information as follows:

SQLExecDirect(hStmt=1:1, pszSqlStr="CREATE TABLE GREETING (MSG

 VARCHAR(10))", cbSqlStr=-3)

 –––> Time elapsed - +2.876000E-003 seconds

(StmtOut="CREATE TABLE GREETING (MSG VARCHAR(10))")

 sqlccsend(ulBytes - 232)

 sqlccsend(Handle - 1084869448)

 sqlccsend() - rc - 0, time elapsed - +1.150000E-004

 sqlccrecv()

200 Developing Java Applications

sqlccrecv(ulBytes - 163) - rc - 0, time elapsed - +2.243800E-002

SQLExecDirect()

 <––– SQL_SUCCESS Time elapsed - +2.384900E-002 seconds

Notice the additional sqlccsend() and sqlccrecv() function call information in this

trace entry. The sqlccsend() call information reveals how much data was sent from

the client to the server, how long the transmission took, and the success of that

transmission (0 = SQL_SUCCESS). The sqlccrecv() call information then reveals

how long the client waited for a response from the server and the amount of data

included in the response.

Often, multiple statement handles will appear in the DB2 CLI trace. By paying

close attention to the statement handle identifier, one can easily follow the

execution path of a statement handle independent of all other statement handles

appearing in the trace.

Statement execution paths appearing in the DB2 CLI trace are usually more

complicated than the example shown above. For example:

36 SQLAllocStmt(hDbc=0:1, phStmt=&bffff684)

37 –––> Time elapsed - +1.532000E-003 seconds

38 SQLAllocStmt(phStmt=1:2)

39 <––– SQL_SUCCESS Time elapsed - +6.820000E-004 seconds

40 SQLPrepare(hStmt=1:2, pszSqlStr="INSERT INTO GREETING VALUES (?)",

 cbSqlStr=-3)

41 –––> Time elapsed - +2.733000E-003 seconds

42 (StmtOut="INSERT INTO GREETING VALUES (?)")

43 SQLPrepare()

44 <––– SQL_SUCCESS Time elapsed - +9.150000E-004 seconds

45 SQLBindParameter(hStmt=1:2, iPar=1, fParamType=SQL_PARAM_INPUT,

 fCType=SQL_C_CHAR, fSQLType=SQL_CHAR, cbColDef=14,

 ibScale=0, rgbValue=&080eca70, cbValueMax=15,

 pcbValue=&080eca4c)

46 –––> Time elapsed - +4.091000E-003 seconds

47 SQLBindParameter()

48 <––– SQL_SUCCESS Time elapsed - +6.780000E-004 seconds

49 SQLExecute(hStmt=1:2)

50 –––> Time elapsed - +1.337000E-003 seconds

51 (iPar=1, fCType=SQL_C_CHAR, rgbValue="Hello World!!!", pcbValue=14,

 piIndicatorPtr=14)

52 SQLExecute()

53 <––– SQL_ERROR Time elapsed - +5.951000E-003 seconds

In the above trace example, the database connection handle (phDbc=0:1) was

used to allocate a second statement handle (phStmt=1:2) at line 38. An SQL

statement with one parameter marker was then prepared on that statement handle

at line 40. Next, an input parameter (iPar=1) of the appropriate SQL type (

SQL_CHAR) was bound to the parameter marker at line 45. Finally, the statement

was executed at line 49. Notice that both the contents and length of the input

parameter (rgbValue=″Hello World!!!″, pcbValue=14) are displayed in the trace on

line 51.

Chapter 7. Diagnosing JDBC and SQLJ problems 201

The SQLExecute() function fails at line 52. If the application calls a diagnostic DB2

CLI function like SQLError() to diagnose the cause of the failure, then that cause

will appear in the trace. For example:

54 SQLError(hEnv=0:1, hDbc=0:1, hStmt=1:2, pszSqlState=&bffff680,

 pfNativeError=&bfffee78, pszErrorMsg=&bffff280,

 cbErrorMsgMax=1024, pcbErrorMsg=&bfffee76)

55 –––> Time elapsed - +1.512000E-003 seconds

56 SQLError(pszSqlState="22001", pfNativeError=-302, pszErrorMsg="[IBM][CLI

 Driver][DB2/LINUX] SQL0302N The value of a host variable in the EXECUTE

 or OPEN statement is too large for its corresponding use.

 SQLSTATE=22001", pcbErrorMsg=157)

57 <––– SQL_SUCCESS Time elapsed - +8.060000E-004 seconds

The error message returned at line 56 contains the DB2 native error code that was

generated (SQL0302N), the sqlstate that corresponds to that code (

SQLSTATE=22001) and a brief description of the error. In this example, the source

of the error is evident: on line 49, the application is trying to insert a string with 14

characters into a column defined as VARCHAR(10) on line 31.

If the application does not respond to a DB2 CLI function warning or error return

code by calling a diagnostic function like SQLError(), the warning or error message

should still be written to the DB2 CLI trace. However, the location of that message

in the trace may not be close to where the error actually occurred. Furthermore, the

trace will indicate that the error or warning message was not retrieved by the

application. For example, if not retrieved, the error message in the above example

might not appear until a later, seemingly unrelated DB2 CLI function call as

follows:

SQLDisconnect(hDbc=0:1)

 –––> Time elapsed - +1.501000E-003 seconds

 sqlccsend(ulBytes - 72)

 sqlccsend(Handle - 1084869448)

 sqlccsend() - rc - 0, time elapsed - +1.080000E-004

 sqlccrecv()

 sqlccrecv(ulBytes - 27) - rc - 0, time elapsed - +1.717950E-001

(Unretrieved error message="SQL0302N The value of a host variable in the

 EXECUTE or OPEN statement is too large for its corresponding use.

 SQLSTATE=22001")

SQLDisconnect()

 <––– SQL_SUCCESS Time elapsed - +1.734130E-001 seconds

The final part of a DB2 CLI trace should show the application releasing the

database connection and environment handles that it allocated earlier in the trace.

For example:

58 SQLTransact(hEnv=0:1, hDbc=0:1, fType=SQL_ROLLBACK)

59 –––> Time elapsed - +6.085000E-003 seconds

60 (ROLLBACK=0)

61 SQLTransact()

 <––– SQL_SUCCESS Time elapsed - +2.220750E-001 seconds

62 SQLDisconnect(hDbc=0:1)

63 –––> Time elapsed - +1.511000E-003 seconds

64 SQLDisconnect()

65 <––– SQL_SUCCESS Time elapsed - +1.531340E-001 seconds

66 SQLFreeConnect(hDbc=0:1)

67 –––> Time elapsed - +2.389000E-003 seconds

68 SQLFreeConnect()

202 Developing Java Applications

69 <––– SQL_SUCCESS Time elapsed - +3.140000E-004 seconds

70 SQLFreeEnv(hEnv=0:1)

71 –––> Time elapsed - +1.129000E-003 seconds

72 SQLFreeEnv()

73 <––– SQL_SUCCESS Time elapsed - +2.870000E-004 seconds

 JDBC trace file interpretation:

 DB2 JDBC traces always begin with a header that lists important system

information such as key environment variable settings, the SDK for Java or JRE

level, the DB2 JDBC driver level, and the DB2 build level. For example:

1 ==

2 | Trace beginning on 2002-1-28 7:21:0.19

3 ==

4 System Properties:

5 ------------------

6 user.language = en

7 java.home = c:\Program Files\SQLLIB\java\jdk\bin\..

8 java.vendor.url.bug =

9 awt.toolkit = sun.awt.windows.WToolkit

10 file.encoding.pkg = sun.io

11 java.version = 1.1.8

12 file.separator = \

13 line.separator =

14 user.region = US

15 file.encoding = Cp1252

16 java.compiler = ibmjitc

17 java.vendor = IBM Corporation

18 user.timezone = EST

19 user.name = db2user

20 os.arch = x86

21 java.fullversion = JDK 1.1.8 IBM build n118p-19991124 (JIT ibmjitc

 V3.5-IBMJDK1.1-19991124)

22 os.name = Windows NT

23 java.vendor.url = http://www.ibm.com/

24 user.dir = c:\Program Files\SQLLIB\samples\java

25 java.class.path =

 .:C:\Program Files\SQLLIB\lib;C:\Program Files\SQLLIB\java;

 C:\Program Files\SQLLIB\java\jdk\bin\

26 java.class.version = 45.3

27 os.version = 5.0

28 path.separator = ;

29 user.home = C:\home\db2user

30 --

Note: Trace examples used in this section have line numbers added to the left

hand side of the trace. These line numbers have been added to aid the

discussion and will not appear in an actual DB2 JDBC trace.

Immediately following the trace header, one usually finds a number of trace entries

related to initialization of the JDBC environment and database connection

establishment. For example:

31 jdbc.app.DB2Driver –> DB2Driver() (2002-1-28 7:21:0.29)

32 | Loaded db2jdbc from java.library.path

33 jdbc.app.DB2Driver <– DB2Driver() [Time Elapsed = 0.01]

34 DB2Driver - connect(jdbc:db2:sample)

35 jdbc.app.DB2ConnectionTrace –> connect(sample, info, db2driver, 0, false)

 (2002-1-28 7:21:0.59)

36 | 10: connectionHandle = 1

Chapter 7. Diagnosing JDBC and SQLJ problems 203

37 jdbc.app.DB2ConnectionTrace <– connect() [Time Elapsed = 0.16]

38 jdbc.app.DB2ConnectionTrace –> DB2Connection (2002-1-28 7:21:0.219)

39 | source = sample

40 | Connection handle = 1

41 jdbc.app.DB2ConnectionTrace <– DB2Connection

In the above trace example, a request to load the DB2 JDBC driver was made on

line 31. This request returned successfully as reported on line 33.

The DB2 JDBC trace facility uses specific Java classes to capture the trace

information. In the above trace example, one of those trace classes,

DB2ConnectionTrace, has generated two trace entries numbered 35-37 and 38-41.

Line 35 shows the connect() method being invoked and the input parameters to

that method call. Line 37 shows that the connect() method call has returned

successfully while line 36 shows the output parameter of that call (Connection

handle = 1).

Following the connection related entries, one usually finds statement related entries

in the JDBC trace. For example:

42 jdbc.app.DB2ConnectionTrace –> createStatement() (2002-1-28 7:21:0.219)

43 | Connection handle = 1

44 | jdbc.app.DB2StatementTrace –> DB2Statement(con, 1003, 1007)

 (2002-1-28 7:21:0.229)

45 | jdbc.app.DB2StatementTrace <– DB2Statement() [Time Elapsed = 0.0]

46 | jdbc.app.DB2StatementTrace –> DB2Statement (2002-1-28 7:21:0.229)

47 | | Statement handle = 1:1

48 | jdbc.app.DB2StatementTrace <– DB2Statement

49 jdbc.app.DB2ConnectionTrace <– createStatement - Time Elapsed = 0.01

50 jdbc.app.DB2StatementTrace –> executeQuery(SELECT * FROM EMPLOYEE WHERE

 empno = 000010) (2002-1-28 7:21:0.269)

51 | Statement handle = 1:1

52 | jdbc.app.DB2StatementTrace –> execute2(SELECT * FROM EMPLOYEE WHERE

 empno = 000010) (2002-1-28 7:21:0.269)

52 | | jdbc.DB2Exception –> DB2Exception() (2002-1-28 7:21:0.729)

53 | | | 10: SQLError = [IBM][CLI Driver][DB2/NT] SQL0401N The data types of

 the operands for the operation "=" are not compatible.

 SQLSTATE=42818

54 | | | SQLState = 42818

55 | | | SQLNativeCode = -401

56 | | | LineNumber = 0

57 | | | SQLerrmc = =

58 | | jdbc.DB2Exception <– DB2Exception() [Time Elapsed = 0.0]

59 | jdbc.app.DB2StatementTrace <– executeQuery - Time Elapsed = 0.0

On line 42 and 43, the DB2ConnectionTrace class reported that the JDBC

createStatement() method had been called with connection handle 1. Within that

method, the internal method DB2Statement() was called as reported by another

DB2 JDBC trace facility class, DB2StatementTrace. Notice that this internal method

call appears ’nested’ in the trace entry. Lines 47-49 show that the methods returned

successfully and that statement handle 1:1 was allocated.

On line 50, an SQL query method call is made on statement 1:1, but the call

generates an exception at line 52. The error message is reported on line 53 and

contains the DB2 native error code that was generated (SQL0401N), the sqlstate

that corresponds to that code (SQLSTATE=42818) and a brief description of the

error. In this example, the error results because the EMPLOYEE.EMPNO column is

defined as CHAR(6) and not an integer value as assumed in the query.

204 Developing Java Applications

Related concepts:

v “CLI/ODBC/JDBC trace facility” on page 192

 Related reference:

v “Miscellaneous variables” in Performance Guide

v “Trace CLI/ODBC configuration keyword” in Call Level Interface Guide and

Reference, Volume 1

v “TraceComm CLI/ODBC configuration keyword” in Call Level Interface Guide and

Reference, Volume 1

v “TraceFileName CLI/ODBC configuration keyword” in Call Level Interface Guide

and Reference, Volume 1

v “TracePathName CLI/ODBC configuration keyword” in Call Level Interface Guide

and Reference, Volume 1

v “TracePIDList CLI/ODBC configuration keyword” in Call Level Interface Guide

and Reference, Volume 1

v “TraceRefreshInterval CLI/ODBC configuration keyword” in Call Level Interface

Guide and Reference, Volume 1

Chapter 7. Diagnosing JDBC and SQLJ problems 205

206 Developing Java Applications

Chapter 8. Java 2 Platform, Enterprise Edition

The sections that follow describe the Java 2 Platform, Enterprise Edition (J2EE).

v “Java 2 Platform, Enterprise Edition Overview”

v “Java 2 Platform, Enterprise Edition”

v “Java 2 Platform, Enterprise Edition containers” on page 208

v “Java 2 Platform, Enterprise Edition Server” on page 209

v “Java 2 Platform, Enterprise Edition database requirements” on page 209

v “Java Naming and Directory Interface (JNDI)” on page 209

v “Java transaction management” on page 209

v “Example of a distributed transaction that uses JTA methods” on page 210

v “Enterprise Java Beans” on page 215

Java 2 Platform, Enterprise Edition Overview

 In today’s global business environment, organizations need to extend their reach,

lower their costs, and lower their response times by providing services that are

easily accessible to their customers, employees, suppliers, and other business

partners. These services need to have the following characteristics:

v Highly available, to meet the requirements of global business environment

v Secure, to protect the privacy of the users and the integrity of the enterprise

v Reliable and scalable, so that business transactions are accurately and promptly

processed

In most cases, these services are provided with the help of multi-tier applications

with each tier serving a specific purpose. The Java 2 Platform, Enterprise Edition

(J2EE), reduces the cost and complexity of developing these multi-tier services,

resulting in services that can be rapidly deployed and easily enhanced based on

the requirements of the enterprise.

J2EE achieves these benefits by defining a standard architecture that is delivered as

the following elements:

v J2EE Application Model, a standard application model for developing multi-tier,

thin-client services

v J2EE Platform, a standard platform for hosting J2EE applications

v J2EE Compatibility Test Suite for verifying that a J2EE platform product

complies with the J2EE platform standard

v J2EE Reference Implementation for demonstrating the capabilities of J2EE, and

for providing an operational definition of the J2EE platform

 Related concepts:

v “Java 2 Platform, Enterprise Edition” on page 207

Java 2 Platform, Enterprise Edition

 The Java 2 Platform, Enterprise Edition (J2EE) provides the runtime environment

for hosting J2EE applications. The runtime environment defines four application

component types that a J2EE product must support:

© Copyright IBM Corp. 2006 207

v Application clients are Java programming language programs that are typically

GUI programs that execute on a desktop computer. Application clients have

access to all of the facilities of the J2EE middle tier.

v Applets are GUI components that typically execute in a web browser, but can

execute in a variety of other applications or devices that support the applet

programming model.

v Servlets, JavaServer Pages (JSPs), filters, and web event listeners typically

execute in a web server and might respond to HTTP requests from web clients.

Servlets, JSPs, and filters can be used to generate HTML pages that are an

application’s user interface. They can also be used to generate XML or other

format data that is consumed by other application components. Servlets, pages

created with the JSP technology, web filters, and web event listeners are referred

to collectively in this specification as web components. Web applications are

composed of web components and other data such as HTML pages.

v Enterprise JavaBeans™ (EJB) components execute in a managed environment that

supports transactions. Enterprise beans typically contain the business logic for a

J2EE application.

The application components listed above can divided into three categories, based

on how they can be deployed and managed:

v Components that are deployed, managed, and executed on a J2EE server.

v Components that are deployed, managed on a J2EE server, but are loaded to and

executed on a client machine.

v Components whose deployment and management are not completely defined by

this specification. Application clients can be under this category.

The runtime support for these components is provided by containers.

 Related concepts:

v “Enterprise Java Beans” on page 215

v “Java 2 Platform, Enterprise Edition containers” on page 208

Java 2 Platform, Enterprise Edition containers

 A container provides a federated view of the underlying Java 2 Platform,

Enterprise Edition (J2EE) APIs to the application components. A typical J2EE

product will provide a container for each application component type; application

client container, applet container, web container, and enterprise bean container. The

container tools also understand the file formats for packaging the application

components for deployment.

The specification requires that these containers provide a Java-compatible runtime

environment. This specification defines a set of standard services that each J2EE

product must support. These standard services are:

v HTTP service

v HTTPS service

v Java transaction API

v Remote invocation method

v Java IDL

v JDBC API

v Java message service

v Java naming and directory interface

v JavaMail

208 Developing Java Applications

v JavaBeans activation framework

v Java API for XML parsing

v Connector architecture

v Java authentication and authorization service

 Related concepts:

v “Enterprise Java Beans” on page 215

v “Java Naming and Directory Interface (JNDI)” on page 209

Java 2 Platform, Enterprise Edition Server

 Underlying a Java 2 Platform, Enterprise Edition (J2EE) container is the server of

which the container is a part. A J2EE Product Provider typically implements the

J2EE server-side functionality. The J2EE client functionality is typically built on

J2SE technology.

The IBM WebSphere Application Server is a J2EE-compliant server.

Java 2 Platform, Enterprise Edition database requirements

 Java 2 Platform, Enterprise Edition requires a database, accessible through the

JDBC API, for the storage of business data. The database is accessible from web

components, enterprise beans, and application client components. The database

need not be accessible from applets.

 Related concepts:

v “Supported drivers for JDBC and SQLJ” on page 1

Java Naming and Directory Interface (JNDI)

 JNDI enables Java platform-based applications to access multiple naming and

directory services. It is a part of the Java Enterprise application programming

interface (API) set. JNDI makes it possible for developers to create portable

applications that are enabled for a number of different naming and directory

services, including: file systems; directory services such as Lightweight Directory

Access Protocol (LDAP), Novell Directory Services, and Network Information

System (NIS); and distributed object systems such as the Common Object Request

Broker Architecture (CORBA), Java Remote Method Invocation (RMI), and

Enterprise JavaBeans (EJB).

The JNDI API has two parts: an application-level interface used by the application

components to access naming and directory services and a service provider

interface to attach a provider of a naming and directory service.

Java transaction management

 Java 2 Platform, Enterprise Edition (J2EE) simplifies application programming for

distributed transaction management. J2EE includes support for distributed

transactions through two specifications, Java Transaction API (JTA) and Java

Transaction Service (JTS). JTA is a high-level, implementation-independent,

protocol-independent API that allows applications and application servers to access

transactions. In addition, the JTA is always enabled.

Chapter 8. Java 2 Platform, Enterprise Edition 209

The IBM DB2 Driver for JDBC and SQLJ and the DB2 JDBC Type 2 Driver for

Linux, UNIX and Windows implement the JTA and JTS specifications.

For IBM DB2 Driver for JDBC and SQLJ type 4 connectivity distributed

transactions are supported to DB2 Database for Linux, UNIX, and Windows, DB2

for z/OS, and DB2 UDB for iSeries servers.

JTA specifies standard Java interfaces between a transaction manager and the

parties involved in a distributed transaction system: the resource manager, the

application server, and the transactional applications.

JTS specifies the implementation of a Transaction Manager which supports JTA and

implements the Java mapping of the OMG Object Transaction Service (OTS) 1.1

specification at the level below the API. JTS propagates transactions using IIOP.

JTA and JTS allow application J2EE servers to take the burden of transaction

management off of the component developer. Developers can define the

transactional properties of EJB technology based components during design or

deployment using declarative statements in the deployment descriptor. The

application server takes over the transaction management responsibilities.

In the DB2 and WebSphere Application Server environment, WebSphere

Application Server assumes the role of transaction manager, and DB2 acts as a

resource manager. WebSphere Application Server implements JTS and part of JTA,

and the JDBC drivers also implement part of JTA so that WebSphere Application

Server and DB2 can provide coordinated distributed transactions.

It is not necessary to configure DB2 to be JTA-enabled in the WebSphere

Application Server environment because the JDBC drivers automatically detect this

environment.

The DB2 JDBC Type 2 Driver provides these two DataSource classes:

v COM.ibm.db2.jdbc.DB2ConnectionPoolDataSource

v COM.ibm.db2.jdbc.DB2XADataSource

The IBM DB2 Driver for JDBC and SQLJ provides these two DataSource classes:

v com.ibm.db2.jcc.DB2ConnectionPoolDataSource

v com.ibm.db2.jcc.DB2XADataSource

WebSphere Application Server provides pooled DB2 connections to databases. If

the application will be involved in a distributed transaction, the

COM.ibm.db2.jdbc.DB2XADataSource class should be used when defining DB2 data

sources within the WebSphere Application Server.

For the detail information about how to configure the WebSphere Application

Server with DB2, refer to WebSphere Application Server InfoCenter at:

http://www.ibm.com/software/webservers/appserv/library.html

Example of a distributed transaction that uses JTA methods

 The best way to demonstrate distributed transactions is to contrast them with local

transactions. With local transactions, a JDBC application makes changes to a

database permanent and indicates the end of a unit of work in one of the

following ways:

210 Developing Java Applications

v By calling the Connection.commit or Connection.rollback methods after

executing one or more SQL statements

v By calling the Connection.setAutoCommit(true) method at the beginning of the

application to commit changes after every SQL statement

Figure 62 outlines code that executes local transactions.

 In contrast, applications that participate in distributed transactions cannot call the

Connection.commit, Connection.rollback, or Connection.setAutoCommit(true)

methods within the distributed transaction. With distributed transactions, the

Connection.commit or Connection.rollback methods do not indicate transaction

boundaries. Instead, your applications let the application server manage

transaction boundaries. Distributed transactions typically involve multiple

connections to the same data source or different data sources, which can include

data sources from different manufacturers.

Figure 63 demonstrates an application that uses distributed transactions. While the

code in the example is running, the application server is also executing other EJBs

that are part of this same distributed transaction. When all EJBs have called

utx.commit(), the entire distributed transaction is committed by the application

server. If any of the EJBs are unsuccessful, the application server rolls back all the

work done by all EJBs that are associated with the distributed transaction.

 Figure 64 on page 212 illustrates a program that uses JTA methods to execute a

distributed transaction. This program acts as the transaction manager and a

transactional application. Two connections to two different data sources do SQL

work under a single distributed transaction.

con1.setAutoCommit(false); // Set autocommit off

// execute some SQL

...

con1.commit(); // Commit the transaction

// execute some more SQL

...

con1.rollback(); // Roll back the transaction

con1.setAutoCommit(true); // Enable commit after every SQL statement

...

// Execute some more SQL, which is automatically committed after

// every SQL statement.

Figure 62. Example of a local transaction

javax.transaction.UserTransaction utx;

// Use the begin method on a UserTransaction object to indicate

// the beginning of a distributed transaction.

utx.begin();

...

// Execute some SQL with one Connection object.

// Do not call Connection methods commit or rollback.

...

// Use the commit method on the UserTransaction object to

// drive all transaction branches to commit and indicate

// the end of the distributed transaction.

utx.commit();

...

Figure 63. Example of a distributed transaction under an application server

Chapter 8. Java 2 Platform, Enterprise Edition 211

class XASample

{

 javax.sql.XADataSource xaDS1;

 javax.sql.XADataSource xaDS2;

 javax.sql.XAConnection xaconn1;

 javax.sql.XAConnection xaconn2;

 javax.transaction.xa.XAResource xares1;

 javax.transaction.xa.XAResource xares2;

 java.sql.Connection conn1;

 java.sql.Connection conn2;

 public static void main (String args []) throws java.sql.SQLException

 {

 XASample xat = new XASample();

 xat.runThis(args);

 }

 // As the transaction manager, this program supplies the global

 // transaction ID and the branch qualifier. The global

 // transaction ID and the branch qualifier must not be

 // equal to each other, and the combination must be unique for

 // this transaction manager.

 public void runThis(String[] args)

 {

 byte[] gtrid = new byte[] { 0x44, 0x11, 0x55, 0x66 };

 byte[] bqual = new byte[] { 0x00, 0x22, 0x00 };

 int rc1 = 0;

 int rc2 = 0;

 try

 {

 javax.naming.InitialContext context = new javax.naming.InitialContext();

 /*

 * Note that javax.sql.XADataSource is used instead of a specific

 * driver implementation such as com.ibm.db2.jcc.DB2XADataSource,

 * which can be used only if this is a DB2 connection.

 */

 xaDS1 = (javax.sql.XADataSource)context.lookup("checkingAccounts");

 xaDS2 = (javax.sql.XADataSource)context.lookup("savingsAccounts");

 // The XADatasource contains the user ID and password.

 // Get the XAConnection object from each XADataSource

 xaconn1 = xaDS1.getXAConnection();

 xaconn2 = xaDS2.getXAConnection();

 // Get the java.sql.Connection object from each XAConnection

 conn1 = xaconn1.getConnection();

 conn2 = xaconn2.getConnection();

 // Get the XAResource object from each XAConnection

 xares1 = xaconn1.getXAResource();

 xares2 = xaconn2.getXAResource();

Figure 64. Example of a distributed transaction that uses the JTA (Part 1 of 4)

212 Developing Java Applications

// Create the Xid object for this distributed transaction.

 // This example uses the com.ibm.db2.jcc.DB2Xid implementation

 // of the Xid interface. This Xid can be used with any JDBC driver

 // that supports JTA.

 javax.transaction.xa.Xid xid1 =

 new com.ibm.db2.jcc.DB2Xid(100, gtrid, bqual);

 // Start the distributed transaction on the two connections.

 // The two connections do NOT need to be started and ended together.

 // They might be done in different threads, along with their SQL operations.

 xares1.start(xid1, javax.transaction.xa.XAResource.TMNOFLAGS);

 xares2.start(xid1, javax.transaction.xa.XAResource.TMNOFLAGS);

...

 // Do the SQL operations on connection 1.

 // Do the SQL operations on connection 2.

...

 // Now end the distributed transaction on the two connections.

 xares1.end(xid1, javax.transaction.xa.XAResource.TMSUCCESS);

 xares2.end(xid1, javax.transaction.xa.XAResource.TMSUCCESS);

 // If connection 2 work had been done in another thread,

 // a thread.join() call would be needed here to wait until the

 // connection 2 work is done.

 try

 { // Now prepare both branches of the distributed transaction.

 // Both branches must prepare successfully before changes

 // can be committed.

 // If the distributed transaction fails, an XAException is thrown.

 rc1 = xares1.prepare(xid1);

 if(rc1 == javax.transaction.xa.XAResource.XA_OK)

 { // Prepare was successful. Prepare the second connection.

 rc2 = xares2.prepare(xid1);

 if(rc2 == javax.transaction.xa.XAResource.XA_OK)

 { // Both connections prepared successfully and neither was read-only.

 xares1.commit(xid1, false);

 xares2.commit(xid1, false);

 }

 else if(rc2 == javax.transaction.xa.XAException.XA_RDONLY)

 { // The second connection is read-only, so just commit the

 // first connection.

 xares1.commit(xid1, false);

 }

 }

 else if(rc1 == javax.transaction.xa.XAException.XA_RDONLY)

 { // SQL for the first connection is read-only (such as a SELECT).

 // The prepare committed it. Prepare the second connection.

 rc2 = xares2.prepare(xid1);

 if(rc2 == javax.transaction.xa.XAResource.XA_OK)

 { // The first connection is read-only but the second is not.

 // Commit the second connection.

 xares2.commit(xid1, false);

 }

 else if(rc2 == javax.transaction.xa.XAException.XA_RDONLY)

 { // Both connections are read-only, and both already committed,

 // so there is nothing more to do.

 }

 }

 }

Figure 64. Example of a distributed transaction that uses the JTA (Part 2 of 4)

Chapter 8. Java 2 Platform, Enterprise Edition 213

catch (javax.transaction.xa.XAException xae)

 { // Distributed transaction failed, so roll it back.

 // Report XAException on prepare/commit.

 System.out.println("Distributed transaction prepare/commit failed. " +

 "Rolling it back.");

 System.out.println("XAException error code = " + xae.errorCode);

 System.out.println("XAException message = " + xae.getMessage());

 xae.printStackTrace();

 try

 {

 xares1.rollback(xid1);

 }

 catch (javax.transaction.xa.XAException xae1)

 { // Report failure of rollback.

 System.out.println("distributed Transaction rollback xares1 failed");

 System.out.println("XAException error code = " + xae1.errorCode);

 System.out.println("XAException message = " + xae1.getMessage());

 }

 try

 {

 xares2.rollback(xid1);

 }

 catch (javax.transaction.xa.XAException xae2)

 { // Report failure of rollback.

 System.out.println("distributed Transaction rollback xares2 failed");

 System.out.println("XAException error code = " + xae2.errorCode);

 System.out.println("XAException message = " + xae2.getMessage());

 }

 }

 try

 {

 conn1.close();

 xaconn1.close();

 }

 catch (Exception e)

 {

 System.out.println("Failed to close connection 1: " + e.toString());

 e.printStackTrace();

 }

 try

 {

 conn2.close();

 xaconn2.close();

 }

 catch (Exception e)

 {

 System.out.println("Failed to close connection 2: " + e.toString());

 e.printStackTrace();

 }

 }

Figure 64. Example of a distributed transaction that uses the JTA (Part 3 of 4)

214 Developing Java Applications

Recommendation: For better performance, complete a distributed transaction

before you start another distributed or local transaction.

 Related concepts:

v “Java transaction management” on page 209

Enterprise Java Beans

 The Enterprise Java beans architecture is a component architecture for the

development and deployment of component-based distributed business

applications. Applications that are written using the Enterprise Java beans

architecture can be written once, and then deployed on any server platform that

supports the Enterprise Java beans specification. Java 2 Platform, Enterprise

Edition (J2EE) applications implement server-side business components using

Enterprise Java beans (EJBs) that include session beans and entity beans.

Session beans represent business services and are not shared between users. Entity

beans are multi-user, distributed transactional objects that represent persistent data.

The transactional boundaries of a EJB application can be set by specifying either

container-managed or bean-managed transactions.

The sample program AccessEmployee.ear uses Enterprise Java beans to implement

a J2EE application to access a DB2 database. You can find this sample in the

SQLLIB/samples/websphere directory.

The EJB sample application provides two business services. One service allows the

user to access information about an employee (which is stored in the EMPLOYEE

table of the sample database) through that employee’s employee number. The

other service allows the user to retrieve a list of the employee numbers, so that the

user can obtain an employee number to use for querying employee data.

The following sample uses EJBs to implement a J2EE application to access a DB2

database. The sample utilizes the Model-View-Controller (MVC) architecture,

which is a commonly-used GUI architecture. The JSP is used to implement the

view (the presentation component). A servlet acts as the controller in the sample. It

controls the workflow and delegates the user’s request to the model, which is

implemented using EJBs. The model component of the sample consists of two EJBs,

one session bean and one entity bean. The container-managed persistence (CMP)

bean, Employee, represents the distributed transactional objects that represent the

 catch (java.sql.SQLException sqe)

 {

 System.out.println("SQLException caught: " + sqe.getMessage());

 sqe.printStackTrace();

 }

 catch (javax.transaction.xa.XAException xae)

 {

 System.out.println("XA error is " + xae.getMessage());

 xae.printStackTrace();

 }

 catch (javax.naming.NamingException nme)

 {

 System.out.println(" Naming Exception: " + nme.getMessage());

 }

 }

}

Figure 64. Example of a distributed transaction that uses the JTA (Part 4 of 4)

Chapter 8. Java 2 Platform, Enterprise Edition 215

persistent data in the EMPLOYEE table of the sample database. The term

container-managed persistence means that the EJB container handles all database

access required by the entity bean. The bean’s code contains no database access

(SQL) calls. As a result, the bean’s code is not tied to a specific persistent storage

mechanism (database). The session bean, AccessEmployee, acts as the Façade of the

entity bean and provides provide a uniform client access strategy. This Façade

design reduces the network traffic between the EJB client and the entity bean and

is more efficient in distributed transactions than if the EJB client accesses the entity

bean directly. Access to the DB2 database can be provided from the session bean or

entity bean. The two services of the sample application demonstrate both

approaches to accessing the DB2 database. In the first service, the entity bean is

used:

//==

// This method returns an employee’s information by

// interacting with the entity bean located by the

// provided employee number

public EmployeeInfo getEmployeeInfo(String empNo)

throws java.rmi.RemoteException

}

Employee employee = null;

try

}

employee = employeeHome.findByPrimaryKey(new EmployeeKey(empNo));

EmployeeInfo empInfo = new EmployeeInfo(empNo);

//set the employee’s information to the dependent value object

empInfo.setEmpno(employee.getEmpno());

empInfo.setFirstName (employee.getFirstName());

empInfo.setMidInit(employee.getMidInit());

empInfo.setLastName(employee.getLastName());

empInfo.setWorkDept(employee.getWorkDept());

empInfo.setPhoneNo(employee.getPhoneNo());

empInfo.setHireDate(employee.getHireDate());

empInfo.setJob(employee.getJob());

empInfo.setEdLevel(employee.getEdLevel());

empInfo.setSex(employee.getSex());

empInfo.setBirthDate(employee.getBirthDate());

empInfo.setSalary(employee.getSalary());

empInfo.setBonus(employee.getBonus());

empInfo.setComm(employee.getComm());

return empInfo;

}

catch (java.rmi.RemoteException rex)

{

......

In the second service, which displays employee numbers, the session bean,

AccessEmployee, directly accesses the DB2 sample database.

/===

* Get the employee number list.

* @return Collection

*/

public Collection getEmpNoList()

{

ResultSet rs = null;

PreparedStatement ps = null;

Vector list = new Vector();

DataSource ds = null;

Connection con = null;

try

{

ds = getDataSource();

con = ds.getConnection();

String schema = getEnvProps(DBschema);

216 Developing Java Applications

String query = "Select EMPNO from " + schema + ".EMPLOYEE";

ps = con.prepareStatement(query);

ps.executeQuery();

rs = ps.getResultSet();

EmployeeKey pk;

while (rs.next())

{

pk = new EmployeeKey();

pk.employeeId = rs.getString(1);

list.addElement(pk.employeeId);

}

rs.close();

return list;

 Related reference:

v “Java WebSphere samples” on page 179

Chapter 8. Java 2 Platform, Enterprise Edition 217

218 Developing Java Applications

Chapter 9. JDBC and SQLJ connection pooling support

 Connection pooling is part of JDBC DataSource support, and is supported by the

IBM DB2 Driver for JDBC and SQLJ.

The IBM DB2 Driver for JDBC and SQLJ provides a factory of pooled connections

that are used by WebSphere Application Server or other application servers. The

application server actually does the pooling. Connection pooling is completely

transparent to a JDBC or SQLJ application.

Connection pooling is a framework for caching physical data source connections,

which are equivalent to DB2 threads. When JDBC reuses physical data source

connections, the expensive operations that are required for the creation and

subsequent closing of java.sql.Connection objects are minimized.

Without connection pooling, each java.sql.Connection object represents a physical

connection to the database server. When the application establishes a connection to

a data source, DB2 creates a new physical connection to the data source. When the

application calls the java.sql.Connection.close method, DB2 terminates the

physical connection to the data source.

In contrast, with connection pooling, a java.sql.Connection object is a temporary,

logical representation of a physical data source connection. The physical data

source connection can be serially reused by logical java.sql.Connection instances.

The application can use the logical java.sql.Connection object in exactly the same

manner as it uses a java.sql.Connection object when there is no connection

pooling support.

With connection pooling, when a JDBC application invokes the

DataSource.getConnection method, the data source determines whether an

appropriate physical connection exists. If an appropriate physical connection exists,

the data source returns a java.sql.Connection instance to the application. When

the JDBC application invokes the java.sql.Connection.close method, JDBC does

not close the physical data source connection. Instead, JDBC closes only JDBC

resources, such as Statement or ResultSet objects. The data source returns the

physical connection to the connection pool for reuse.

Connection pooling can be homogeneous or heterogeneous.

With homogeneous pooling, all Connection objects that come from a connection

pool should have the same properties. The first logical Connection that is created

with the DataSource has the properties that were defined for the DataSource.

However, an application can change those properties. When a Connection is

returned to the connection pool, an application server or a pooling module should

reset the properties to their original values. However, an application server or

pooling module might not reset the changed properties. The JDBC driver does not

modify the properties. Therefore, depending on the application server or pool

module design, a reused logical Connection might have the same properties as

those that are defined for the DataSource or different properties.

With heterogeneous pooling, Connection objects with different properties can share

the same connection pool.

© Copyright IBM Corp. 2006 219

220 Developing Java Applications

Chapter 10. IBM DB2 Driver for JDBC and SQLJ support for

connection concentrator and Sysplex workload balancing

The following topics contain information about IBM DB2 Driver for JDBC and

SQLJ support for the connection concentrator and Sysplex workload balancing

functions of DB2.

v “JDBC connection concentrator and Sysplex workload balancing”

v “Example of enabling the IBM DB2 Driver for JDBC and SQLJ connection

concentrator and Sysplex workload balancing” on page 222

v “Techniques for monitoring IBM DB2 Driver for JDBC and SQLJ connection

concentrator and Sysplex workload balancing” on page 224

JDBC connection concentrator and Sysplex workload balancing

 Java applications that use IBM DB2 Driver for JDBC and SQLJ type 4 connectivity

to access DB2 for z/OS servers can take advantage of the connection concentrator

and Sysplex workload balancing functions.

The IBM DB2 Driver for JDBC and SQLJ connection concentrator and Sysplex

workload balancing functions are similar to the connection concentrator and

Sysplex workload balancing functions of DB2 Connect.

The IBM DB2 Driver for JDBC and SQLJ connection concentrator can reduce the

resources that DB2 for z/OS database servers require to support large numbers of

client applications. The IBM DB2 Driver for JDBC and SQLJ connection

concentrator function lets many connection objects use the same physical

connection, which reduces the total number of physical connections to the database

server.

IBM DB2 Driver for JDBC and SQLJ Sysplex workload balancing can improve

availability of a data sharing group. When Sysplex workload balancing is enabled,

the driver gets frequent status information about the members of a data sharing

group. The driver uses this information to determine the data sharing member to

which the next transaction should be routed. With Sysplex workload balancing, the

DB2 for z/OS server and Workload Manager for z/OS (WLM) ensure that work is

distributed efficiently among members of the data sharing group and that work is

transferred to another member of a data sharing group if one member has a

failure.

The IBM DB2 Driver for JDBC and SQLJ uses transport objects and a global transport

objects pool to support the connection concentrator and Sysplex workload balancing.

There is one transport object for each physical connection to the database server.

When you enable the connection concentrator and Sysplex workload balancing,

you set the maximum number of physical connections to the database server at

any point in time by setting the maximum number of transport objects.

At the driver level, you set limits on the number of transport objects using IBM

DB2 Driver for JDBC and SQLJ configuration properties.

At the connection level, you enable and disable the IBM DB2 Driver for JDBC and

SQLJ connection concentrator and Sysplex workload balancing and set limits on

the number of transport objects using DataSource properties.

© Copyright IBM Corp. 2006 221

You can monitor the global transport objects pool in either of the following ways:

v Using traces that you start using IBM DB2 Driver for JDBC and SQLJ

configuration properties

v Using an application programming interface

 Related concepts:

v “IBM DB2 Driver for JDBC and SQLJ configuration properties customization” on

page 11

 Related reference:

v “Properties for the IBM DB2 Driver for JDBC and SQLJ” on page 232

Example of enabling the IBM DB2 Driver for JDBC and SQLJ

connection concentrator and Sysplex workload balancing

 The following procedure is an example of enabling the IBM DB2 Driver for JDBC

and SQLJ connection concentrator and Sysplex workload balancing functions with

WebSphere Application Server. The values that are specified are not intended to be

recommended values. You need to determine values based on factors like these:

v Availability of system resources

v The number of physical connections available

v The desired ratio of connection objects to transport objects

 Prerequisites:

 Server requirements:

v WLM for z/OS

v DB2 UDB for OS/390 and z/OS Version 7 or later, set up for data sharing

The default values for special registers in all members of the data sharing group

must be the same. The reason for this is that when the IBM DB2 Driver for JDBC

and SQLJ balances the loads on each member of the data sharing group, it

moves the user’s connection from one member to another. If the user has set any

special register values on the original data sharing member, the driver resets all

special registers to their default values and then applies any special register

changes to the new member. However, the IBM DB2 Driver for JDBC and SQLJ

has no way to determine the default values for all members. If two members

have different default values, the result of an SQL statement can differ,

depending on which member the statement runs on.

Client requirements:

v IBM DB2 Driver for JDBC and SQLJ at the FixPak 10 level

v WebSphere Application Server, Version 5.1 or later

 Procedure:

1. Verify that the IBM DB2 Driver for JDBC and SQLJ is at the correct level to

support the connection concentrator and Sysplex workload balancing by issuing

the following command in the command line processor:

java com.ibm.db2.jcc.DB2Jcc -version

Find a line in the output like this:

[ibm][db2][jcc] Driver: IBM DB2 Driver for JDBC and SQLJ Architecture nnn xxx

nnn should be 2.7 or later.

222 Developing Java Applications

2. Set IBM DB2 Driver for JDBC and SQLJ configuration properties to enable the

connection concentrator or Sysplex workload balancing for all DataSource

instances that are created under the driver.

Set the configuration properties in a DB2JccConfiguration.properties file.

a. Create a DB2JccConfiguration.properties file or edit the existing

DB2JccConfiguration.properties file.

b. Set the following configuration properties:

v db2.jcc.minTransportObjects

v db2.jcc.maxTransportObjects

v db2.jcc.maxTransportObjectWaitTime

v db2.jcc.dumpPool

v db2.jcc.dumpPoolStatisticsOnScheduleFile

Start with settings similar to these:

db2.jcc.minTransportObjects=0

db2.jcc.maxTransportObjects=1500

db2.jcc.maxTransportObjectWaitTime=-1

db2.jcc.dumpPool=0

db2.jcc.dumpPoolStatisticsOnScheduleFile=/home/WAS/logs/srv1/poolstats

c. Add the directory path for DB2JccConfiguration.properties to the

WebSphere Application Server IBM DB2 Driver for JDBC and SQLJ

classpath.
3. Set IBM DB2 Driver for JDBC and SQLJ data source properties to enable the

connection concentrator or Sysplex workload balancing.

In the WebSphere Application Server administrative console, set the following

properties for the data source that your application uses to connect to the

database server:

v enableSysplexWLB

v enableConnectionConcentrator

v maxTransportObjects

Assume that you want the connection concentrator function as well the Sysplex

workload balancing function. Start with settings similar to these:

 Table 27. Example of data source property settings for IBM DB2 Driver for JDBC and SQLJ

connection concentrator and Sysplex workload balancing

Property Setting

enableSysplexWLB true1

maxTransportObjects 100

Note:

1. enableConnectionConcentrator is set to true by default because enableSysplexWLB is set

to true.

4. Restart WebSphere Application Server.

 Related concepts:

v “JDBC connection concentrator and Sysplex workload balancing” on page 221

Chapter 10. IBM DB2 Driver for JDBC and SQLJ support for connection concentrator and Sysplex workload balancing 223

Techniques for monitoring IBM DB2 Driver for JDBC and SQLJ

connection concentrator and Sysplex workload balancing

 To monitor the IBM DB2 Driver for JDBC and SQLJ connection concentrator and

Sysplex workload balancing, you need to monitor the global transport objects pool.

You can monitor the global transport objects pool in either of the following ways:

v Using traces that you start by setting IBM DB2 Driver for JDBC and SQLJ

configuration properties

v Using an application programming interface

 Configuration properties for monitoring the global transport objects pool:

 The db2.jcc.dumpPool, db2.jcc.dumpPoolStatisticsOnSchedule, and

db2.jcc.dumpPoolStatisticsOnScheduleFile configuration properties control tracing

of the global transport objects pool.

For example, the following set of configuration property settings cause Sysplex

error messages and dump pool error messages to be written every 60 seconds to a

file named /home/WAS/logs/srv1/poolstats:

db2.jcc.dumpPool=DUMP_SYSPLEX_MSG|DUMP_POOL_ERROR

db2.jcc.dumpPoolStatisticsOnSchedule=60

db2.jcc.dumpPoolStatisticsOnScheduleFile=/home/WAS/logs/srv1/poolstats

An entry in the pool statistics file looks like this:

time Scheduled PoolStatistics npr:2575 nsr:2575 lwroc:439 hwroc:1764 coc:372

aooc:362 rmoc:362 nbr:2872 tbt:857520 tpo:10

The meanings of the fields are:

npr The total number of requests that the IBM DB2 Driver for JDBC and SQLJ

has made to the pool since the pool was created.

nsr The number of successful requests that the IBM DB2 Driver for JDBC and

SQLJ has made to the pool since the pool was created. A successful request

means that the pool returned an object.

lwroc The number of objects that were reused but were not in the pool. This can

happen if a Connection object releases a transport object at a transaction

boundary. If the Connection object needs a transport object later, and the

original transport object has not been used by any other Connection object,

the Connection object can use that transport object.

hwroc The number of objects that were reused from the pool.

coc The number of objects that the IBM DB2 Driver for JDBC and SQLJ created

since the pool was created.

aooc The number of objects that exceeded the idle time that was specified by

db2.jcc.maxTransportObjectIdleTime and were deleted from the pool.

rmoc The number of objects that have been deleted from the pool since the pool

was created.

nbr The number of requests that the IBM DB2 Driver for JDBC and SQLJ made

to the pool that the pool blocked because the pool reached its maximum

capacity. A blocked request might be successful if an object is returned to

the pool before the db2.jcc.maxTransportObjectWaitTime is exceeded and

an exception is thrown.

224 Developing Java Applications

tbt The total time in milliseconds for requests that were blocked by the pool.

This time can be much larger than the elapsed execution time of the

application if the application uses multiple threads.

sbt The shortest time in milliseconds that a thread waited to get a transport

object from the pool. If the time is under one millisecond, the value in this

field is zero.

lbt The longest time in milliseconds that a thread waited to get a transport

object from the pool.

abt The average amount of time in milliseconds that threads waited to get a

transport object from the pool. This value is tbt/nbr.

tpo The number of objects that are currently in the pool.

 Application programming interfaces for monitoring the global transport objects

pool:

 You can write applications to gather statistics on the global transport objects pool.

Those applications create objects in the DB2PoolMonitor class and invoke methods

to retrieve information about the pool.

For example, the following code creates an object for monitoring the global

transport objects pool:

import com.ibm.db2.jcc.DB2PoolMonitor;

DB2PoolMonitor transportObjectPoolMonitor =

 DB2PoolMonitor.getPoolMonitor (DB2PoolMonitor.TRANSPORT_OBJECT);

After you create the DB2PoolMonitor object, you can use the following methods to

monitor the pool.

getMonitorVersion

Format:

public int getMonitorVersion()

Retrieves the version of the DB2PoolMonitor class that is shipped with the IBM

DB2 Driver for JDBC and SQLJ.

totalRequestsToPool

Format:

public int totalRequestsToPool()

Retrieves the total number of requests that the IBM DB2 Driver for JDBC and

SQLJ has made to the pool since the pool was created.

successfullRequestsFromPool

Format:

public int successfullRequestsFromPool()

Retrieves the number of successful requests that the IBM DB2 Driver for JDBC

and SQLJ has made to the pool since the pool was created. A successful

request means that the pool returned an object.

numberOfRequestsBlocked

Format:

public int numberOfRequestsBlocked()

Retrieves the number of requests that the IBM DB2 Driver for JDBC and SQLJ

made to the pool that the pool blocked because the pool reached its maximum

Chapter 10. IBM DB2 Driver for JDBC and SQLJ support for connection concentrator and Sysplex workload balancing 225

capacity. A blocked request might be successful if an object is returned to the

pool before the db2.jcc.maxTransportObjectWaitTime is exceeded and an

exception is thrown.

totalTimeBlocked

Format:

public long totalTimeBlocked()

Retrieves the total time in milliseconds for requests that were blocked by the

pool. This time can be much larger than the elapsed execution time of the

application if the application uses multiple threads.

lightWeightReusedObjectCount

Format:

public int lightWeightReusedObjectCount()

Retrieves the number of objects that were reused but were not in the pool. This

can happen if a Connection object releases a transport object at a transaction

boundary. If the Connection object needs a transport object later, and the

original transport object has not been used by any other Connection object, the

Connection object can use that transport object.

heavyWeightReusedObjectCount

Format:

public int heavyWeightReusedObjectCount()

Retrieves the number of objects that were reused from the pool.

createdObjectCount

Format:

public int createdObjectCount()

Retrieves the number of objects that the IBM DB2 Driver for JDBC and SQLJ

created since the pool was created.

agedOutObjectCount

Format:

public int agedOutObjectCount()

Retrieves the number of objects that exceeded the idle time that was specified

by db2.jcc.maxTransportObjectIdleTime and were deleted from the pool.

removedObjectCount

Format:

public int removedObjectCount()

Retrieves the number of objects that have been deleted from the pool since the

pool was created.

totalPoolObjects

Format:

public int totalPoolObjects()

Retrieves the number of objects that are currently in the pool.

 Related concepts:

v “JDBC connection concentrator and Sysplex workload balancing” on page 221

226 Developing Java Applications

Chapter 11. JDBC and SQLJ reference

The topics that follow contain reference information about JDBC methods and

SQLJ clauses.

v “Data types that map to SQL data types in JDBC applications”

v “Properties for the IBM DB2 Driver for JDBC and SQLJ” on page 232

v “Driver support for JDBC APIs” on page 247

v “SQLJ statement reference” on page 265

v “IBM DB2 Driver for JDBC and SQLJ reference information” on page 300

v “Commands for SQLJ program preparation” on page 347

Data types that map to SQL data types in JDBC applications

 The following tables summarize the mappings of Java data types to JDBC and SQL

data types for a DB2 Database for Linux, UNIX, and Windows system.

Table 28 summarizes the mappings of Java data types to DB2 data types for

PreparedStatement.setXXX or ResultSet.updateXXX methods in JDBC programs,

and for input host expressions in SQLJ programs. When more than one Java data

type is listed, the first data type is the recommended data type.

 Table 28. Mappings of Java data types to DB2 data types for updating DB2 tables

Java data type SQL data type

short, boolean1, byte1 SMALLINT

int, java.lang.Integer INTEGER

long, java.lang.Long BIGINT

float, java.lang.Float REAL

double, java.lang.Double DOUBLE

java.math.BigDecimal DECIMAL(p,s)2

java.math.BigDecimal DECFLOAT(n)3,4

java.lang.String CHAR(n)5

java.lang.String GRAPHIC(m)6

java.lang.String VARCHAR(n)7

java.lang.String VARGRAPHIC(m)8

java.lang.String CLOB(n)9

java.lang.String XML

byte[] CHAR(n) FOR BIT DATA5

byte[] VARCHAR(n) FOR BIT DATA7

byte[] BINARY(n)5

byte[] VARBINARY(n)7

byte[] BLOB(n)9,10

byte[] ROWID

byte[] XML

java.sql.Blob BLOB(n)10

© Copyright IBM Corp. 2006 227

Table 28. Mappings of Java data types to DB2 data types for updating DB2 tables (continued)

Java data type SQL data type

java.sql.Blob XML

java.sql.Clob CLOB(n)10

java.sql.Clob DBCLOB(m)11

java.sql.Clob XML

java.sql.Date DATE

java.sql.Time TIME

java.sql.Timestamp TIMESTAMP

java.io.ByteArrayInputStream BLOB(n)10

java.io.StringReader CLOB(n)10

java.io.ByteArrayInputStream CLOB(n)10

java.io.InputStream XML

com.ibm.db2.jcc.DB2RowID ROWID

com.ibm.db2.DB2Xml XML

java.net.URL DATALINK12

Notes:

 1. DB2 has no exact equivalent for the Java boolean or byte data types, but the best fit is SMALLINT.

 2. p is the decimal precision and s is the scale of the DB2 column.

You should design financial applications so that java.math.BigDecimal columns map to DECIMAL columns. If

you know the precision and scale of a DECIMAL column, updating data in the DECIMAL column with data in a

java.math.BigDecimal variable results in better performance than using other combinations of data types.

 3. n=16 or n=34.

 4. DECFLOAT is valid for connections to DB2 Version 9.1 for z/OS or later database servers. Use of DECFLOAT

requires the SDK for Java Version 5 (1.5) or later.

 5. n<=254.

 6. m<=127.

 7. n<=32672.

 8. m<=16336.

 9. This mapping is valid only if DB2 can determine the data type of the column.

10. n<=2147483647.

11. m<=1073741823.

12. The DATALINK data type is supported only by the DB2 JDBC Type 2 Driver for Linux, UNIX and Windows.

Table 29 summarizes the mappings of DB2 data types to Java data types for

ResultSet.getXXX methods in JDBC programs, and for iterators in SQLJ programs.

This table does not list Java numeric wrapper object types, which are retrieved

using ResultSet.getObject.

 Table 29. Mappings of DB2 data types to Java data types for retrieving data from DB2 tables

SQL data type

Recommended Java data type or

Java object type Other supported Java data types

SMALLINT short byte, int, long, float, double,

java.math.BigDecimal, boolean,

java.lang.String

228 Developing Java Applications

Table 29. Mappings of DB2 data types to Java data types for retrieving data from DB2 tables (continued)

SQL data type

Recommended Java data type or

Java object type Other supported Java data types

INTEGER int short, byte, long, float, double,

java.math.BigDecimal, boolean,

java.lang.String

BIGINT long int, short, byte, float, double,

java.math.BigDecimal, boolean,

java.lang.String

DECFLOAT(n)2,3 java.math.BigDecimal long, int, short, byte, float, double,

java.math.BigDecimal, boolean,

java.lang.String

REAL float long, int, short, byte, double,

java.math.BigDecimal, boolean,

java.lang.String

DOUBLE double long, int, short, byte, float,

java.math.BigDecimal, boolean,

java.lang.String

CHAR(n) java.lang.String long, int, short, byte, float, double,

java.math.BigDecimal, boolean,

java.sql.Date, java.sql.Time,

java.sql.Timestamp,

java.io.InputStream, java.io.Reader

VARCHAR(n) java.lang.String long, int, short, byte, float, double,

java.math.BigDecimal, boolean,

java.sql.Date, java.sql.Time,

java.sql.Timestamp,

java.io.InputStream, java.io.Reader

CHAR(n) FOR BIT DATA byte[] java.lang.String,

java.io.InputStream, java.io.Reader

VARCHAR(n) FOR BIT DATA byte[] java.lang.String,

java.io.InputStream, java.io.Reader

BINARY(n) byte[] None

VARBINARY(n) byte[] None

GRAPHIC(m) java.lang.String long, int, short, byte, float, double,

java.math.BigDecimal, boolean,

java.sql.Date, java.sql.Time,

java.sql.Timestamp,

java.io.InputStream, java.io.Reader

VARGRAPHIC(m) java.lang.String long, int, short, byte, float, double,

java.math.BigDecimal, boolean,

java.sql.Date, java.sql.Time,

java.sql.Timestamp,

java.io.InputStream, java.io.Reader

CLOB(n) java.sql.Clob java.lang.String

BLOB(n) java.sql.Blob byte[]4

DBCLOB(m) No exact equivalent. Use

java.sql.Clob.

ROWID com.ibm.db2.jcc.DB2RowID byte[]

XML com.ibm.db2.jcc.DB2Xml byte[], java.lang.String,

java.io.InputStream, java.io.Reader

Chapter 11. JDBC and SQLJ reference 229

Table 29. Mappings of DB2 data types to Java data types for retrieving data from DB2 tables (continued)

SQL data type

Recommended Java data type or

Java object type Other supported Java data types

DATE java.sql.Date java.sql.String, java.sql.Timestamp

TIME java.sql.Time java.sql.String, java.sql.Timestamp

TIMESTAMP java.sql.Timestamp java.sql.String, java.sql.Date,

java.sql.Time, java.sql.Timestamp

DATALINK java.net.URL5

Notes:

1. You should design financial applications so that java.math.BigDecimal columns map to DECIMAL columns. If you

know the precision and scale of a DECIMAL column, updating data in the DECIMAL column with data in a

java.math.BigDecimal variable results in better performance than using other combinations of data types.

2. n=16 or n=34.

3. DECFLOAT is valid for connections to DB2 Version 9.1 for z/OS or later database servers. Use of DECFLOAT

requires the SDK for Java Version 5 (1.5) or later.

4. This mapping is valid only if DB2 can determine the data type of the column.

5. The DATALINK data type is supported only by the DB2 JDBC Type 2 Driver for Linux, UNIX and Windows.

Table 30 summarizes mappings of Java data types to JDBC data types and DB2

data types for user-defined function and stored procedure parameters. The

mappings of Java data types to JDBC data types are for

CallableStatement.registerOutParameter methods in JDBC programs. The

mappings of Java data types to DB2 data types are for parameters in stored

procedure or user-defined function invocations.

If more than one Java data type is listed in Table 30, the first data type is the

recommended data type.

 Table 30. Mappings of Java, JDBC, and SQL data types for calling stored procedures and user-defined functions

Java data type JDBC data type SQL data type

boolean1 BIT SMALLINT

byte1 TINYINT SMALLINT

short, java.lang.Integer SMALLINT SMALLINT

int, java.lang.Integer INTEGER INTEGER

long BIGINT BIGINT

float, java.lang.Float REAL REAL

float, java.lang.Float FLOAT REAL

double, java.lang.Double DOUBLE DOUBLE

java.math.BigDecimal NUMERIC DECIMAL

java.math.BigDecimal DECIMAL DECIMAL

java.lang.String CHAR CHAR

java.lang.String CHAR GRAPHIC

java.lang.String VARCHAR VARCHAR

java.lang.String VARCHAR VARGRAPHIC

java.lang.String LONGVARCHAR VARCHAR

java.lang.String VARCHAR CLOB(n)

java.lang.String LONGVARCHAR CLOB(n)

230 Developing Java Applications

Table 30. Mappings of Java, JDBC, and SQL data types for calling stored procedures and user-defined

functions (continued)

Java data type JDBC data type SQL data type

java.lang.String CLOB CLOB(n)

byte[] BINARY CHAR FOR BIT DATA

byte[] VARBINARY VARCHAR FOR BIT

DATA

byte[] BINARY BINARY

byte[] VARBINARY VARBINARY

byte[] LONGVARBINARY VARCHAR FOR BIT

DATA

byte[] VARBINARY BLOB(n)2

byte[] LONGVARBINARY BLOB(n)2

java.sql.Date DATE DATE

java.sql.Time TIME TIME

java.sql.Timestamp TIMESTAMP TIMESTAMP

java.sql.Blob BLOB BLOB

java.sql.Clob CLOB CLOB

java.sql.Clob CLOB DBCLOB

java.io.ByteArrayInputStream None BLOB(n)

java.io.StringReader None CLOB(n)

java.io.ByteArrayInputStream None CLOB(n)

com.ibm.db2.jcc.DB2RowID com.ibm.db2.jcc.DB2Types.ROWID ROWID

com.ibm.db2.jcc.DB2Xml com.ibm.db2.jcc.DB2Types.XML XML AS CLOB

java.net.URL DATALINK DATALINK3

Notes:

1. A stored procedure or user-defined function that is defined with a SMALLINT parameter can be invoked with a

boolean or byte parameter. However, this is not recommended.

2. This mapping is valid only if DB2 can determine the data type of the column.

3. The DATALINK data type is supported only by the DB2 JDBC Type 2 Driver for Linux, UNIX and Windows.

Table 31 on page 232 summarizes mappings of the SQL parameter data types in a

CREATE PROCEDURE or CREATE FUNCTION statement to the data types in the

corresponding Java stored procedure or user-defined function method.

For DB2 Database for Linux, UNIX, and Windows, if more than one Java data type

is listed for an SQL data type, only the first Java data type is valid.

For DB2 for z/OS, if more than one Java data type is listed, and you use a data

type other than the first data type as a method parameter, you need to include a

method signature in the EXTERNAL clause of your CREATE PROCEDURE or

CREATE FUNCTION statement that specifies the Java data types of the method

parameters.

Chapter 11. JDBC and SQLJ reference 231

Table 31. Mappings of SQL data types in a CREATE PROCEDURE or CREATE FUNCTION statement to data types in

the corresponding Java stored procedure or user-defined function program

SQL data type in CREATE PROCEDURE or CREATE

FUNCTION

Data type in Java stored procedure or

user-defined function method1

SMALLINT short, java.lang.Integer

INTEGER int, java.lang.Integer

BIGINT long, java.lang.Long

REAL float, java.lang.Float

DOUBLE double, java.lang.Double

DECIMAL java.math.BigDecimal

DECFLOAT2 java.math.BigDecimal

CHAR java.lang.String

GRAPHIC java.lang.String

VARCHAR java.lang.String

VARGRAPHIC java.lang.String

CHAR FOR BIT DATA byte[]

VARCHAR FOR BIT DATA byte[]

BINARY byte[]

VARBINARY byte[]

DATE java.sql.Date

TIME java.sql.Time

TIMESTAMP java.sql.Timestamp

BLOB java.sql.Blob

CLOB java.sql.Clob

DBCLOB java.sql.Clob

ROWID com.ibm.db2.jcc.DB2Types.ROWID

XML AS CLOB com.ibm.db2.jcc.DB2Types.XML

DATALINK java.net.URL3

Notes:

1. For a stored procedure or user-defined function on a DB2 Database for Linux, UNIX, and Windows server, only

the first data type is valid.

2. DECFLOAT is valid for connections to DB2 Version 9.1 for z/OS or later database servers. Use of DECFLOAT

requires the SDK for Java Version 5 (1.5) or later.

3. The DATALINK data type is supported only by the DB2 JDBC Type 2 Driver for Linux, UNIX and Windows.

 Related reference:

v “JDBC differences between the IBM DB2 Driver for JDBC and SQLJ and other

DB2 JDBC drivers” on page 335

Properties for the IBM DB2 Driver for JDBC and SQLJ

 Properties define how the connection to a particular data source should be made.

Unless otherwise noted, properties can be set for a DataSource object or for a

Connection object. Properties can be set in one of the following ways:

v Using setXXX methods

232 Developing Java Applications

Properties are applicable to the following DB2-specific implementations that

inherit from com.ibm.db2.jcc.DB2BaseDataSource:

– com.ibm.db2.jcc.DB2SimpleDataSource

– com.ibm.db2.jcc.DB2ConnectionPoolDataSource

– com.ibm.db2.jcc.DB2XADataSource

See Summary of IBM DB2 Driver for JDBC and SQLJ extensions to JDBC for a

summary of the property names and data types.

v In a java.util.Properties value in the info parameter of a

DriverManager.getConnection call, as shown in Connect to a data source using

the DriverManager interface with the IBM DB2 Driver for JDBC and SQLJ.

v In a java.lang.String value in the url parameter of a

DriverManager.getConnection call, as shown in Connect to a data source using

the DriverManager interface with the IBM DB2 Driver for JDBC and SQLJ.

The properties are:

blockingReadConnectionTimeout

The amount of time in seconds before a connection socket read times out. This

property applies only to IBM DB2 Driver for JDBC and SQLJ type 4

connectivity, and affects all requests that are sent to the database server after a

connection is successfully established. The default is 0. A value of 0 means that

there is no timeout.

clientAccountingInformation

Specifies accounting information for the current client for the connection. This

information is for client accounting purposes. This value can change during a

connection. The data type of this property is String. For a DB2 Database for

Linux, UNIX, and Windows server, the maximum length is 255 bytes. For a

DB2 for z/OS server, the maximum length is 22 bytes. A Java empty string ("")

is valid for this value, but a Java null value is not valid.

clientProgramName

Specifies an application ID that is fixed for the duration of a physical

connection for a client. The value of this property becomes the correlation ID

on a DB2 for z/OS server. Database administrators can use this property to

correlate work on a DB2 for z/OS server to client applications. The data type

of this property is String. The maximum length is 12 bytes. If this value is

null, the IBM DB2 Driver for JDBC and SQLJ supplies a value of

db2jccthread-name.

clientRerouteServerListJNDIName

Identifies a JNDI reference to a DB2ClientRerouteServerList instance in a JNDI

repository of reroute server information. If the value of

clientRerouteServerListJNDIName is not null,

clientRerouteServerListJNDIName provides the following functions:

v Allows information about reroute servers to persist across JVMs

v Provides an alternate server location if the first connection to the database

server fails

clientUser

Specifies the current client user name for the connection. This information is

for client accounting purposes. Unlike the JDBC connection user name, this

value can change during a connection. For a DB2 Database for Linux, UNIX,

and Windows server, the maximum length is 255 bytes. For a DB2 for z/OS

server, the maximum length is 16 bytes.

clientWorkstation

Specifies the workstation name for the current client for the connection. This

Chapter 11. JDBC and SQLJ reference 233

information is for client accounting purposes. This value can change during a

connection. The data type of this property is String. For a DB2 Database for

Linux, UNIX, and Windows server, the maximum length is 255 bytes. For a

DB2 for z/OS server, the maximum length is 18 bytes. A Java empty string ("")

is valid for this value, but a Java null value is not valid.

connectionReuseProtocol

Specifies whether the connection state is reset when a connection is reused

from a connection pool. Possible values are:

DIRTY_CONNECTION_REUSE

The connection state is not reset when a Connection is reused from a

connection pool. Special register settings are not reset and temporary

tables are not dropped. Specified property settings (derived from an

application DataSource or WebSphere Application Server resource

reference) might be passed by the pool module to the JDBC driver for

reinitialization. Properties that are not passed by the pool module are

not changed. All JDBC standard transient properties, such as isolation

level, auto-commit mode, and read-only mode are reset to their JDBC

defaults. These properties do not change:

v accountingInterval

v databaseName

v driverType

v pkList

v planName

v portNumber

v kerberosServerPrincipal

v password

v readOnly

v securityMechanism

v serverName

v user

RESET_CONNECTIONS_ON_REUSE

The connection state is reset when a Connection is reused from a

connection pool. Special register settings are reset and temporary tables

are dropped. Specified property settings (derived from an application

DataSource or WebSphere Application Server resource reference) might

be passed by the pool module to the JDBC driver for reinitialization.

All JDBC standard transient properties, such as isolation level,

auto-commit mode, and read-only mode are reset to their JDBC

defaults. These properties do not change:

v accountingInterval

v databaseName

v driverType

v pkList

v planName

v portNumber

v kerberosServerPrincipal

v password

v readOnly

v securityMechanism

v serverName

v user

currentExplainMode

Specifies the value for the DB2 CURRENT EXPLAIN MODE special register.

The CURRENT EXPLAIN MODE special register enables and disables the

234 Developing Java Applications

Explain facility. The data type of this property is String. The maximum length

is 254 bytes. This property applies only to connections to database servers that

support the CURRENT EXPLAIN MODE special register, such as DB2

Database for Linux, UNIX, and Windows.

currentExplainSnapshot

Specifies the value for the DB2 CURRENT EXPLAIN SNAPSHOT special

register. The CURRENT EXPLAIN SNAPSHOT special register enables and

disables the Explain snapshot facility. The data type of this property is String.

The maximum length is eight bytes. This property applies only to connections

to database servers that support the CURRENT EXPLAIN SNAPSHOT special

register, such as DB2 Database for Linux, UNIX, and Windows.

currentFunctionPath

Specifies the SQL path that is used to resolve unqualified data type names and

function names in SQL statements that are in JDBC programs. The data type of

this property is String. For a DB2 Database for Linux, UNIX, and Windows

server, the maximum length is 254 bytes. For a DB2 for z/OS server, the

maximum length is 2048 bytes. The value is a comma-separated list of schema

names. Those names can be ordinary or delimited identifiers.

currentLockTimeout

Specifies whether DB2 Database for Linux, UNIX, and Windows servers wait

for a lock when the lock cannot be obtained immediately. The data type of this

property is int. Possible values are:

integer Wait for integer seconds. integer is between -1 and 32767,

inclusive.

LOCK_TIMEOUT_NO_WAIT

Do not wait for a lock. This is the default.

LOCK_TIMEOUT_WAIT_INDEFINITELY

Wait indefinitely for a lock.

LOCK_TIMEOUT_NOT_SET

Use the default for the database server.

currentMaintainedTableTypesForOptimization

Specifies a value that identifies the types of objects that can be considered

when DB2 optimizes the processing of dynamic SQL queries. This register

contains a keyword representing table types. The data type of this property is

String.

 Possible values of currentMaintainedTableTypesForOptimization are:

ALL

Indicates that all materialized query tables will be considered.

NONE

Indicates that no materialized query tables will be considered.

SYSTEM

Indicates that only system-maintained materialized query tables that are

refresh deferred will be considered.

USER

Indicates that only user-maintained materialized query tables that are

refresh deferred will be considered.

currentPackagePath

Specifies a comma-separated list of collections on the server. The DB2 server

searches these collections for JDBC and SQLJ packages.

Chapter 11. JDBC and SQLJ reference 235

The precedence rules for the currentPackagePath and currentPackageSet

properties follow the precedence rules for the DB2 CURRENT PACKAGESET

and CURRENT PACKAGE PATH special registers.

currentPackageSet

Specifies the collection ID to search for JDBC and SQLJ packages. The data

type of this property is String. The default is NULLID. If currentPackageSet is

set, its value overrides the value of jdbcCollection.

 Multiple instances of the IBM DB2 Driver for JDBC and SQLJ can be installed

at a database server by running the DB2binder utility multiple times. The

DB2binder utility includes a -collection option that lets the installer specify the

collection ID for each IBM DB2 Driver for JDBC and SQLJ instance. To choose

an instance of the IBM DB2 Driver for JDBC and SQLJ for a connection, you

specify a currentPackageSet value that matches the collection ID for one of the

IBM DB2 Driver for JDBC and SQLJ instances.

 The precedence rules for the currentPackagePath and currentPackageSet

properties follow the precedence rules for the DB2 CURRENT PACKAGESET

and CURRENT PACKAGE PATH special registers.

currentQueryOptimization

Specifies a value that controls the class of query optimization that is performed

by the database manager when it binds dynamic SQL statements. The data

type of this property is int. The possible values of currentQueryOptimization

are:

0 Specifies that a minimal amount of optimization is performed to

generate an access plan. This class is most suitable for simple dynamic

SQL access to well-indexed tables.

1 Specifies that optimization roughly comparable to DB2 Version 1 is

performed to generate an access plan.

2 Specifies a level of optimization higher than that of DB2 Version 1, but

at significantly less optimization cost than levels 3 and above,

especially for very complex queries.

3 Specifies that a moderate amount of optimization is performed to

generate an access plan.

5 Specifies a significant amount of optimization is performed to generate

an access plan. For complex dynamic SQL queries, heuristic rules are

used to limit the amount of time spent selecting an access plan. Where

possible, queries will use materialized query tables instead of the

underlying base tables.

7 Specifies a significant amount of optimization is performed to generate

an access plan. Similar to 5 but without the heuristic rules.

9 Specifies a maximal amount of optimization is performed to generate

an access plan. This can greatly expand the number of possible access

plans that are evaluated. This class should be used to determine if a

better access plan can be generated for very complex and very

long-running queries using large tables. Explain and performance

measurements can be used to verify that a better plan has been

generated.

currentRefreshAge

Specifies a timestamp duration value that is the maximum duration since a

REFRESH TABLE statement was processed on a system-maintained REFRESH

DEFERRED materialized query table such that the materialized query table can

236 Developing Java Applications

be used to optimize the processing of a query. This property affects dynamic

statement cache matching. The data type of this property is long.

currentSchema

Specifies the default schema name that is used to qualify unqualified database

objects in dynamically prepared SQL statements. The value of this property

sets the value in the CURRENT SCHEMA special register on a DB2 server.

currentSQLID

Specifies:

v The authorization ID that is used for authorization checking on dynamically

prepared CREATE, GRANT, and REVOKE SQL statements.

v The owner of a table space, database, storage group, or synonym that is

created by a dynamically issued CREATE statement.

v The implicit qualifier of all table, view, alias, and index names specified in

dynamic SQL statements.

currentSQLID sets the value in the CURRENT SQLID special register on a DB2

for z/OS server. If the currentSQLID property is not set, the default schema

name is the value in the CURRENT SQLID special register.

cursorSensitivity

Specifies whether the java.sql.ResultSet.TYPE_SCROLL_SENSITIVE value for a

JDBC ResultSet maps to the SENSITIVE DYNAMIC attribute, the SENSITIVE

STATIC attribute, or the ASENSITIVE attribute for the underlying DB2 cursor.

The data type of this property is int. Possible values are

TYPE_SCROLL_SENSITIVE_STATIC (0), TYPE_SCROLL_SENSITIVE_DYNAMIC (1), or

TYPE_SCROLL_ASENSITIVE (2). The default is TYPE_SCROLL_SENSITIVE_STATIC.

 If the database server does not support sensitive dynamic scrollable cursors,

and TYPE_SCROLL_SENSITIVE_DYNAMIC is requested, the JDBC driver accumulates

a warning and maps the sensitivity to SENSITIVE STATIC. For DB2 UDB for

iSeries database servers, which do not support sensitive static cursors,

java.sql.ResultSet.TYPE_SCROLL_SENSITIVE always maps to SENSITIVE

DYNAMIC.

databaseName

Specifies the name for the database server. This name is used as the database

portion of the connection URL. The name depends on whether IBM DB2

Driver for JDBC and SQLJ type 4 connectivity or IBM DB2 Driver for JDBC

and SQLJ type 2 connectivity is used.

 For IBM DB2 Driver for JDBC and SQLJ type 4 connectivity:

v If the connection is to a DB2 for z/OS server, the databaseName value is the

DB2 location name that is defined during installation. All characters in this

value must be uppercase characters. You can determine the location name by

executing the following SQL statement on the server:

SELECT CURRENT SERVER FROM SYSIBM.SYSDUMMY1;

v If the connection is to a DB2 Database for Linux, UNIX, and Windows

server, the databaseName value is the database name that is defined during

installation.

v If the connection is to an IBM Cloudscape server, the databaseName value is

the fully-qualified name of the file that contains the database. This name

must be enclosed in double quotation marks ("). For example:

"c:/databases/testdb"

If this property is not set, connections are made to the local site.

Chapter 11. JDBC and SQLJ reference 237

For IBM DB2 Driver for JDBC and SQLJ type 2 connectivity:

v The databaseName value is the database name that is defined during

installation, if the value of the serverName connection property is null. If the

value of serverName property is not null, the databaseName value is a

database alias.

deferPrepares

Specifies whether to defer prepare operations until statement execution. The

data type of this property is boolean. The default is true for IBM DB2 Driver

for JDBC and SQLJ type 4 connectivity. The property is not applicable to IBM

DB2 Driver for JDBC and SQLJ type 2 connectivity.

 Deferring prepare operations can reduce network delays. However, if you defer

prepare operations, you need to ensure that input data types match DB2 table

column types.

description

A description of the data source. The data type of this property is String.

driverType

For the DataSource interface, determines which driver to use for connections.

The data type of this property is int. Valid values are 2 or 4. 2 is the default.

enableConnectionConcentrator

Indicates whether the connection concentrator function of the IBM DB2 Driver

for JDBC and SQLJ is enabled. The connection concentrator function is

available only for connections to DB2 for z/OS servers.

 The data type of enableConnectionConcentrator is boolean. The default is

false. However, if enableSysplexWLB is set to true, the default is true.

enableSysplexWLB

Indicates whether the Sysplex workload balancing function of the IBM DB2

Driver for JDBC and SQLJ is enabled. The Sysplex workload balancing

function is available only for connections to DB2 for z/OS servers.

 The data type of enableSysplexWLB is boolean. The default is false. If

enableSysplexWLB is set to true, enableConnectionConcentrator is set to true

by default.

fullyMaterializeInputStreams

Indicates whether streams are fully materialized before they are sent from the

client to a database server. The data type of this property is boolean. The

default is false.

 If the value of fullyMaterializeInputStreams is true, the JDBC driver fully

materialized the streams before sending them to the server.

fullyMaterializeLobData

Indicates whether the driver retrieves LOB locators for FETCH operations. The

data type of this property is boolean.

 The effect of fullyMaterializeLobData depends on whether the database server

supports progressive streaming:

v If the database server does not support progressive streaming:

If the value of fullyMaterializeLobData is true, LOB data is fully

materialized within the JDBC driver when a row is fetched. If the value is

false, LOB data is streamed. The driver uses locators internally to retrieve

LOB data in chunks on an as-needed basis It is highly recommended that

you set this value to false when you retrieve LOBs that contain large

amounts of data. The default is true.

238 Developing Java Applications

v If the database server supports progressive streaming:

The JDBC driver ignores the value of fullyMaterializeLobData if the

progresssiveLocators property is set to DB2BaseDataSource.YES or

DB2BaseDataSource.NOT_SET.

This property has no effect on stored procedure parameters or LOBs that are

fetched using scrollable cursors.

gssCredential

For a data source that uses Kerberos security, specifies a delegated credential

that is passed from another principal. The data type of this property is

org.ietf.jgss.GSSCredential. Delegated credentials are used in multi-tier

environments, such as when a client connects to WebSphere Application Server,

which, in turn, connects to DB2. You obtain a value for this property from the

client, by invoking the GSSContext.getDelegCred method. GSSContext is part of

the IBM Java Generic Security Service (GSS) API. If you set this property, you

also need to set the Mechanism and KerberosServerPrincipal properties.

 This property is applicable only to IBM DB2 Driver for JDBC and SQLJ type 4

connectivity.

 For more information on using Kerberos security with the IBM DB2 Driver for

JDBC and SQLJ, see Using Kerberos security under the IBM DB2 Driver for

JDBC and SQLJ.

jdbcCollection

Specifies the collection ID for the packages that are used by an instance of the

IBM DB2 Driver for JDBC and SQLJ at run time. The data type of

jdbcCollection is String. The default is NULLID.

 This property is used with the DB2Binder -collection option. The DB2Binder

utility must have previously bound IBM DB2 Driver for JDBC and SQLJ

packages at the server using a -collection value that matches the jdbcCollection

value.

 The jdbcCollection setting does not determine the collection that is used for

SQLJ applications. For SQLJ, the collection is determined by the -collection

option of the SQLJ customizer.

 jdbcCollection does not apply to IBM DB2 Driver for JDBC and SQLJ type 2

connectivity on DB2 for z/OS.

kerberosServerPrincipal

For a data source that uses Kerberos security, specifies the name that is used

for the data source when it is registered with the Kerberos Key Distribution

Center (KDC). The data type of this property is String.

 This property is applicable only to IBM DB2 Driver for JDBC and SQLJ type 4

connectivity.

loginTimeout

The maximum time in seconds to wait for a connection to a data source. After

the number of seconds that are specified by loginTimeout have elapsed, the

driver closes the connection to the data source. The data type of this property

is int. The default is 0. A value of 0 means that the timeout value is the default

system timeout value. This property is not supported for IBM DB2 Driver for

JDBC and SQLJ type 2 connectivity on DB2 for z/OS.

logWriter

The character output stream to which all logging and trace messages for the

Chapter 11. JDBC and SQLJ reference 239

DataSource object are printed. The data type of this property is

java.io.PrinterWriter. The default value is null, which means that no logging

or tracing for the DataSource is output.

maxRetriesForClientReroute

During automatic client reroute, limit the number of retries if the primary

connection to the database server fails.

 The data type of this property is int.The IBM DB2 Driver for JDBC and SQLJ

uses the maxRetriesForClientReroute property only if the

retryIntervalClientReroute property is also set.

maxTransportObjects

Specifies the maximum number of transport objects that can be used for all

connections with the associated DataSource object. The IBM DB2 Driver for

JDBC and SQLJ uses transport objects and a global transport objects pool to

support the connection concentrator and Sysplex workload balancing. There is

one transport object for each physical connection to the database server.

 The data type of this property is int.

 The maxTransportObjects value is ignored if the enableConnectionConcentrator

or enableSysplexWLB properties are not set to enable the use of the connection

concentrator or Sysplex workload balancing.

 If the maxTransportObjects value has not been reached, and a transport object

is not available in the global transport objects pool, the pool creates a new

transport object. If the maxTransportObjects value has been reached, the

application waits for the amount of time that is specified by the

db2.jcc.maxTransportObjectWaitTime configuration property. After that amount

of time has elapsed, if there is still no available transport object in the pool, the

pool throws an SQLException.

 maxTransportObjects does not override the db2.jcc.maxTransportObjects

configuration property. maxTransportObjects has no effect on connections from

other DataSource objects. If the maxTransportObjects value is larger than the

db2.jcc.maxTransportObjects value, maxTransportObjects does not increase the

db2.jcc.maxTransportObjects value.

 The default value for maxTransportObjects is -1, which means that the number

of transport objects for the DataSource is limited only by the

db2.jcc.maxTransportObjects value for the driver.

password

The password to use for establishing connections. The data type of this

property is String. When you use the DataSource interface to establish a

connection, you can override this property value by invoking this form of the

DataSource.getConnection method:

getConnection(user, password);

plugin

The name of a client-side JDBC security plug-in. This property has the Object

type and contains a new instance of the JDBC security plug-in method.

pluginName

The name of a server-side security plug-in module.

portNumber

The port number where the DRDA server is listening for requests. The data

type of this property is int.

240 Developing Java Applications

progressiveStreaming

Specifies whether the JDBC driver uses progressive streaming when

progressive streaming is supported on the database server. With progressive

streaming, the database server dynamically determines the most efficient mode

in which to return LOB or XML data, based on the size of the LOBs or XML

objects. The value of the streamBufferSize parameter determines whether the

data is materialized when it is returned.

 The data type of progressiveStreaming in int. Valid values are

DB2BaseDatSource.YES (1) and DB2BaseDatSource.NO (2). If the

progressiveStreaming property is not specified, the progressiveStreaming value

is DB2BaseDatSource.NOT_SET (0).

 If the connection is to a database server that supports progressive streaming,

and the value of progressiveStreaming is DB2BaseDatSource.YES or

DB2BaseDatSource.NOT_SET, the JDBC driver uses progressive streaming to

return LOBs and XML data.

 If the value of progressiveStreaming is DB2BaseDataSource.NO, or the database

server does not support progressive streaming, the way in which the JDBC

driver returns LOB or XML data depends on the value of the

fullyMaterializeLobData property.

DB2BaseDataSource.NOT_SET (0)

The effect of fullyMaterializeLobData depends on whether the database server

supports progressive locators:

v If the database server does not support progressive locators:

If the value of fullyMaterializeLobData is true, LOB data is fully

materialized within the JDBC driver when a row is fetched. If the value is

false, LOB data is streamed. The driver uses locators internally to retrieve

LOB data in chunks on an as-needed basis It is highly recommended that

you set this value to false when you retrieve LOBs that contain large

amounts of data. The default is true.

v If the database server supports progressive locators:

The JDBC driver ignores the value of fullyMaterializeLobData if the

progresssiveLocators property is set to DB2BaseDataSource.YES or

DB2BaseDataSource.NOT_SET.

This property has no effect on stored procedure parameters or LOBs that are

fetched using scrollable cursors. LOB stored procedure parameters are always

fully materialized. LOB locators are always used for data that is fetched using

scrollable cursors.

queryCloseImplicit

Specifies whether cursors are closed immediately after all rows are fetched.

queryCloseImplicit applies only to IBM DB2 Driver for JDBC and SQLJ type 4

connectivity to DB2 for z/OS database servers. Possible values are

DB2BaseDataSource.QUERY_CLOSE_IMPLICIT_YES (1) and

DB2BaseDataSource.QUERY_CLOSE_IMPLICIT_NO (2). The default is

DB2BaseDataSource.QUERY_CLOSE_IMPLICIT_YES.

 A value of DB2BaseDataSource.QUERY_CLOSE_IMPLICIT_YES can provide better

performance because this setting results in less network traffic.

readOnly

Specifies whether the connection is read-only. The data type of this property is

boolean. The default is false.

Chapter 11. JDBC and SQLJ reference 241

resultSetHoldability

Specifies whether cursors remain open after a commit operation. The data type

of this property is int. Valid values are HOLD_CURSORS_OVER_COMMIT (1) or

CLOSE_CURSORS_AT_COMMIT (2). These values are the same as the

ResultSet.HOLD_CURSORS_OVER_COMMIT and ResultSet.CLOSE_CURSORS_AT_COMMIT

constants that are defined in JDBC 3.0.

retrieveMessagesFromServerOnGetMessage

Specifies whether JDBC SQLException.getMessage calls cause the IBM DB2

Driver for JDBC and SQLJ to invoke a DB2 for z/OS stored procedure that

retrieves the message text for the error. The data type of this property is

boolean. The default is false, which means that the full message text is not

returned to the client.

 For example, if retrieveMessagesFromServerOnGetMessage is set to true, the

following message is returned by SQLException.getMessage after an attempt to

perform an SQL operation on nonexistent table ADMF001.NO_TABLE:

ADMF001.NO_TABLE is an undefined name.

If retrieveMessagesFromServerOnGetMessage is set to false, the following

message is returned:

DB2 SQL error: SQLCODE: -204, SQLSTATE: 42704, SQLERRMC: ADMF001.NO_TABLE

An alternative to setting this property to true is to use the DB2-only

DB2Sqlca.getMessage method in applications. Both techniques result in a stored

procedure call, which starts a unit of work.

retryIntervalForClientReroute

For automatic client reroute, specifies the amount of time in seconds between

connection retries.

 The data type of this property is int.The IBM DB2 Driver for JDBC and SQLJ

uses the retryIntervalClientReroute property only if the

maxRetriesForClientRerouteOnly property is also set.

returnAlias

Specifies whether the JDBC driver returns rows for table aliases and synonyms

for DatabaseMetaData methods that return table information, such as

getTables. The data type of returnAlias is int. Possible values are:

0 Do not return rows for aliases or synonyms of tables in output from

DatabaseMetaData methods that return table information.

1 For tables that have aliases or synonyms, return rows for aliases and

synonyms of those tables, as well as rows for the tables, in output from

DatabaseMetaData methods that return table information. This is the

default.

securityMechanism

Specifies the DRDA security mechanism. The data type of this property is int.

Possible values are:

CLEAR_TEXT_PASSWORD_SECURITY (3)

User ID and password

USER_ONLY_SECURITY (4)

User ID only

ENCRYPTED_PASSWORD_SECURITY (7)

User ID, encrypted password

242 Developing Java Applications

ENCRYPTED_USER_AND_PASSWORD_SECURITY (9)

Encrypted user ID and password

KERBEROS_SECURITY (11)

Kerberos

ENCRYPTED_USER_AND_DATA_SECURITY (12)

Encrypted user ID and encrypted security-sensitive data.

ENCRYPTED_USER_PASSWORD_AND_DATA_SECURITY (13)

Encrypted user ID and password, and encrypted

security-sensitive data.

PLUGIN_SECURITY (15)

Plug-in security (DB2 Database for Linux, UNIX, and Windows

only).

If this property is specified, the specified security mechanism is the only

mechanism that is used. If the security mechanism is not supported by the

connection, an exception is thrown.

The default value for securityMechanism is

CLEAR_TEXT_PASSWORD_SECURITY. If the server does not support

CLEAR_TEXT_PASSWORD_SECURITY but supports

ENCRYPTED_USER_AND_PASSWORD_SECURITY, the IBM DB2 Driver for

JDBC and SQLJ driver updates the security mechanism to

ENCRYPTED_USER_AND_PASSWORD_SECURITY and attempts to connect to

the server. Any other mismatch in security mechanism support between the

requester and the server results in an error.

sendDataAsIs

Specifies that the IBM DB2 Driver for JDBC and SQLJ does not convert input

parameter values to the target column data types. The data type of this

property is boolean. The default is false.

 You should use this property only for applications that always ensure that the

data types in the application match the data types in the corresponding DB2

tables.

serverName

The host name or the TCP/IP address of the data source. The data type of this

property is String.

sslConnection

Specifies whether the IBM DB2 Driver for JDBC and SQLJ uses an SSL socket

to connect to the DB2 server. If sslConnection is set to true, the connection

uses an SSL socket. If sslConnection is set to false, the connection uses a plain

socket.

statementReuseProtocol

Specifies how Statement objects are handled when a connection is returned to

a connection pool. Possible values are:

NO_REUSE

Statement objects are closed when a connection is returned to the pool.

streamBufferSize

Specifies the size, in bytes, of the JDBC driver buffers for chunking LOB or

XML data. The JDBC driver uses the streamBufferSize value whether or not it

uses progressive streaming. The data type of streamBufferSize is int. The

default is 1048576.

Chapter 11. JDBC and SQLJ reference 243

If the JDBC driver uses progressive streaming, LOB or XML data is

materialized if it fits in the buffers, and the driver does not use the

fullyMaterializeLobData property.

DB2BaseDataSource.NOT_SET (0)

The effect of fullyMaterializeLobData depends on whether the database server

supports progressive locators:

v If the database server does not support progressive locators:

If the value of fullyMaterializeLobData is true, LOB data is fully

materialized within the JDBC driver when a row is fetched. If the value is

false, LOB data is streamed. The driver uses locators internally to retrieve

LOB data in chunks on an as-needed basis It is highly recommended that

you set this value to false when you retrieve LOBs that contain large

amounts of data. The default is true.

v If the database server supports progressive locators:

The JDBC driver ignores the value of fullyMaterializeLobData if the

progresssiveLocators property is set to DB2BaseDataSource.YES or

DB2BaseDataSource.NOT_SET.

This property has no effect on stored procedure parameters or LOBs that are

fetched using scrollable cursors. LOB stored procedure parameters are always

fully materialized. LOB locators are always used for data that is fetched using

scrollable cursors.

supportsAsynchronousXARollback

Specifies whether the IBM DB2 Driver for JDBC and SQLJ supports

asynchronous XA rollback operations. The data type of this property is int. The

default is DB2BaseDataSource.NO (2). If the application runs against a BEA

WebLogic Server application server, set supportsAsynchronousXARollback to

DB2BaseDataSource.YES (1).

sysSchema

Specifies the schema of the DB2 shadow catalog tables or views that are

searched when an application invokes a DatabaseMetaData method. The

sysSchema property was formerly called cliSchema.

traceDirectory

Specifies a directory into which trace information is written. The data type of

this property is String. When traceDirectory is specified, trace information for

multiple connections on the same DataSource is written to multiple files.

 When traceDirectory is specified, a connection is traced to a file named

traceFile_origin_n.

 If traceFileName is not specified, file-name is traceFile. If traceFileName is also

specified, file-name is the value traceFileName.

 n is the nth connection for a DataSource.

 origin indicates the origin of the log writer that is in use. Possible values of

origin are:

cpds The log writer for a DB2ConnectionPoolDataSource object.

driver The log writer for a DB2Driver object.

global The log writer for a DB2TraceManager object.

sds The log writer for a DB2SimpleDataSource object.

xads The log writer for a DB2XADataSource object.

244 Developing Java Applications

traceFile

Specifies the name of a file into which the IBM DB2 Driver for JDBC and SQLJ

writes trace information. The data type of this property is String. The traceFile

property is an alternative to the logWriter property for directing the output

trace stream to a file.

traceFileAppend

Specifies whether to append to or overwrite the file that is specified by the

traceFile property. The data type of this property is boolean. The default is

false, which means that the file that is specified by the traceFile property is

overwritten.

traceLevel

Specifies what to trace. The data type of this property is int.

 You can specify one or more of the following traces with the traceLevel

property:

v com.ibm.db2.jcc.DB2BaseDataSource.TRACE_NONE (X'00')

v com.ibm.db2.jcc.DB2BaseDataSource.TRACE_CONNECTION_CALLS (X'01')

v com.ibm.db2.jcc.DB2BaseDataSource.TRACE_STATEMENT_CALLS (X'02')

v com.ibm.db2.jcc.DB2BaseDataSource.TRACE_RESULT_SET_CALLS (X'04')

v com.ibm.db2.jcc.DB2BaseDataSource.TRACE_DRIVER_CONFIGURATION (X'10')

v com.ibm.db2.jcc.DB2BaseDataSource.TRACE_CONNECTS (X'20')

v com.ibm.db2.jcc.DB2BaseDataSource.TRACE_DRDA_FLOWS (X'40')

v com.ibm.db2.jcc.DB2BaseDataSource.TRACE_RESULT_SET_META_DATA (X'80')

v com.ibm.db2.jcc.DB2BaseDataSource.TRACE_PARAMETER_META_DATA (X'100')

v com.ibm.db2.jcc.DB2BaseDataSource.TRACE_DIAGNOSTICS (X'200')

v com.ibm.db2.jcc.DB2BaseDataSource.TRACE_SQLJ (X'400')

v com.ibm.db2.jcc.DB2BaseDataSource.TRACE_XA_CALLS (IBM DB2 Driver for

JDBC and SQLJ type 2 connectivity for DB2 Database for Linux, UNIX,

and Windows only) (X'800')

v com.ibm.db2.jcc.DB2BaseDataSource.TRACE_META_CALLS (X'2000')

v com.ibm.db2.jcc.DB2BaseDataSource.TRACE_DATASOURCE_CALLS (X'4000')

v com.ibm.db2.jcc.DB2BaseDataSource.TRACE_LARGE_OBJECT_CALLS (X'8000')

v com.ibm.db2.jcc.DB2BaseDataSource.TRACE_SYSTEM_MONITOR (X'20000')

v com.ibm.db2.jcc.DB2BaseDataSource.TRACE_ALL (X'FFFFFFFF')

To specify more than one trace, use one of these techniques:

v Use bitwise OR (|) operators with two or more trace values. For example, to

trace DRDA flows and connection calls, specify this value for traceLevel:

TRACE_DRDA_FLOWS|TRACE_CONNECTION_CALLS

v Use a bitwise complement (~) operator with a trace value to specify all

except a certain trace. For example, to trace everything except DRDA flows,

specify this value for traceLevel:

 ~TRACE_DRDA_FLOWS

usePool

Specifies whether the global transport object pool is used for the connection

concentrator or Sysplex workload balancing functions of the IBM DB2 Driver

for JDBC and SQLJ. The data type of usePool is boolean.

 If usePool is set to true, the global transport object pool is checked for

available transport objects before any new transport objects are created. If

usePool is set to false, the global transport object pool is not checked before a

new transport object is created. The transport object is created when an

application requires it and deleted when the application no longer needs it.

Chapter 11. JDBC and SQLJ reference 245

The default for usePool is true. usePool is ignored if the connection

concentrator or Sysplex workload balancing functions are disabled. Setting

usePool to false can result in performance degradation and should be used

only where an application must have a newly created transport object, or the

application modifies the transport object so that it cannot be used by other

applications.

useTargetColumnEncoding

Specifies whether to send single-byte character data for JDBC statement input

parameters to the server in the encoding scheme of the target table column.

The data type of this property is boolean. The default is true.

 If useTargetColumnEncoding is false, or there is no encoding scheme

information available for the target column, the data is sent to the database

server in the UTF-8 or UCS-2 encoding scheme.

 The value of useTargetColumnEncoding has no effect on mixed or double-byte

character data. That data is sent to the server as Unicode.

 The value of useTargetColumnEncoding has no effect on output data.

 If useTargetColumnEncoding is true, and there is no Java runtime

character-to-byte converter to convert the data to the CCSID of the DB2 table

column, an exception is thrown.

user

The user ID to use for establishing connections. The data type of this property

is String. When you use the DataSource interface to establish a connection, you

can override this property value by invoking this form of the

DataSource.getConnection method:

getConnection(user, password);

 Related concepts:

v “JDBC connection concentrator and Sysplex workload balancing” on page 221

v “LOBs in JDBC applications with the IBM DB2 Driver for JDBC and SQLJ” on

page 57

v “Security under the IBM DB2 Driver for JDBC and SQLJ” on page 142

 Related tasks:

v “Connecting to a data source using the DataSource interface” on page 30

v “Connecting to a data source using the DriverManager interface with the IBM

DB2 Driver for JDBC and SQLJ” on page 27

 Related reference:

v “JDBC differences between the IBM DB2 Driver for JDBC and SQLJ and other

DB2 JDBC drivers” on page 335

v “Summary of IBM DB2 Driver for JDBC and SQLJ extensions to JDBC” on page

301

246 Developing Java Applications

Driver support for JDBC APIs

 The following tables list the JDBC interfaces and indicate which drivers supports

them. The drivers and their supported platforms are:

 Table 32. JDBC drivers for DB2 database servers

JDBC driver name Associated DB2 database server

IBM DB2 Driver for JDBC and SQLJ DB2 Database for Linux, UNIX, and

Windows or DB2 for z/OS

DB2 JDBC Type 2 Driver for Linux, UNIX

and Windows (deprecated)

DB2 Database for Linux, UNIX, and

Windows

If a method has JDBC 2.0 and JDBC 3.0 forms, the IBM DB2 Driver for JDBC and

SQLJ supports all forms. The DB2 JDBC Type 2 Driver for Linux, UNIX and

Windows supports only the JDBC 2.0 forms.

 Table 33. DB2 JDBC support for Array methods

JDBC method

IBM DB2 Driver for JDBC and

SQLJ support

DB2 JDBC Type 2 Driver for

Linux, UNIX and Windows

support

getArray No No

getBaseType No No

getBaseTypeName No No

getResultSet No No

 Table 34. DB2 JDBC support for BatchUpdateException methods

JDBC method

IBM DB2 Driver for JDBC and

SQLJ support

DB2 JDBC Type 2 Driver for

Linux, UNIX and Windows

support

Methods inherited from java.lang.Exception Yes Yes

getUpdateCounts Yes Yes

 Table 35. DB2 JDBC support for Blob methods

JDBC method

IBM DB2 Driver for JDBC and

SQLJ support

DB2 JDBC Type 2 Driver for

Linux, UNIX and Windows

support

getBinaryStream Yes Yes

getBytes Yes Yes

length Yes Yes

position Yes Yes

setBinaryStream1 Yes No

setBytes1 Yes No

truncate1 Yes No

Notes:

1. This method can be used only if the fullyMaterializeLobData property is set to true.

Chapter 11. JDBC and SQLJ reference 247

Table 36. DB2 JDBC support for CallableStatement methods

JDBC method

IBM DB2 Driver for JDBC and

SQLJ support

DB2 JDBC Type 2 Driver for

Linux, UNIX and Windows

support

Methods inherited from java.sql.Statement Yes Yes

Methods inherited from

java.sql.PreparedStatement

Yes1 Yes

getArray No No

getBigDecimal Yes2 Yes

getBlob Yes2 Yes

getBoolean Yes2 Yes

getByte Yes2 Yes

getBytes Yes2 Yes

getClob Yes2 Yes

getDate Yes2,3 Yes3

getDouble Yes2 Yes

getFloat Yes2 Yes

getInt Yes2 Yes

getLong Yes2 Yes

getObject Yes2,4 Yes4

getRef No No

getShort Yes2 Yes

getString Yes2 Yes

getTime Yes2,3 Yes3

getTimestamp Yes2,3 Yes3

getURL Yes No

registerOutParameter Yes5 Yes5

setAsciiStream Yes6 No

setBigDecimal Yes6 No

setBinaryStream Yes6 No

setBoolean Yes6 No

setByte Yes6 No

setBytes Yes6 No

setCharacterStream Yes6 No

setDate Yes6 No

setDouble Yes6 No

setFloat Yes6 No

setInt Yes6 No

setLong Yes6 No

setNull Yes6,,7 No

setObject Yes6, No

setShort Yes6 No

setString Yes6 No

248 Developing Java Applications

Table 36. DB2 JDBC support for CallableStatement methods (continued)

JDBC method

IBM DB2 Driver for JDBC and

SQLJ support

DB2 JDBC Type 2 Driver for

Linux, UNIX and Windows

support

setTime Yes6 No

setTimestamp Yes6 No

setURL Yes No

wasNull Yes Yes

Notes:

1. The inherited getParameterMetaData method is not supported if the database server is DB2 for z/OS.

2. The following forms of CallableStatement.getXXX methods are not supported if the database server is DB2 for

z/OS:

getXXX(String parameterName)

3. DB2 does no timezone adjustment for datetime values. The JDBC driver adjusts a value for the local timezone

after retrieving the value from DB2 if you specify a form of the getDate, getTime, or getTimestamp method that

includes a java.util.Calendar parameter.

4. The following form of the getObject method is not supported:

getObject(int parameterIndex, java.util.Map map)

5. The following form of the registerOutParameter method is not supported:

registerOutParameter(int parameterIndex, int jdbcType, String typeName)

6. Not supported if the database server is DB2 for z/OS.

7. The following form of setNull is not supported:

setNull(int parameterIndex, int jdbcType, String typeName)

 Table 37. DB2 JDBC support for Clob methods

JDBC method

IBM DB2 Driver for JDBC and

SQLJ support

DB2 JDBC Type 2 Driver for

Linux, UNIX and Windows

support

getAsciiStream Yes Yes

getCharacterStream Yes Yes

getSubString Yes Yes

length Yes Yes

position Yes Yes

setAsciiStream
1

Yes No

setCharacterStream1 Yes No

setString1 Yes No

truncate1 Yes No

Notes:

1. This method can be used only if the fullyMaterializeLobData property is set to true.

 Table 38. DB2 JDBC support for Connection methods

JDBC method

IBM DB2 Driver for JDBC and

SQLJ support

DB2 JDBC Type 2 Driver for

Linux, UNIX and Windows

support

clearWarnings Yes Yes

Chapter 11. JDBC and SQLJ reference 249

Table 38. DB2 JDBC support for Connection methods (continued)

JDBC method

IBM DB2 Driver for JDBC and

SQLJ support

DB2 JDBC Type 2 Driver for

Linux, UNIX and Windows

support

close Yes Yes

commit Yes Yes

createStatement Yes Yes1

getAutoCommit Yes Yes

getCatalog Yes Yes

getHoldability Yes No

getMetaData Yes Yes

getTransactionIsolation Yes Yes

getTypeMap No No

getWarnings Yes Yes

isClosed Yes Yes

isReadOnly Yes Yes

nativeSQL Yes Yes

prepareCall Yes Yes

prepareStatement Yes Yes1

releaseSavepoint Yes No

rollback Yes Yes1

setAutoCommit Yes Yes

setCatalog Yes Yes

setReadOnly Yes2 Yes

setSavepoint Yes No

setTransactionIsolation Yes Yes

setTypeMap No No

Notes:

1. The DB2 JDBC Type 2 Driver for Linux, UNIX and Windows does not support the JDBC 3.0 forms of this method.

2. The driver does not use the setting. For the IBM DB2 Driver for JDBC and SQLJ, a connection can be set as

read-only through the readOnly property for a Connection or DataSource object.

 Table 39. DB2 JDBC support for ConnectionEvent methods

JDBC method

IBM DB2 Driver for JDBC and

SQLJ support

DB2 JDBC Type 2 Driver for

Linux, UNIX and Windows

support

Methods inherited from java.util.EventObject Yes Yes

getSQLException Yes Yes

 Table 40. DB2 JDBC support for ConnectionEventListener methods

JDBC method

IBM DB2 Driver for JDBC and

SQLJ support

DB2 JDBC Type 2 Driver for

Linux, UNIX and Windows

support

connectionClosed Yes Yes

connectionErrorOccurred Yes Yes

250 Developing Java Applications

Table 41. DB2 JDBC support for ConnectionPoolDataSource methods

JDBC method

IBM DB2 Driver for JDBC and

SQLJ support

DB2 JDBC Type 2 Driver for

Linux, UNIX and Windows

support

getLoginTimeout Yes Yes

getLogWriter Yes Yes

getPooledConnection Yes Yes

setLoginTimeout Yes1 Yes

setLogWriter Yes Yes

Note:

1. This method is not supported for IBM DB2 Driver for JDBC and SQLJ type 2 connectivity on DB2 for z/OS.

 Table 42. DB2 JDBC support for DatabaseMetaData methods

JDBC method

IBM DB2 Driver

for JDBC and

SQLJ support

DB2 JDBC Type 2

Driver for Linux,

UNIX and

Windows support

allProceduresAreCallable Yes Yes

allTablesAreSelectable Yes Yes

dataDefinitionCausesTransactionCommit Yes Yes

dataDefinitionIgnoredInTransactions Yes Yes

deletesAreDetected Yes Yes

doesMaxRowSizeIncludeBlobs Yes Yes

getAttributes Yes No

getBestRowIdentifier Yes Yes

getCatalogs Yes Yes

getCatalogSeparator Yes Yes

getCatalogTerm Yes Yes

getColumnPrivileges Yes Yes

getColumns Yes Yes1

getConnection Yes Yes

getCrossReference Yes Yes

getDatabaseMajorVersion Yes No

getDatabaseMinorVersion Yes No

getDatabaseProductName Yes Yes

getDatabaseProductVersion Yes Yes

getDefaultTransactionIsolation Yes Yes

getDriverMajorVersion Yes Yes

getDriverMinorVersion Yes Yes

getDriverName Yes Yes

getDriverVersion Yes Yes

getExportedKeys Yes Yes

getExtraNameCharacters Yes Yes

Chapter 11. JDBC and SQLJ reference 251

Table 42. DB2 JDBC support for DatabaseMetaData methods (continued)

JDBC method

IBM DB2 Driver

for JDBC and

SQLJ support

DB2 JDBC Type 2

Driver for Linux,

UNIX and

Windows support

getIdentifierQuoteString Yes Yes

getImportedKeys Yes Yes

getIndexInfo Yes Yes

getJDBCMajorVersion Yes No

getJDBCMinorVersion Yes No

getMaxBinaryLiteralLength Yes Yes

getMaxCatalogNameLength Yes Yes

getMaxCharLiteralLength Yes Yes

getMaxColumnNameLength Yes Yes

getMaxColumnsInGroupBy Yes Yes

getMaxColumnsInIndex Yes Yes

getMaxColumnsInOrderBy Yes Yes

getMaxColumnsInSelect Yes Yes

getMaxColumnsInTable Yes Yes

getMaxConnections Yes Yes

getMaxCursorNameLength Yes Yes

getMaxIndexLength Yes Yes

getMaxProcedureNameLength Yes Yes

getMaxRowSize Yes Yes

getMaxSchemaNameLength Yes Yes

getMaxStatementLength Yes Yes

getMaxStatements Yes Yes

getMaxTableNameLength Yes Yes

getMaxTablesInSelect Yes Yes

getMaxUserNameLength Yes Yes

getNumericFunctions Yes Yes

getPrimaryKeys Yes Yes

getProcedureColumns Yes Yes

getProcedures Yes Yes

getProcedureTerm Yes Yes

getResultSetHoldability Yes No

getSchemas Yes Yes1

getSchemaTerm Yes Yes

getSearchStringEscape Yes Yes

getSQLKeywords Yes Yes

getSQLStateType Yes No

getStringFunctions Yes Yes

getSuperTables Yes2 No

252 Developing Java Applications

Table 42. DB2 JDBC support for DatabaseMetaData methods (continued)

JDBC method

IBM DB2 Driver

for JDBC and

SQLJ support

DB2 JDBC Type 2

Driver for Linux,

UNIX and

Windows support

getSuperTypes Yes2 No

getSystemFunctions Yes Yes

getTablePrivileges Yes Yes

getTables Yes Yes1

getTableTypes Yes Yes

getTimeDateFunctions Yes Yes

getTypeInfo Yes Yes

getUDTs No Yes2

getURL Yes Yes

getUserName Yes Yes

getVersionColumns Yes Yes

insertsAreDetected Yes Yes

isCatalogAtStart Yes Yes

isReadOnly Yes Yes

nullPlusNonNullIsNull Yes Yes

nullsAreSortedAtEnd Yes Yes

nullsAreSortedAtStart Yes Yes

nullsAreSortedHigh Yes Yes

nullsAreSortedLow Yes Yes

othersDeletesAreVisible Yes Yes

othersInsertsAreVisible Yes Yes

othersUpdatesAreVisible Yes Yes

ownDeletesAreVisible Yes Yes

ownInsertsAreVisible Yes Yes

ownUpdatesAreVisible Yes Yes

storesLowerCaseIdentifiers Yes Yes

storesLowerCaseQuotedIdentifiers Yes Yes

storesMixedCaseIdentifiers Yes Yes

storesMixedCaseQuotedIdentifiers Yes Yes

storesUpperCaseIdentifiers Yes Yes

storesUpperCaseQuotedIdentifiers Yes Yes

supportsAlterTableWithAddColumn Yes Yes

supportsAlterTableWithDropColumn Yes Yes

supportsANSI92EntryLevelSQL Yes Yes

supportsANSI92FullSQL Yes Yes

supportsANSI92IntermediateSQL Yes Yes

supportsBatchUpdates Yes Yes

supportsCatalogsInDataManipulation Yes Yes

Chapter 11. JDBC and SQLJ reference 253

Table 42. DB2 JDBC support for DatabaseMetaData methods (continued)

JDBC method

IBM DB2 Driver

for JDBC and

SQLJ support

DB2 JDBC Type 2

Driver for Linux,

UNIX and

Windows support

supportsCatalogsInIndexDefinitions Yes Yes

supportsCatalogsInPrivilegeDefinitions Yes Yes

supportsCatalogsInProcedureCalls Yes Yes

supportsCatalogsInTableDefinitions Yes Yes

SupportsColumnAliasing Yes Yes

supportsConvert Yes Yes

supportsCoreSQLGrammar Yes Yes

supportsCorrelatedSubqueries Yes Yes

supportsDataDefinitionAndDataManipulationTransactions Yes Yes

supportsDataManipulationTransactionsOnly Yes Yes

supportsDifferentTableCorrelationNames Yes Yes

supportsExpressionsInOrderBy Yes Yes

supportsExtendedSQLGrammar Yes Yes

supportsFullOuterJoins Yes Yes

supportsGetGeneratedKeys Yes No

supportsGroupBy Yes Yes

supportsGroupByBeyondSelect Yes Yes

supportsGroupByUnrelated Yes Yes

supportsIntegrityEnhancementFacility Yes Yes

supportsLikeEscapeClause Yes Yes

supportsLimitedOuterJoins Yes Yes

supportsMinimumSQLGrammar Yes Yes

supportsMixedCaseIdentifiers Yes Yes

supportsMixedCaseQuotedIdentifiers Yes Yes

supportsMultipleOpenResults Yes No

supportsMultipleResultSets Yes Yes

supportsMultipleTransactions Yes Yes

supportsNamedParameters Yes No

supportsNonNullableColumns Yes Yes

supportsOpenCursorsAcross Commit Yes Yes

supportsOpenCursorsAcross Rollback Yes Yes

supportsOpenStatementsAcrossCommit Yes Yes

supportsOpenStatementsAcrossRollback Yes Yes

supportsOrderByUnrelated Yes Yes

supportsOuterJoins Yes Yes

supportsPositionedDelete Yes Yes

supportsPositionedUpdate Yes Yes

supportsResultSetConcurrency Yes Yes

254 Developing Java Applications

Table 42. DB2 JDBC support for DatabaseMetaData methods (continued)

JDBC method

IBM DB2 Driver

for JDBC and

SQLJ support

DB2 JDBC Type 2

Driver for Linux,

UNIX and

Windows support

supportsResultSetHoldability Yes No

supportsResultSetType Yes Yes

supportsSavepoints Yes No

supportsSchemasInDataManipulation Yes Yes

supportsSchemasInIndexDefinitions Yes Yes

supportsSchemasInPrivilegeDefinitions Yes Yes

supportsSchemasInProcedureCalls Yes Yes

supportsSchemasInTableDefinitions Yes Yes

supportsSelectForUpdate Yes Yes

supportsStoredProcedures Yes Yes

supportsSubqueriesInComparisons Yes Yes

supportsSubqueriesInExists Yes Yes

supportsSubqueriesInIns Yes Yes

supportsSubqueriesInQuantifieds Yes Yes

supportsSuperTables Yes No

supportsSuperTypes Yes No

supportsTableCorrelationNames Yes Yes

supportsTransactionIsolationLevel Yes Yes

supportsTransactions Yes Yes

supportsUnion Yes Yes

supportsUnionAll Yes Yes

updatesAreDetected Yes Yes

usesLocalFilePerTable Yes Yes

usesLocalFiles Yes Yes

Notes:

1. The DB2 JDBC Type 2 Driver for Linux, UNIX and Windows does not support the JDBC 3.0 form of this method.

2. The method can be executed, but it returns an empty ResultSet.

 Table 43. DB2 JDBC support for DataSource methods

JDBC method

IBM DB2 Driver for JDBC and

SQLJ support

DB2 JDBC Type 2 Driver for

Linux, UNIX and Windows

support

getConnection Yes Yes

getLoginTimeout Yes Yes1

getLogWriter Yes Yes

setLoginTimeout Yes2 Yes1

setLogWriter Yes Yes

Chapter 11. JDBC and SQLJ reference 255

Table 43. DB2 JDBC support for DataSource methods (continued)

JDBC method

IBM DB2 Driver for JDBC and

SQLJ support

DB2 JDBC Type 2 Driver for

Linux, UNIX and Windows

support

Notes:

1. The DB2 JDBC Type 2 Driver does not use this setting.

2. This method is not supported for IBM DB2 Driver for JDBC and SQLJ type 2 connectivity on DB2 for z/OS.

 Table 44. DB2 JDBC support for DataTruncation methods

JDBC method

IBM DB2 Driver for JDBC and

SQLJ support

DB2 JDBC Type 2 Driver for

Linux, UNIX and Windows

support

Methods inherited from java.lang.Throwable Yes Yes

Methods inherited from java.sql.SQLException Yes Yes

Methods inherited from java.sql.SQLWarning Yes Yes

getDataSize Yes Yes

getIndex Yes Yes

getParameter Yes Yes

getRead Yes Yes

getTransferSize Yes Yes

 Table 45. DB2 JDBC support for Driver methods

JDBC method

IBM DB2 Driver for JDBC and

SQLJ support

DB2 JDBC Type 2 Driver for

Linux, UNIX and Windows

support

acceptsURL Yes Yes

connect Yes Yes

getMajorVersion Yes Yes

getMinorVersion Yes Yes

getPropertyInfo Yes Yes

jdbcCompliant Yes Yes

 Table 46. DB2 JDBC support for DriverManager methods

JDBC method

IBM DB2 Driver for JDBC and

SQLJ support

DB2 JDBC Type 2 Driver for

Linux, UNIX and Windows

support

deregisterDriver Yes Yes

getConnection Yes Yes

getDriver Yes Yes

getDrivers Yes Yes

getLoginTimeout Yes Yes1

getLogStream Yes Yes

getLogWriter Yes Yes

println Yes Yes

registerDriver Yes Yes

256 Developing Java Applications

Table 46. DB2 JDBC support for DriverManager methods (continued)

JDBC method

IBM DB2 Driver for JDBC and

SQLJ support

DB2 JDBC Type 2 Driver for

Linux, UNIX and Windows

support

setLoginTimeout Yes2 Yes1

setLogStream Yes Yes

setLogWriter Yes Yes

Notes:

1. The DB2 JDBC Type 2 Driver does not use this setting.

2. This method is not supported for IBM DB2 Driver for JDBC and SQLJ type 2 connectivity on DB2 for z/OS.

 Table 47. DB2 JDBC support for ParameterMetaData methods

JDBC method

IBM DB2 Driver for JDBC and

SQLJ support

DB2 JDBC Type 2 Driver for

Linux, UNIX and Windows

support

getParameterClassName No No

getParameterCount Yes No

getParameterMode Yes No

getParameterType Yes No

getParameterTypeName Yes No

getPrecision Yes No

getScale Yes No

isNullable Yes No

isSigned Yes No

 Table 48. DB2 JDBC support for PooledConnection methods

JDBC method

IBM DB2 Driver for JDBC and

SQLJ support

DB2 JDBC Type 2 Driver for

Linux, UNIX and Windows

support

addConnectionEventListener Yes Yes

close Yes Yes

getConnection Yes Yes

removeConnectionEventListener Yes Yes

 Table 49. DB2 JDBC support for PreparedStatement methods

JDBC method

IBM DB2 Driver for JDBC and

SQLJ support

DB2 JDBC Type 2 Driver for

Linux, UNIX and Windows

support

Methods inherited from java.sql.Statement Yes Yes

addBatch Yes Yes

clearParameters Yes Yes

execute Yes Yes

executeQuery Yes Yes

executeUpdate Yes Yes

getMetaData Yes Yes

Chapter 11. JDBC and SQLJ reference 257

Table 49. DB2 JDBC support for PreparedStatement methods (continued)

JDBC method

IBM DB2 Driver for JDBC and

SQLJ support

DB2 JDBC Type 2 Driver for

Linux, UNIX and Windows

support

getParameterMetaData Yes Yes

setArray No No

setAsciiStream Yes Yes

setBigDecimal Yes Yes

setBinaryStream Yes Yes

setBlob Yes Yes

setBoolean Yes Yes

setByte Yes Yes

setBytes Yes Yes

setCharacterStream Yes Yes

setClob Yes Yes

setDate Yes1 Yes1

setDouble Yes Yes

setFloat Yes Yes

setInt Yes Yes

setLong Yes Yes

setNull Yes2 Yes2

setObject Yes Yes

setRef No No

setShort Yes Yes

setString Yes3 Yes3

setTime Yes1 Yes1

setTimestamp Yes1 Yes1

setUnicodeStream Yes Yes

setURL Yes Yes

Notes:

1. DB2 does no timezone adjustment for datetime values. The JDBC driver adjusts a value for the local timezone

before sending the value to DB2 if you specify a form of the setDate, setTime, or setTimestamp method that

includes a java.util.Calendar parameter.

2. The following form of setNull is not supported:

setNull(int parameterIndex, int jdbcType, String typeName)

3. setString is not supported if the column has the FOR BIT DATA attribute or the data type is BLOB.

 Table 50. DB2 JDBC support for Ref methods

JDBC method

IBM DB2 Driver for JDBC and

SQLJ support

DB2 JDBC Type 2 Driver for

Linux, UNIX and Windows

support

get BaseTypeName No No

258 Developing Java Applications

Table 51. DB2 JDBC support for ResultSet methods

JDBC method

IBM DB2 Driver for JDBC and

SQLJ support

DB2 JDBC Type 2 Driver for

Linux, UNIX and Windows

support

absolute Yes Yes

afterLast Yes Yes

beforeFirst Yes Yes

cancelRowUpdates Yes No

clearWarnings Yes Yes

close Yes Yes

deleteRow Yes No

findColumn Yes Yes

first Yes Yes

getArray No No

getAsciiStream Yes Yes

getBigDecimal Yes Yes

getBinaryStream Yes1 Yes

getBlob Yes Yes

getBoolean Yes Yes

getByte Yes Yes

getBytes Yes Yes

getCharacterStream Yes Yes

getClob Yes Yes

getConcurrency Yes Yes

getCursorName Yes Yes

getDate Yes2 Yes2

getDouble Yes Yes

getFetchDirection Yes Yes

getFetchSize Yes Yes

getFloat Yes Yes

getInt Yes Yes

getLong Yes Yes

getMetaData Yes Yes

getObject Yes3 Yes3

getRef No No

getRow Yes Yes

getShort Yes Yes

getStatement Yes Yes

getString Yes Yes

getTime Yes2 Yes2

getTimestamp Yes2 Yes2

getType Yes Yes

Chapter 11. JDBC and SQLJ reference 259

Table 51. DB2 JDBC support for ResultSet methods (continued)

JDBC method

IBM DB2 Driver for JDBC and

SQLJ support

DB2 JDBC Type 2 Driver for

Linux, UNIX and Windows

support

getUnicodeStream Yes Yes

getURL Yes Yes

getWarnings Yes Yes

insertRow No No

isAfterLast Yes Yes

isBeforeFirst Yes Yes

isFirst Yes Yes

isLast Yes Yes

last Yes Yes

moveToCurrentRow Yes No

moveToInsertRow No No

next Yes Yes

previous Yes Yes

refreshRow Yes No

relative Yes Yes

rowDeleted Yes No

rowInserted No No

rowUpdated Yes No

setFetchDirection Yes Yes

setFetchSize Yes Yes

updateArray No No

updateAsciiStream Yes No

updateBigDecimal Yes No

updateBinaryStream Yes No

updateBlob Yes No

updateBoolean Yes No

updateByte Yes No

updateBytes Yes No

updateCharacterStream Yes No

updateClob Yes No

updateDate Yes No

updateDouble Yes No

updateFloat Yes No

updateInt Yes No

updateLong Yes No

updateNull Yes No

updateObject Yes No

updateRef No No

260 Developing Java Applications

Table 51. DB2 JDBC support for ResultSet methods (continued)

JDBC method

IBM DB2 Driver for JDBC and

SQLJ support

DB2 JDBC Type 2 Driver for

Linux, UNIX and Windows

support

updateRow Yes No

updateShort Yes No

updateString Yes No

updateTime Yes No

updateTimestamp Yes No

wasNull Yes Yes

Notes:

1. getBinaryStream is not supported for CLOB columns.

2. DB2 does no timezone adjustment for datetime values. The JDBC driver adjusts a value for the local timezone

after retrieving the value from DB2 if you specify a form of the getDate, getTime, or getTimestamp method that

includes a java.util.Calendar parameter.

3. The following form of the getObject method is not supported:

getObject(int parameterIndex, java.util.Map map)

 Table 52. DB2 JDBC support for ResultSetMetaData methods

JDBC method

IBM DB2 Driver for JDBC and

SQLJ support

DB2 JDBC Type 2 Driver for

Linux, UNIX and Windows

support

getCatalogName Yes Yes

getColumnClassName No Yes

getColumnCount Yes Yes

getColumnDisplaySize Yes Yes

getColumnLabel Yes Yes

getColumnName Yes Yes

getColumnType Yes Yes

getColumnTypeName Yes Yes

getPrecision Yes Yes

getScale Yes Yes

getSchemaName Yes Yes

getTableName Yes Yes

isAutoIncrement Yes Yes

isCaseSensitive Yes Yes

isCurrency Yes Yes

isDefinitelyWritable Yes Yes

isNullable Yes Yes

isReadOnly Yes Yes

isSearchable Yes Yes

isSigned Yes Yes

isWritable Yes Yes

Chapter 11. JDBC and SQLJ reference 261

Table 53. DB2 JDBC support for SQLData methods

JDBC method

IBM DB2 Driver for JDBC and

SQLJ support

DB2 JDBC Type 2 Driver for

Linux, UNIX and Windows

support

getSQLTypeName No No

readSQL No No

writeSQL No No

 Table 54. DB2 JDBC support for SQLException methods

JDBC method

IBM DB2 Driver for JDBC and

SQLJ support

DB2 JDBC Type 2 Driver for

Linux, UNIX and Windows

support

Methods inherited from java.lang.Exception Yes Yes

getSQLState Yes Yes

getErrorCode Yes Yes

getNextException Yes Yes

setNextException Yes Yes

 Table 55. DB2 JDBC support for SQLInput methods

JDBC method

IBM DB2 Driver for JDBC and

SQLJ support

DB2 JDBC Type 2 Driver for

Linux, UNIX and Windows

support

readArray No No

readAsciiStream No No

readBigDecimal No No

readBinaryStream No No

readBlob No No

readBoolean No No

readByte No No

readBytes No No

readCharacterStream No No

readClob No No

readDate No No

readDouble No No

readFloat No No

readInt No No

readLong No No

readObject No No

readRef No No

readShort No No

readString No No

readTime No No

readTimestamp No No

wasNull No No

262 Developing Java Applications

Table 56. DB2 JDBC support for SQLOutput methods

JDBC method

IBM DB2 Driver for JDBC and

SQLJ support

DB2 JDBC Type 2 Driver for

Linux, UNIX and Windows

support

writeArray No No

writeAsciiStream No No

writeBigDecimal No No

writeBinaryStream No No

writeBlob No No

writeBoolean No No

writeByte No No

writeBytes No No

writeCharacterStream No No

writeClob No No

writeDate No No

writeDouble No No

writeFloat No No

writeInt No No

writeLong No No

writeObject No No

writeRef No No

writeShort No No

writeString No No

writeStruct No No

writeTime No No

writeTimestamp No No

 Table 57. DB2 JDBC support for Statement methods

JDBC method

IBM DB2 Driver for JDBC and

SQLJ support

DB2 JDBC Type 2 Driver for

Linux, UNIX and Windows

support

addBatch Yes Yes

cancel Yes1,2 Yes

clearBatch Yes Yes

clearWarnings Yes Yes

close Yes Yes

execute Yes Yes3

executeBatch Yes Yes

executeQuery Yes Yes

executeUpdate Yes Yes3

getConnection Yes Yes

getFetchDirection Yes Yes

getFetchSize Yes Yes

Chapter 11. JDBC and SQLJ reference 263

Table 57. DB2 JDBC support for Statement methods (continued)

JDBC method

IBM DB2 Driver for JDBC and

SQLJ support

DB2 JDBC Type 2 Driver for

Linux, UNIX and Windows

support

getGeneratedKeys Yes No

getMaxFieldSize Yes Yes

getMaxRows Yes Yes

getMoreResults Yes Yes3

getQueryTimeout Yes2 Yes

getResultSet Yes Yes

getResultSetConcurrency Yes Yes

getResultSetHoldability Yes No

getResultSetType Yes Yes

getUpdateCount4 Yes Yes

getWarnings Yes Yes

setCursorName Yes Yes

setEscapeProcessing Yes Yes

setFetchDirection Yes Yes

setFetchSize Yes Yes

setMaxFieldSize Yes Yes

setMaxRows Yes Yes

setQueryTimeout Yes5 Yes

Notes:

1. With IBM DB2 Driver for JDBC and SQLJ type 4 connectivity, you can execute Statement.cancel() only if the

database server supports the DRDA INTRDBRQS (interrupt relational database request) command. Only DB2 for

z/OS servers at the Version 9.1 or later level have this support. Therefore, with IBM DB2 Driver for JDBC and

SQLJ type 4 connectivity, you can execute Statement.cancel() only for connections to DB2 for z/OS at Version 9 or

later.

2. This method is supported only for:

v IBM DB2 Driver for JDBC and SQLJ type 2 connectivity to a DB2 Database for Linux, UNIX, and Windows

server at Version 9.1 or later

v IBM DB2 Driver for JDBC and SQLJ type 4 connectivity to a DB2 for z/OS server at Version 9 or later

3. The DB2 JDBC Type 2 Driver for Linux, UNIX and Windows does not support the JDBC 3.0 form of this method.

4. Not supported for stored procedure ResultSets.

5. For IBM DB2 Driver for JDBC and SQLJ type 2 connectivity on DB2 for z/OS, this method is supported only for a

seconds value of 0.

 Table 58. DB2 JDBC support for Struct methods

JDBC method

IBM DB2 Driver for JDBC and

SQLJ support

DB2 JDBC Type 2 Driver for

Linux, UNIX and Windows

support

getSQLTypeName No No

getAttributes No No

264 Developing Java Applications

Table 59. DB2 JDBC support for XAConnection methods

JDBC method

IBM DB2 Driver for JDBC and

SQLJ support

DB2 JDBC Type 2 Driver for

Linux, UNIX and Windows

support

Methods inherited from

javax.sql.PooledConnection

Yes1 Yes

getXAResource Yes1 Yes

Notes:

1. This method is supported for IBM DB2 Driver for JDBC and SQLJ type 2 connectivity to a DB2 Database for

Linux, UNIX, and Windows server or IBM DB2 Driver for JDBC and SQLJ type 4 connectivity to a DB2 for z/OS

server.

 Table 60. DB2 JDBC support for XADataSource methods

JDBC method

IBM DB2 Driver for JDBC and

SQLJ support

DB2 JDBC Type 2 Driver for

Linux, UNIX and Windows

support

getLoginTimeout Yes Yes

getLogWriter Yes Yes

getXAConnection Yes Yes

setLoginTimeout Yes Yes

setLogWriter Yes Yes

 Related reference:

v “JDBC differences between the IBM DB2 Driver for JDBC and SQLJ and other

DB2 JDBC drivers” on page 335

SQLJ statement reference

The topics that follow contain information about the syntax of SQLJ clauses.

v “SQLJ clause”

v “SQLJ host-expression” on page 266

v “SQLJ implements-clause” on page 266

v “SQLJ with-clause” on page 267

v “SQLJ connection-declaration-clause” on page 269

v “SQLJ iterator-declaration-clause” on page 269

v “SQLJ executable-clause” on page 271

v “SQLJ context-clause” on page 272

v “SQLJ statement-clause” on page 272

v “SQLJ SET-TRANSACTION-clause” on page 274

v “SQLJ assignment-clause” on page 275

v “SQLJ iterator-conversion-clause” on page 275

SQLJ clause

 The SQL statements in an SQLJ program are in SQLJ clauses. The general syntax of

an SQLJ clause is:

�� #sql connection-declaration-clause

iterator-declaration-clause

executable-clause

 ; ��

Chapter 11. JDBC and SQLJ reference 265

Keywords in an SQLJ clause are case sensitive, unless those keywords are part of

an SQL statement in an executable clause.

 Related reference:

v “SQLJ connection-declaration-clause” on page 269

v “SQLJ executable-clause” on page 271

v “SQLJ iterator-declaration-clause” on page 269

SQLJ host-expression

 A host expression is a Java variable or expression that is referenced by SQLJ

clauses in an SQLJ application program.

 Syntax:

�� : simple-variable

IN

(complex-expression)

OUT

INOUT

 ��

 Description:

: Indicates that the variable or expression that follows is a host expression. The

colon must immediately precede the variable or expression.

IN|OUT|INOUT

For a host expression that is used as a parameter in a stored procedure call,

identifies whether the parameter provides data to the stored procedure (IN),

retrieves data from the stored procedure (OUT), or does both (INOUT). The

default is IN.

simple-variable

Specifies a Java unqualified identifier.

complex-expression

Specifies a Java expression that results in a single value.

 Usage notes:

v A complex expression must be enclosed in parentheses.

v ANSI/ISO rules govern where a host expression can appear in a static SQL

statement.

 Related concepts:

v “Variables in SQLJ applications” on page 98

SQLJ implements-clause

 The implements clause derives one or more classes from a Java interface.

 Syntax:

��

implements

�

 ,

interface-element

��

266 Developing Java Applications

interface-element:

�� sqlj.runtime.ForUpdate

sqlj.runtime.Scrollable

user-specified-interface-class

 ��

 Description:

interface-element

Specifies a user-defined Java interface, the SQLJ interface

sqlj.runtime.ForUpdate or the SQLJ interface sqlj.runtime.Scrollable.

 You need to implement sqlj.runtime.ForUpdate when you declare an iterator

for a positioned UPDATE or positioned DELETE operation. See Perform

positioned UPDATE and DELETE operations in an SQLJ application for

information on performing a positioned UPDATE or positioned DELETE

operation in SQLJ.

 You need to implement sqlj.runtime.Scrollable when you declare a

scrollable iterator. See Use scrollable iterators in an SQLJ application for

information on scrollable iterators.

 Related tasks:

v “Performing positioned UPDATE and DELETE operations in an SQLJ

application” on page 101

v “Using scrollable iterators in an SQLJ application” on page 118

SQLJ with-clause

 The with clause specifies a set of one or more attributes for an iterator or a

connection context.

 Syntax:

��

with

�

 ,

(

with-element

)

��

with-element:

��

�

 holdability=true

holdability=false

sensitivity=ASENSITIVE

sensitivity=INSENSITIVE

sensitivity=SENSITIVE

dynamic=false

,

dynamic=true

,

updateColumns=

"

column-name

"

Java-ID=Java-constant-expression

dataSource=

"

logical-datasource-name

"

 ��

 Description:

Chapter 11. JDBC and SQLJ reference 267

holdability

For an iterator, specifies whether an iterator keeps its position in a table after a

COMMIT is executed. The value for holdability must be true or false.

sensitivity

For an iterator, specifies whether changes that are made to the underlying table

can be visible to the iterator after it is opened. The value must be

INSENSITIVE, SENSITIVE, or ASENSITIVE. The default is ASENSITIVE.

dynamic

For an iterator that is defined with sensitivity=SENSITIVE, specifies whether

the following cases are true:

v When the application executes positioned UPDATE and DELETE statements

with the iterator, those changes are visible to the iterator.

v When the application executes INSERT, UPDATE, and DELETE statements

within the application but outside the iterator, those changes are visible to

the iterator.

The value for dynamic must be true or false. The default is false.

 DB2 Database for Linux, UNIX, and Windows servers do not support dynamic

scrollable cursors. Specify true only if your application accesses data on DB2

for z/OS servers, at Version 9 or later.

updateColumns

For an iterator, specifies the columns that are to be modified when the iterator

is used for a positioned UPDATE statement. The value for updateColumns

must be a literal string that contains the column names, separated by commas.

column-name

For an iterator, specifies a column of the result table that is to be updated

using the iterator.

Java-ID

For an iterator or connection context, specifies a Java variable that identifies a

user-defined attribute of the iterator or connection context. The value of

Java-constant-expression is also user-defined.

dataSource

For a connection context, specifies the logical name of a separately-created

DataSource object that represents the data source to which the application will

connect. This option is available only for the IBM DB2 Driver for JDBC and

SQLJ.

 Usage notes:

v The value on the left side of a with element must be unique within its with

clause.

v If you specify updateColumns in a with element of an iterator declaration

clause, the iterator declaration clause must also contain an implements clause

that specifies the sqlj.runtime.ForUpdate interface.

v If you do not customize your SQLJ program, the JDBC driver ignores the value

of holdability that is in the with clause. Instead, the driver uses the JDBC driver

setting for holdability.

 Related concepts:

v “Using SQLJ and JDBC in the same application” on page 127

 Related tasks:

268 Developing Java Applications

v “Connecting to a data source using SQLJ” on page 92

v “Performing positioned UPDATE and DELETE operations in an SQLJ

application” on page 101

v “Using scrollable iterators in an SQLJ application” on page 118

SQLJ connection-declaration-clause

 The connection declaration clause declares a connection to a data source in an

SQLJ application program.

 Syntax:

��

Java-modifiers
 context Java-class-name

implements-clause

with-clause
 ��

 Description:

Java-modifiers

Specifies modifiers that are valid for Java class declarations, such as static,

public, private, or protected.

Java-class-name

Specifies a valid Java identifier. During the program preparation process, SQLJ

generates a connection context class whose name is this identifier.

implements-clause

See SQLJ implements-clause for a description of this clause. In a connection

declaration clause, the interface class to which the implements clause refers

must be a user-defined interface class.

with-clause

See SQLJ with-clause for a description of this clause.

 Usage notes:

v SQLJ generates a connection class declaration for each connection declaration

clause you specify. SQLJ data source connections are objects of those generated

connection classes.

v You can specify a connection declaration clause anywhere that a Java class

definition can appear in a Java program.

 Related tasks:

v “Connecting to a data source using SQLJ” on page 92

 Related reference:

v “SQLJ implements-clause” on page 266

v “SQLJ with-clause” on page 267

SQLJ iterator-declaration-clause

 An iterator declaration clause declares a positioned iterator class or a named

iterator class in an SQLJ application program. An iterator contains the result table

from a query. SQLJ generates an iterator class for each iterator declaration clause

you specify. An iterator is an object of an iterator class.

Chapter 11. JDBC and SQLJ reference 269

An iterator declaration clause has a form for a positioned iterator and a form for a

named iterator. The two kinds of iterators are distinct and incompatible Java types

that are implemented with different interfaces.

 Syntax:

��

Java-modifiers
 iterator Java-class-name

implements-clause

with-clause
 �

� (positioned-iterator-column-declarations)

named-iterator-column-declarations
 ��

positioned-iterator-column declarations:

��

�

 ,

Java-data-type

��

named-iterator-column-declarations:

��

�

 ,

Java-data-type

Java-ID

��

 Description:

Java-modifiers

Any modifiers that are valid for Java class declarations, such as static, public,

private, or protected.

Java-class-name

Any valid Java identifier. During the program preparation process, SQLJ

generates an iterator class whose name is this identifier.

implements-clause

See SQLJ implements-clause for a description of this clause. For an iterator

declaration clause that declares an iterator for a positioned UPDATE or

positioned DELETE operation, the implements clause must specify interface

sqlj.runtime.ForUpdate. For an iterator declaration clause that declares a

scrollable iterator, the implements clause must specify interface

sqlj.runtime.Scrollable.

with-clause

See SQLJ with-clause for a description of this clause.

positioned-iterator-column-declarations

Specifies a list of Java data types, which are the data types of the columns in

the positioned iterator. The data types in the list must be separated by

commas. The order of the data types in the positioned iterator declaration is

the same as the order of the columns in the result table. For online checking

during serialized profile customization to succeed, the data types of the

columns in the iterator must be compatible with the data types of the columns

in the result table. See Java, JDBC, and SQL data types for a list of compatible

data types.

named-iterator-column-declarations

Specifies a list of Java data types and Java identifiers, which are the data types

270 Developing Java Applications

and names of the columns in the named iterator. Pairs of data types and names

must be separated by commas. The name of a column in the iterator must

match, except for case, the name of a column in the result table. For online

checking during serialized profile customization to succeed, the data types of

the columns in the iterator must be compatible with the data types of the

columns in the result table. See Java, JDBC, and SQL data types for a list of

compatible data types.

 Usage notes:

v An iterator declaration clause can appear anywhere in a Java program that a

Java class declaration can appear.

v When a named iterator declaration contains more than one pair of Java data

types and Java IDs, all Java IDs within the list must be unique. Two Java IDs are

not unique if they differ only in case.

 Related concepts:

v “How an SQLJ application retrieves data from DB2 tables” on page 111

 Related tasks:

v “Using a named iterator in an SQLJ application” on page 112

v “Using a positioned iterator in an SQLJ application” on page 114

v “Using scrollable iterators in an SQLJ application” on page 118

 Related reference:

v “SQLJ implements-clause” on page 266

v “SQLJ with-clause” on page 267

SQLJ executable-clause

 An executable clause contains an SQL statement or an assignment statement. An

assignment statement assigns the result of an SQL operation to a Java variable.

This topic describes the general form of an executable clause.

 Syntax:

��

context-clause
 statement-clause

assignment-clause
 ��

 Usage notes:

v An executable clause can appear anywhere in a Java program that a Java

statement can appear.

v SQLJ reports negative SQL codes from executable clauses through class

java.sql.SQLException.

If SQLJ raises a run-time exception during the execution of an executable clause,

the value of any host expression of type OUT or INOUT is undefined.

 Related reference:

v “SQLJ assignment-clause” on page 275

v “SQLJ context-clause” on page 272

v “SQLJ statement-clause” on page 272

Chapter 11. JDBC and SQLJ reference 271

SQLJ context-clause

 A context clause specifies a connection context, an execution context, or both. You

use a connection context to connect to a data source. You use an execution context

to monitor and modify SQL statement execution.

 Syntax:

�� [connection-context]

execution-context

connection-context

,

execution context

 ��

 Description:

connection-context

Specifies a valid Java identifier that is declared earlier in the SQLJ program.

That identifier must be declared as an instance of the connection context class

that SQLJ generates for a connection declaration clause.

execution-context

Specifies a valid Java identifier that is declared earlier in the SQLJ program.

That identifier must be declared as an instance of class

sqlj.runtime.ExecutionContext.

 Usage notes:

v If you do not specify a connection context in an executable clause, SQLJ uses the

default connection context.

v If you do not specify an execution context, SQLJ obtains the execution context

from the connection context of the statement.

 Related tasks:

v “Connecting to a data source using SQLJ” on page 92

v “Controlling the execution of SQL statements in SQLJ” on page 130

SQLJ statement-clause

 A statement clause contains an SQL statement or a SET TRANSACTION clause.

 Syntax:

�� { SQL-statement }

SET-TRANSACTION-clause
 ��

 Description:

SQL-statement

You can include the DB2 Database for Linux, UNIX, and Windows SQL

statements in Table 61 on page 273 in a statement clause.

SET-TRANSACTION-clause

Sets the isolation level for SQL statements in the program and the access mode

for the connection. The SET TRANSACTION clause is equivalent to the SET

TRANSACTION statement, which is described in the ANSI/ISO SQL standard

of 1992 and is supported in some implementations of SQL. See SQLJ

SET-TRANSACTION-clause for more information.

272 Developing Java Applications

Table 61. Valid SQL statements in an SQLJ statement clause

ALTER DATABASE

ALTER FUNCTION

ALTER INDEX

ALTER PROCEDURE

ALTER STOGROUP

ALTER TABLE

ALTER TABLESPACE

CALL

COMMENT ON

COMMIT

CREATE ALIAS

CREATE DATABASE

CREATE DISTINCT TYPE

CREATE FUNCTION

CREATE GLOBAL TEMPORARY TABLE

CREATE INDEX

CREATE PROCEDURE

CREATE STOGROUP

CREATE SYNONYM

CREATE TABLE

CREATE TABLESPACE

CREATE TRIGGER

CREATE VIEW

DECLARE GLOBAL TEMPORARY TABLE

DELETE

DROP ALIAS

DROP DATABASE

DROP DISTINCT TYPE

DROP FUNCTION

DROP INDEX

DROP PACKAGE

DROP PROCEDURE

DROP STOGROUP

DROP SYNONYM

DROP TABLE

DROP TABLESPACE

DROP TRIGGER

DROP VIEW

FETCH

GRANT

INSERT

LOCK TABLE

MERGE

REVOKE

ROLLBACK

SAVEPOINT

SELECT INTO

SET CURRENT DEFAULT TRANSFORM GROUP

SET CURRENT DEGREE

SET CURRENT EXPLAIN MODE

SET CURRENT EXPLAIN SNAPSHOT

SET CURRENT ISOLATION

SET CURRENT MAINTAINED TABLE TYPES FOR OPTIMIZATION

SET CURRENT OPTIMIZATION HINT

SET CURRENT PACKAGESET (USER is not supported)

Chapter 11. JDBC and SQLJ reference 273

Table 61. Valid SQL statements in an SQLJ statement clause (continued)

SET CURRENT PRECISION

SET CURRENT QUERY OPTIMIZATION

SET CURRENT REFRESH AGE

SET CURRENT SCHEMA

SET PATH

UPDATE

 Usage notes:

v SQLJ supports both positioned and searched DELETE and UPDATE operations.

v For a FETCH statement, a positioned DELETE statement, or a positioned

UPDATE statement, you must use an iterator to refer to rows in a result table.

 Related tasks:

v “Setting the isolation level for an SQLJ transaction” on page 138

 Related reference:

v “SQLJ SET-TRANSACTION-clause” on page 274

SQLJ SET-TRANSACTION-clause

 The SET TRANSACTION clause sets the isolation level for the current unit of

work.

 Syntax:

�� SET TRANSACTION ISOLATION LEVEL READ COMMITTED

READ UNCOMMITTED

REPEATABLE READ

SERIALIZABLE

 ��

 Description:

ISOLATION LEVEL

Specifies one of the following isolation levels:

READ COMMITTED

Specifies that the current DB2 isolation level is cursor stability.

READ UNCOMMITTED

Specifies that the current DB2 isolation level is uncommitted read.

REPEATABLE READ

Specifies that the current DB2 isolation level is read stability.

SERIALIZABLE

Specifies that the current DB2 isolation level is repeatable read.

 Usage notes:

 You can execute SET TRANSACTION only at the beginning of a transaction.

274 Developing Java Applications

SQLJ assignment-clause

 The assignment clause assigns the result of an SQL operation to a Java variable.

 Syntax:

�� Java-ID = { fullselect }

order-by-clause

optimize-for-clause

isolation-clause

queryno-clause

fetch-first-clause

iterator-conversion-clause

 ��

 Description:

Java-ID

Identifies an iterator that was declared previously as an instance of an iterator

class.

fullselect

Generates a result table.

iterator-conversion-clause

See SQLJ iterator-conversion-clause for a description of this clause.

 Usage notes:

v If the object that is identified by Java-ID is a positioned iterator, the number of

columns in the result set must match the number of columns in the iterator. In

addition, the data type of each column in the result set must be compatible with

the data type of the corresponding column in the iterator. See Java, JDBC, and

SQL data types for a list of compatible Java and SQL data types.

v If the object that is identified by Java-ID is a named iterator, the name of each

accessor method must match, except for case, the name of a column in the result

set. In addition, the data type of the object that an accessor method returns must

be compatible with the data type of the corresponding column in the result set.

v You can put an assignment clause anywhere in a Java program that a Java

assignment statement can appear. However, you cannot put an assignment

clause where a Java assignment expression can appear. For example, you cannot

specify an assignment clause in the control list of a for statement.

 Related concepts:

v “Using SQLJ and JDBC in the same application” on page 127

 Related reference:

v “SQLJ iterator-conversion-clause” on page 275

v “Fullselect” in SQL Reference, Volume 1

v “Select-statement” in SQL Reference, Volume 1

SQLJ iterator-conversion-clause

 The iterator conversion clause converts a JDBC ResultSet to an iterator.

 Syntax:

Chapter 11. JDBC and SQLJ reference 275

�� CAST host-expression ��

 Description:

host-expression

Identifies the JDBC ResultSet that is to be converted to an SQLJ iterator.

 Usage notes:

v If the iterator to which the JDBC ResultSet is to be converted is a positioned

iterator, the number of columns in the ResultSet must match the number of

columns in the iterator. In addition, the data type of each column in the

ResultSet must be compatible with the data type of the corresponding column

in the iterator.

v If the iterator is a named iterator, the name of each accessor method must match,

except for case, the name of a column in the ResultSet. In addition, the data

type of the object that an accessor method returns must be compatible with the

data type of the corresponding column in the ResultSet.

v When an iterator that is generated through the iterator conversion clause is

closed, the ResultSet from which the iterator is generated is also closed.

 Related concepts:

v “Using SQLJ and JDBC in the same application” on page 127

sqlj.runtime reference

The sqlj.runtime package defines the run-time classes and interfaces that are used

directly or indirectly by the SQLJ programmer. Classes such as AsciiStream are

used directly by the SQLJ programmer. Interfaces such as ResultSetIterator are

implemented as part of generated class declarations.

Summary of interfaces and classes in the sqlj.runtime

package

 Table 62 summarizes the interfaces in sqlj.runtime.

 Table 62. Summary of sqlj.runtime interfaces

Interface name Purpose

ConnectionContext Manages the SQL operations that are performed during a connection to a data

source.

ForUpdate Implemented by iterators that are used in a positioned UPDATE or DELETE

statement.

NamedIterator Implemented by iterators that are declared as named iterators.

PositionedIterator Implemented by iterators that are declared as positioned iterators.

ResultSetIterator Implemented by all iterators to allow query results to be processed using a JDBC

ResultSet.

Scrollable Provides a set of methods for manipulating scrollable iterators.

Table 63 summarizes the classes in sqlj.runtime.

 Table 63. Summary of sqlj.runtime classes

Class name Purpose

AsciiStream A class for handling an input stream whose bytes should be interpreted as ASCII.

276 Developing Java Applications

Table 63. Summary of sqlj.runtime classes (continued)

Class name Purpose

BinaryStream A class for handling an input stream whose bytes should be interpreted as binary.

CharacterStream A class for handling an input stream whose bytes should be interpreted as

Character.

DefaultRuntime Implemented by SQLJ to satisfy the expected runtime behavior of SQLJ for most

JVM environments. This class is for internal use only and is not described in this

documentation.

ExecutionContext Implemented when an SQLJ execution context is declared, to control the execution

of SQL operations.

RuntimeContext Defines system-specific services that are provided by the runtime environment. This

class is for internal use only and is not described in this documentation.

SQLNullException Derived from the java.sql.SQLException class. An sqlj.runtime.SQLNullException

is thrown when an SQL NULL value is fetched into a host identifier with a Java

primitive type.

StreamWrapper Wraps a java.io.InputStream instance.

UnicodeStream A class for handling an input stream whose bytes should be interpreted as Unicode.

 Related reference:

v “sqlj.runtime.CharacterStream class” on page 290

v “sqlj.runtime.SQLNullException class” on page 298

v “sqlj.runtime.Scrollable interface” on page 286

v “sqlj.runtime.AsciiStream class” on page 288

v “sqlj.runtime.BinaryStream class” on page 289

v “sqlj.runtime.ConnectionContext interface” on page 277

v “sqlj.runtime.ExecutionContext class” on page 291

v “sqlj.runtime.ForUpdate interface” on page 282

v “sqlj.runtime.NamedIterator interface” on page 282

v “sqlj.runtime.ResultSetIterator interface” on page 283

v “sqlj.runtime.UnicodeStream class” on page 300

v “sqlj.runtime.PositionedIterator interface” on page 283

sqlj.runtime.ConnectionContext interface

 The sqlj.runtime.ConnectionContext interface provides a set of methods that

manage SQL operations that are performed during a session with a specific data

source. Translation of an SQLJ connection declaration clause causes SQLJ to create

a connection context class. A connection context object maintains a JDBC

Connection object on which dynamic SQL operations can be performed. A

connection context object also maintains a default ExecutionContext object.

Variables:

CLOSE_CONNECTION

Format:

public static final boolean CLOSE_CONNECTION=true;

A constant that can be passed to the close method. It indicates that the

underlying JDBC Connection object should be closed.

Chapter 11. JDBC and SQLJ reference 277

KEEP_CONNECTION

Format:

public static final boolean KEEP_CONNECTION=false;

A constant that can be passed to the close method. It indicates that the

underlying JDBC Connection object should not be closed.

Methods that are defined for the interface:

close()

Format:

public abstract void close() throws SQLException

Performs the following functions:

v Releases all resources that are used by the given connection context object

v Closes any open ConnectedProfile objects

v Closes the underlying JDBC Connection object

close() is equivalent to close(CLOSE_CONNECTION).

close(boolean)

Format:

public abstract void close (boolean close-connection)

 throws SQLException

Performs the following functions:

v Releases all resources that are used by the given connection context object

v Closes any open ConnectedProfile objects

v Closes the underlying JDBC Connection object, depending on the value of

the close-connection parameter

Parameters:

close-connection

Specifies whether the underlying JDBC Connection object is closed when a

connection context object is closed:

CLOSE_CONNECTION

Closes the underlying JDBC Connection object.

KEEP_CONNECTION

Does not close the underlying JDBC Connection object.

getConnectedProfile

Format:

public abstract ConnectedProfile getConnectedProfile(Object profileKey)

 throws SQLException

This method is used by code that is generated by the SQLJ translator. It is not

intended for direct use by application programs.

getConnection

Format:

public abstract Connection getConnection()

Returns the underlying JDBC Connection object for the given connection

context object.

getExecutionContext

Format:

278 Developing Java Applications

public abstract ExecutionContext getExecutionContect()

Returns the default ExecutionContext object that is associated with the given

connection context object.

isClosed

Format:

public abstract boolean isClosed()

Returns true if the given connection context object has been closed. Returns

false if the connection context object has not been closed.

Constructors in a concrete implementation of the ConnectionContext interface that

results from translation of the statement #sql context Ctx;:

Ctx(String, boolean)

Format:

public Ctx(String url, boolean autocommit)

 throws SQLException

Parameters:

url The representation of a data source, as specified in the JDBC getConnection

method.

autocommit

Whether autocommit is enabled for the connection. A value of true means

that autocommit is enabled. A value of false means that autocommit is

disabled.

Ctx(String, String, String, boolean)

Format:

public Ctx(String url, String user, String password,

 boolean autocommit)

 throws SQLException

Parameters:

url The representation of a data source, as specified in the JDBC getConnection

method.

user

The user ID under which the connection to the data source is made.

password

The password for the user ID under which the connection to the data

source is made.

autocommit

Whether autocommit is enabled for the connection. A value of true means

that autocommit is enabled. A value of false means that autocommit is

disabled.

Ctx(String, Properties, boolean)

Format:

public Ctx(String url, Properties info, boolean autocommit)

 throws SQLException

Parameters:

url The representation of a data source, as specified in the JDBC getConnection

method.

Chapter 11. JDBC and SQLJ reference 279

info

An object that contains a set of driver properties for the connection. Any of

the IBM DB2 Driver for JDBC and SQLJ properties can be specified.

autocommit

Whether autocommit is enabled for the connection. A value of true means

that autocommit is enabled. A value of false means that autocommit is

disabled.

Ctx(Connection)

Format:

public Ctx(java.sql.Connection JDBC-connection-object)

 throws SQLException

Parameters:

JDBC-connection-object

A previously created JDBC Connection object.

If the constructor call throws an SQLException, the JDBC Connection object

remains open.

Ctx(ConnectionContext)

Format:

public Ctx(sqlj.runtime.ConnectionContext SQLJ-connection-context-object)

 throws SQLException

Parameters:

SQLJ-connection-context-object

A previously created SQLJ ConnectionContext object.

Constructors in a concrete implementation of the ConnectionContext interface that

results from translation of the statement #sql context Ctx with (dataSource

="jdbc/TestDS");:

Ctx()

Format:

public Ctx()

 throws SQLException

Ctx(String, String)

Format:

public Ctx(String user, String password,

)

 throws SQLException

Parameters:

user

The user ID under which the connection to the data source is made.

password

The password for the user ID under which the connection to the data

source is made.

Ctx(Connection)

Format:

public Ctx(java.sql.Connection JDBC-connection-object)

 throws SQLException

280 Developing Java Applications

Parameters:

JDBC-connection-object

A previously created JDBC Connection object.

If the constructor call throws an SQLException, the JDBC Connection object

remains open.

Ctx(ConnectionContext)

Format:

public Ctx(sqlj.runtime.ConnectionContext SQLJ-connection-context-object)

 throws SQLException

Parameters:

SQLJ-connection-context-object

A previously created SQLJ ConnectionContext object.

Additional methods that are generated in a concrete implementation of the

ConnectionContext interface that results from translation of the statement #sql

context Ctx;:

getDefaultContext

Format:

public static Ctx getDefaultContext()

Returns the default connection context object for the Ctx class.

getProfileKey

Format:

public static Object getProfileKey(sqlj.runtime.profile.Loader loader,

String profileName) throws SQLException

This method is used by code that is generated by the SQLJ translator. It is not

intended for direct use by application programs.

getProfile

Format:

public static sqlj.runtime.profile.Profile getProfile(Object key)

This method is used by code that is generated by the SQLJ translator. It is not

intended for direct use by application programs.

getTypeMap

Format:

public static java.util.Map getTypeMap()

Returns an instance of a class that implements java.util.Map, which is the

user-defined type map that is associated with the ConnectionContext. If there is

no associated type map, Java null is returned.

 This method is used by code that is generated by the SQLJ translator for

executable clauses and iterator declaration clauses, but it can also be invoked

in an SQLJ application for direct use in JDBC statements.

SetDefaultContext

Format:

public static void Ctx setDefaultContext(Ctx default-context)

Chapter 11. JDBC and SQLJ reference 281

Sets the default connection context object for the Ctx class.

 Recommendation: Do not use this method for multithreaded applications.

Instead, use explicit contexts.

 Related tasks:

v “Closing the connection to a data source in an SQLJ application” on page 140

v “Connecting to a data source using SQLJ” on page 92

sqlj.runtime.ForUpdate interface

 SQLJ implements the sqlj.runtime.ForUpdate interface in SQLJ programs that

contain an iterator declaration clause with implements sqlj.runtime.ForUpdate. An

SQLJ program that does positioned UPDATE or DELETE operations

(UPDATE...WHERE CURRENT OF or DELETE...WHERE CURRENT OF) must

include an iterator declaration clause with implements sqlj.runtime.ForUpdate.

Methods:

getCursorName

Format:

public abstract String getCursorName() throws SQLException

This method is used by code that is generated by the SQLJ translator. It is not

intended for direct use by application programs.

 Related concepts:

v “Iterators as passed variables for positioned UPDATE or DELETE operations in

an SQLJ application” on page 106

 Related tasks:

v “Performing positioned UPDATE and DELETE operations in an SQLJ

application” on page 101

sqlj.runtime.NamedIterator interface

 The sqlj.runtime.NamedIterator interface is implemented when an SQLJ

application executes an iterator declaration clause for a named iterator. A named

iterator includes result table column names, and the order of the columns in the

iterator is not important.

An implementation of the sqlj.runtime.NamedIterator interface includes an

accessor method for each column in the result table. An accessor method returns

the data from its column of the result table. The name of an accessor method

matches the name of the corresponding column in the named iterator.

Methods (inherited from the ResultSetIterator interface):

close

Format:

public abstract void close() throws SQLException

Releases database resources that the iterator uses.

282 Developing Java Applications

isClosed

Format:

public abstract boolean isClosed() throws SQLException

Returns a value of true if the close method has been invoked. Returns false if

the close method has not been invoked.

next

Format:

public abstract boolean next() throws SQLException

Advances the iterator to the next row. Before an instance of the next method is

invoked for the first time, the iterator is positioned before the first row of the

result table. next returns a value of true when a next row is available and

false when all rows have been retrieved.

 Related tasks:

v “Using a named iterator in an SQLJ application” on page 112

sqlj.runtime.PositionedIterator interface

 The sqlj.runtime.PositionedIterator interface is implemented when an SQLJ

application executes an iterator declaration clause for a positioned iterator. The

order of columns in a positioned iterator must be the same as the order of columns

in the result table, and a positioned iterator does not include result table column

names.

Methods: sqlj.runtime.PositionedIterator inherits all ResultSetIterator methods,

and includes the following additional method:

endFetch

Format:

public abstract boolean endFetch() throws SQLException

Returns a value of true if the iterator is not positioned on a row. Returns a

value of false if the iterator is positioned on a row.

 Related tasks:

v “Using a positioned iterator in an SQLJ application” on page 114

sqlj.runtime.ResultSetIterator interface

 The sqlj.runtime.ResultSetIterator interface is implemented by SQLJ for all

iterator declaration clauses.

An untyped iterator can be generated by declaring an instance of the

sqlj.runtime.ResultSetIterator interface directly. In general, use of untyped

iterators is not recommended.

Variables:

ASENSITIVE

Format:

public static final int ASENSITIVE

Chapter 11. JDBC and SQLJ reference 283

A constant that can be returned by the getSensitivity method. It indicates that

the iterator is defined as ASENSITIVE.

FETCH_FORWARD

Format:

public static final int FETCH_FORWARD

A constant that can be used by the following methods:

v Set by sqlj.runtime.Scrollable.setFetchDirection and

sqlj.runtime.ExecutionContext.setFetchDirection

v Returned by sqlj.runtime.ExecutionContext.getFetchDirection

It indicates that the iterator fetches rows in a result table in the forward

direction, from first to last.

FETCH_REVERSE

Format:

public static final int FETCH_REVERSE

A constant that can be used by the following methods:

v Set by sqlj.runtime.Scrollable.setFetchDirection and

sqlj.runtime.ExecutionContext.setFetchDirection

v Returned by sqlj.runtime.ExecutionContext.getFetchDirection

It indicates that the iterator fetches rows in a result table in the backward

direction, from last to first.

FETCH_UNKNOWN

Format:

public static final int FETCH_UNKNOWN

A constant that can be used by the following methods:

v Set by sqlj.runtime.Scrollable.setFetchDirection and

sqlj.runtime.ExecutionContext.setFetchDirection

v Returned by sqlj.runtime.ExecutionContext.getFetchDirection

It indicates that the iterator fetches rows in a result table in an unknown order.

INSENSITIVE

Format:

public static final int INSENSITIVE

A constant that can be returned by the getSensitivity method. It indicates that

the iterator is defined as INSENSITIVE.

SENSITIVE

Format:

public static final int SENSITIVE

A constant that can be returned by the getSensitivity method. It indicates that

the iterator is defined as SENSITIVE.

clearWarnings

Format:

public abstract void clearWarnings() throws SQLException

After clearWarnings is called, getWarnings returns null until a new warning is

reported for the iterator.

284 Developing Java Applications

close

Format:

public abstract void close() throws SQLException

Closes the iterator and releases underlying database resources.

getFetchSize

Format:

synchronized public int getFetchSize() throws SQLException

Returns the number of rows that should be fetched by SQLJ when more rows

are needed. The returned value is the value that was set by the setFetchSize

method, or 0 if no value was set by setFetchSize.

getResultSet

Format:

public abstract ResultSet getResultSet() throws SQLException

Returns the JDBC ResultSet object that is associated with the iterator.

getRow

Format:

synchronized public int getRow() throws SQLException

Returns the current row number. The first row is number 1, the second is

number 2, and so on. If the iterator is not positioned on a row, 0 is returned.

getSensitivity

Format:

synchronized public int getSensitivity() throws SQLException

Returns the sensitivity of the iterator. The sensitivity is determined by the

sensitivity value that was specified or defaulted in the with clause of the

iterator declaration clause.

getWarnings

Format:

public abstract SQLWarning getWarnings() throws SQLException

Returns the first warning that is reported by calls on the iterator. Subsequent

iterator warnings are be chained to this SQLWarning. The warning chain is

automatically cleared each time the iterator moves to a new row.

isClosed

Format:

public abstract boolean isClosed() throws SQLException

Returns a value of true if the iterator is closed. Returns false otherwise.

next

Format:

public abstract boolean next() throws SQLException

Advances the iterator to the next row. Before next is invoked for the first time,

the iterator is positioned before the first row of the result table. next returns a

value of true when a next row is available and false when all rows have been

retrieved.

Chapter 11. JDBC and SQLJ reference 285

setFetchSize

Format:

synchronized public void setFetchSize(int number-of-rows) throws SQLException

Gives SQLJ a hint as to the number of rows that should be fetched when more

rows are needed.

 Parameters:

number-of-rows

The expected number of rows that SQLJ should fetch for the iterator that is

associated with the given execution context.

If number-of-rows is less than 0 or greater than the maximum number of rows

that can be fetched, an SQLException is thrown.

 Related tasks:

v “Using a named iterator in an SQLJ application” on page 112

v “Using a positioned iterator in an SQLJ application” on page 114

 Related reference:

v “SQLJ iterator-declaration-clause” on page 269

sqlj.runtime.Scrollable interface

 sqlj.runtime.Scrollable is implemented when a scrollable iterator is declared.

sqlj.runtime.Scrollable provides methods to move around in the result table and

to check the position in the result table.

absolute(int)

Format:

public abstract boolean absolute (int n) throws SQLException

Moves the iterator to a specified row.

 If n>0, positions the iterator on row n of the result table. If n<0, and m is the

number of rows in the result table, positions the iterator on row m+n+1 of the

result table.

 If the absolute value of n is greater than the number of rows in the result table,

positions the cursor after the last row if n is positive, or before the first row if

n is negative.

 Absolute(0) is the same as beforeFirst(). Absolute(1) is the same as first().

Absolute(-1) is the same as last().

 Returns true if the iterator is on a row. Otherwise, returns false.

afterLast()

Format:

public abstract void afterLast() throws SQLException

Moves the iterator after the last row of the result table.

beforeFirst()

Format:

286 Developing Java Applications

public abstract void beforeFirst() throws SQLException

Moves the iterator before the first row of the result table.

first()

Format:

public abstract boolean first() throws SQLException

Moves the iterator to the first row of the result table.

 Returns true if the iterator is on a row. Otherwise, returns false.

getFetchDirection()

Format:

public abstract int getFetchDirection() throws SQLException

Returns the fetch direction of the iterator. Possible values are:

sqlj.runtime.ResultSetIterator.FETCH_FORWARD

Rows are processed in a forward direction, from first to last.

sqlj.runtime.ResultSetIterator.FETCH_REVERSE

Rows are processed in a backward direction, from last to first.

sqlj.runtime.ResultSetIterator.FETCH_UNKNOWN

The order of processing is not known.

isAfterLast()

Format:

public abstract boolean isAfterLast() throws SQLException

Returns true if the iterator is positioned after the last row of the result table.

Otherwise, returns false.

isBeforeFirst()

Format:

public abstract boolean isBeforeFirst() throws SQLException

Returns true if the iterator is positioned before the first row of the result table.

Otherwise, returns false.

isFirst()

Format:

public abstract boolean isFirst() throws SQLException

Returns true if the iterator is positioned on the first row of the result table.

Otherwise, returns false.

isLast()

Format:

public abstract boolean isLast() throws SQLException

Returns true if the iterator is positioned on the last row of the result table.

Otherwise, returns false.

last()

Format:

public abstract boolean last() throws SQLException

Moves the iterator to the last row of the result table.

Chapter 11. JDBC and SQLJ reference 287

Returns true if the iterator is on a row. Otherwise, returns false.

previous()

Format:

public abstract boolean previous() throws SQLException

Moves the iterator to the previous row of the result table.

 Returns true if the iterator is on a row. Otherwise, returns false.

relative(int)

Format:

public abstract boolean relative(int n) throws SQLException

If n>0, positions the iterator on the row that is n rows after the current row. If

n<0, positions the iterator on the row that is n rows before the current row. If

n=0, positions the iterator on the current row.

 The cursor must be on a valid row of the result table before you can use this

method. If the cursor is before the first row or after the last throw, the method

throws an SQLException.

 Suppose that m is the number of rows in the result table and x is the current

row number in the result table. If n>0 and x+n>m, the iterator is positioned

after the last row. If n<0 and x+n<1, the iterator is positioned before the first

row.

 Returns true if the iterator is on a row. Otherwise, returns false.

setFetchDirection(int)

Format:

public abstract void setFetchDirection (int) throws SQLException

Gives the SQLJ runtime environment a hint as to the direction in which rows

of this iterator object are processed. Possible values are:

sqlj.runtime.ResultSetIterator.FETCH_FORWARD

Rows are processed in a forward direction, from first to last.

sqlj.runtime.ResultSetIterator.FETCH_REVERSE

Rows are processed in a backward direction, from last to first.

sqlj.runtime.ResultSetIterator.FETCH_UNKNOWN

The order of processing is not known.

 Related tasks:

v “Using scrollable iterators in an SQLJ application” on page 118

sqlj.runtime.AsciiStream class

 The sqlj.runtime.AsciiStream class is for an input stream of ASCII data with a

specified length. The sqlj.runtime.AsciiStream class is derived from the

java.io.InputStream class, and extends the sqlj.runtime.StreamWrapper class.

SQLJ interprets the bytes in an sqlj.runtime.AsciiStream object as ASCII

characters. An InputStream object with ASCII characters needs to be passed as a

sqlj.runtime.AsciiStream object.

Constructors:

288 Developing Java Applications

AsciiStream(InputStream)

Format:

public AsciiStream(java.io.InputStream input-stream)

Creates an ASCII java.io.InputStream object with an unspecified length.

 Parameters:

input-stream

The InputStream object that SQLJ interprets as an AsciiStream object.

AsciiStream(InputStream, int)

Format:

public AsciiStream(java.io.InputStream input-stream, int length)

Creates an ASCII java.io.InputStream object with a specified length.

 Parameters:

input-stream

The InputStream object that SQLJ interprets as an AsciiStream object.

length

The length of the InputStream object that SQLJ interprets as an

AsciiStream object.

sqlj.runtime.BinaryStream class

 The sqlj.runtime.BinaryStream class is for an input stream of binary data with a

specified length. The sqlj.runtime.BinaryStream class is derived from the

java.io.InputStream class, and extends the sqlj.runtime.StreamWrapper class. SQLJ

interprets the bytes in an sqlj.runtime.BinaryStream object are interpreted as

Binary characters. An InputStream object with Binary characters needs to be passed

as a sqlj.runtime.BinaryStream object.

Constructors:

BinaryStream(InputStream)

Format:

public BinaryStream(java.io.InputStream input-stream)

Creates an Binary java.io.InputStream object with an unspecified length.

 Parameters:

input-stream

The InputStream object that SQLJ interprets as an BinaryStream object.

BinaryStream(InputStream, int)

Format:

public BinaryStream(java.io.InputStream input-stream, int length)

Creates an Binary java.io.InputStream object with a specified length.

 Parameters:

input-stream

The InputStream object that SQLJ interprets as an BinaryStream object.

Chapter 11. JDBC and SQLJ reference 289

length

The length of the InputStream object that SQLJ interprets as an

BinaryStream object.

sqlj.runtime.CharacterStream class

 The sqlj.runtime.CharacterStream class is for an input stream of character data

with a specified length. The sqlj.runtime.CharacterStream class is derived from

the java.io.Reader class, and extends the java.io.FilterReader class. SQLJ

interprets the bytes in an sqlj.runtime.CharacterStream object are interpreted as

Unicode data. A Reader object with Unicode data needs to be passed as a

sqlj.runtime.CharacterStream object.

Constructors:

CharacterStream(InputStream)

Format:

public CharacterStream(java.io.Reader input-stream)

Creates a character java.io.Reader object with an unspecified length.

 Parameters:

input-stream

The Reader object that SQLJ interprets as an CharacterStream object.

CharacterStream(InputStream, int)

Format:

public CharacterStream(java.io.Reader input-stream, int length)

Creates a character java.io.Reader object with a specified length.

 Parameters:

input-stream

The Reader object that SQLJ interprets as an CharacterStream object.

length

The length of the Reader object that SQLJ interprets as an CharacterStream

object.

Methods:

getReader

Format:

public Reader getReader()

Returns the underlying Reader object that is wrapped by the CharacterStream

object.

getLength

Format:

public void getLength()

Returns the length in characters of the wrapped Reader object, as specified by

the constructor or in the last call to setLength.

setLength

Format:

290 Developing Java Applications

public void setLength (int length)

Sets the number of characters that are read from the Reader object when the

object is passed as an input argument to an SQL operation.

 Parameters:

length

The number of characters that are read from the Reader object.

sqlj.runtime.ExecutionContext class

 The sqlj.runtime.ExecutionContext class is defined for execution contexts. Use an

execution context to control the execution of SQL statements.

Variables:

ADD_BATCH_COUNT

Format:

public static final int ADD_BATCH_COUNT

A constant that can be returned by the getUpdateCount method. It indicates

that the previous statement was not executed but was added to the existing

statement batch.

AUTO_BATCH

Format:

public static final int AUTO_BATCH

A constant that can be passed to the setBatchLimit method. It indicates that

implicit batch execution should be performed, and that SQLJ should determine

the batch size.

EXEC_BATCH_COUNT

Format:

public static final int EXEC_BATCH_COUNT

A constant that can be returned from the getUpdateCount method. It indicates

that a statement batch was just executed.

EXCEPTION_COUNT

Format:

public static final int EXCEPTION_COUNT

A constant that can be returned from the getUpdateCount method. It indicates

that an exception was thrown before the previous execution completed, or that

no operation has been performed on the execution context object.

NEW_BATCH_COUNT

Format:

public static final int NEW_BATCH_COUNT

A constant that can be returned from the getUpdateCount method. It indicates

that the previous statement was not executed, but was added to a new

statement batch.

QUERY_COUNT

Format:

Chapter 11. JDBC and SQLJ reference 291

public static final int QUERY_COUNT

A constant that can be passed to the setBatchLimit method. It indicates that the

previous execution produced a result set.

UNLIMITED_BATCH

Format:

public static final int UNLIMITED_BATCH

A constant that can be returned from the getUpdateCount method. It indicates

that statements should continue to be added to a statement batch, regardless of

the batch size.

Constructors:

ExecutionContext

Format:

public ExecutionContext()

Creates an ExecutionContext instance.

Methods:

cancel

Format:

public void cancel() throws SQLException

Cancels an SQL operation that is currently being executed by a thread that

uses the execution context object. If there is a pending statement batch on the

execution context object, the statement batch is canceled and cleared.

 The cancel method throws an SQLException if the statement cannot be

canceled.

execute

Format:

public boolean execute () throws SQLException

This method is used by code that is generated by the SQLJ translator. It is not

intended for direct use by application programs.

executeBatch

Format:

public synchronized int[] executeBatch() throws SQLException

Executes the pending statement batch and returns an array of update counts. If

no pending statement batch exists, null is returned. When this method is

called, the statement batch is cleared, even if the call results in an exception.

 Each element in the returned array can be one of the following values:

-2 This value indicates that the SQL statement executed successfully, but the

number of rows that were updated could not be determined.

-3 This value indicates that the SQL statement failed.

Other integer

This value is the number of rows that were updated by the statement.

292 Developing Java Applications

The executeBatch method throws an SQLException if a database error occurs

while the statement batch executes.

executeQuery

Format:

public RTResultSet executeQuery () throws SQLException

This method is used by code that is generated by the SQLJ translator. It is not

intended for direct use by application programs.

executeUpdate

Format:

public int executeUpdate() throws SQLException

This method is used by code that is generated by the SQLJ translator. It is not

intended for direct use by application programs.

getBatchLimit

Format:

synchronized public int getBatchLimit()

Returns the number of statements that are added to a batch before the batch is

implicitly executed.

 The returned value is one of the following values:

UNLIMITED_BATCH

This value indicates that the batch size is unlimited.

AUTO_BATCH

This value indicates that the batch size is finite but unknown.

Other integer

The current batch limit.

getBatchUpdateCounts

Format:

public synchronized int[] getBatchUpdateCounts()

Returns an array that contains the number of rows that were updated by each

statement that successfully executed in a batch. The order of elements in the

array corresponds to the order in which statements were inserted into the

batch. Returns null if no statements in the batch completed successfully.

 Each element in the returned array can be one of the following values:

-2 This value indicates that the SQL statement executed successfully, but the

number of rows that were updated could not be determined.

-3 This value indicates that the SQL statement failed.

Other integer

This value is the number of rows that were updated by the statement.

getFetchDirection

Format:

synchronized public int getFetchDirection() throws SQLException

Chapter 11. JDBC and SQLJ reference 293

Returns the current fetch direction for scrollable iterator objects that were

generated from the given execution context. If a fetch direction was not set for

the execution context, sqlj.runtime.ResultSetIterator.FETCH_FORWARD is

returned.

getFetchSize

Format:

synchronized public int getFetchSize() throws SQLException

Returns the number of rows that should be fetched by SQLJ when more rows

are needed. This value applies only to iterator objects that were generated from

the given execution context. The returned value is the value that was set by the

setFetchSize method, or 0 if no value was set by setFetchSize.

getMaxFieldSize

Format:

public synchronized int getMaxFieldSize()

Returns the maximum number of bytes that are returned for any string

(character, graphic, or varying-length binary) column in queries that use the

given execution context. If this limit is exceeded, SQLJ discards the remaining

bytes. A value of 0 means that the maximum number of bytes is unlimited.

getMaxRows

Format:

public synchronized int getMaxRows()

Returns the maximum number of rows that are returned for any query that

uses the given execution context. If this limit is exceeded, SQLJ discards the

remaining rows. A value of 0 means that the maximum number of rows is

unlimited.

getNextResultSet()

Format:

public ResultSet getNextResultSet() throws SQLException

After a stored procedure call, returns a result set from the stored procedure.

 A null value is returned if any of the following conditions are true:

v There are no more result sets to be returned.

v The stored procedure call did not produce any result sets.

v A stored procedure call has not been executed under the execution context.

When you invoke getNextResultSet(), SQLJ closes the currently-open result

set and advances to the next result set.

 If an error occurs during a call to getNextResultSet, resources for the current

JDBC ResultSet object are released, and an SQLException is thrown.

Subsequent calls to getNextResultSet return null.

getNextResultSet(int)

Formats:

public ResultSet getNextResultSet(int current)

After a stored procedure call, returns a result set from the stored procedure.

 A null value is returned if any of the following conditions are true:

294 Developing Java Applications

v There are no more result sets to be returned.

v The stored procedure call did not produce any result sets.

v A stored procedure call has not been executed under the execution context.

If an error occurs during a call to getNextResultSet, resources for the current

JDBC ResultSet object are released, and an SQLException is thrown.

Subsequent calls to getNextResultSet return null.

 Parameters:

current

Indicates what SQLJ does with the currently open result set before it

advances to the next result set:

java.sql.Statement.CLOSE_CURRENT_RESULT

Specifies that the current ResultSet object is closed when the next

ResultSet object is returned.

java.sql.Statement.KEEP_CURRENT_RESULT

Specifies that the current ResultSet object stays open when the next

ResultSet object is returned.

java.sql.Statement.CLOSE_ALL_RESULTS

Specifies that all open ResultSet objects are closed when the next

ResultSet object is returned.

getQueryTimeout

Format:

public synchronized int getQueryTimeout()

Returns the maximum number of seconds that SQL operations that use the

given execution context object can execute. If an SQL operation exceeds the

limit, an SQLException is thrown. The returned value is the value that was set

by the setQueryTimeout method, or 0 if no value was set by setQueryTimeout.

0 means that execution time is unlimited.

getUpdateCount

Format:

public abstract int getUpdateCount() throws SQLException

Returns:

ExecutionContext.ADD_BATCH_COUNT

If the statement was added to an existing batch.

ExecutionContext.NEW_BATCH_COUNT

If the statement was the first statement in a new batch.

ExecutionContext.EXCEPTION_COUNT

If the previous statement generated an SQLException, or no previous

statement was executed.

ExecutionContext.EXEC_BATCH_COUNT

If the statement was part of a batch, and the batch was executed.

ExecutionContext.QUERY_COUNT

If the previous statement created an iterator object or JDBC ResultSet.

Other integer

If the statement was executed rather than added to a batch. This value is

the number of rows that were updated by the statement.

Chapter 11. JDBC and SQLJ reference 295

getWarnings

Format:

public synchronized SQLWarning getWarnings()

Returns the first warning that was reported by the last SQL operation that was

executed using the given execution context. Subsequent warnings are chained

to the first warning. If no warnings occurred, null is returned.

 getWarnings is used to retrieve positive SQLCODEs.

isBatching

Format:

public synchronized boolean isBatching()

Returns true if batching is enabled for the execution context. Returns false if

batching is disabled.

registerStatement

Format:

public RTStatement registerStatement(ConnectionContext connCtx,

 Object profileKey, int stmtNdx)

 throws SQLException

This method is used by code that is generated by the SQLJ translator. It is not

intended for direct use by application programs.

releaseStatement

Format:

public void releaseStatement() throws SQLException

This method is used by code that is generated by the SQLJ translator. It is not

intended for direct use by application programs.

setBatching

Format:

public synchronized void setBatching(boolean batching)

Parameters:

batching

Indicates whether batchable statements that are registered with the given

execution context can be added to a statement batch:

true

Statements can be added to a statement batch.

false

Statements are executed individually.

 setBatching affects only statements that occur in the program after setBatching

is called. It does not affect previous statements or an existing statement batch.

setBatchLimit

Format:

public synchronized void setBatchLimit(int batch-size)

Sets the maximum number of statements that are added to a batch before the

batch is implicitly executed.

296 Developing Java Applications

Parameters:

batch-size

One of the following values:

ExecutionContext.UNLIMITED_BATCH

Indicates that implicit execution occurs only when SQLJ encounters a

statement that is batchable but incompatible, or not batchable. Setting

this value is the same as not invoking setBatchLimit.

ExecutionContext.AUTO_BATCH

Indicates that implicit execution occurs when the number of statements

in the batch reaches a number that is set by SQLJ.

Positive integer

The number of statements that are added to the batch before SQLJ

executes the batch implicitly. The batch might be executed before this

many statements have been added if SQLJ encounters a statement that

is batchable but incompatible, or not batchable.

setBatchLimit affects only statements that occur in the program after

setBatchLimit is called. It does not affect an existing statement batch.

setFetchDirection

Format:

public synchronized void setFetchDirection(int direction) throws SQLException

Gives SQLJ a hint as to the current fetch direction for scrollable iterator objects

that were generated from the given execution context.

 Parameters:

direction

One of the following values:

sqlj.runtime.ResultSetIterator.FETCH_FORWARD

Rows are fetched in a forward direction. This is the default.

sqlj.runtime.ResultSetIterator.FETCH_REVERSE

Rows are fetched in a backward direction.

sqlj.runtime.ResultSetIterator.FETCH_UNKNOWN

The order of fetching is unknown.

Any other input value results in an SQLException.

setFetchSize

Format:

synchronized public void setFetchSize(int number-of-rows) throws SQLException

Gives SQLJ a hint as to the number of rows that should be fetched when more

rows are needed.

 Parameters:

number-of-rows

The expected number of rows that SQLJ should fetch for the iterator that is

associated with the given execution context.

If number-of-rows is less than 0 or greater than the maximum number of rows

that can be fetched, an SQLException is thrown.

Chapter 11. JDBC and SQLJ reference 297

setMaxFieldSize

Format:

public void setMaxFieldSize(int max-bytes)

Specifies the maximum number of bytes that are returned for any string

(character, graphic, or varying-length binary) column in queries that use the

given execution context. If this limit is exceeded, SQLJ discards the remaining

bytes.

 Parameters:

max-bytes

The maximum number of bytes that SQLJ should return from a BINARY,

VARBINARY, CHAR, VARCHAR, GRAPHIC, or VARGRAPHIC column. A

value of 0 means that the number of bytes is unlimited. 0 is the default.

setMaxRows

Format:

public synchronized void setMaxRows(int max-rows)

Specifies the maximum number of rows that are returned for any query that

uses the given execution context. If this limit is exceeded, SQLJ discards the

remaining rows.

 Parameters:

max-rows

The maximum number of rows that SQLJ should return for a query that

uses the given execution context. A value of 0 means that the number of

rows is unlimited. 0 is the default.

setQueryTimeout

Format:

public synchronized void setQueryTimeout(int timeout-value)

Specifies the maximum number of seconds that SQL operations that use the

given execution context object can execute. If an SQL operation exceeds the

limit, an SQLException is thrown.

 Parameters:

timeout-value

The maximum number of seconds that SQL operations that use the given

execution context object can execute. 0 means that execution time is

unlimited. 0 is the default.

 Related tasks:

v “Controlling the execution of SQL statements in SQLJ” on page 130

sqlj.runtime.SQLNullException class

 The sqlj.runtime.SQLNullException class is derived from the

java.sql.SQLException class. An sqlj.runtime.SQLNullException is thrown when

an SQL NULL value is fetched into a host identifier with a Java primitive type. The

SQLSTATE value for an instance of SQLNullException is '22002'.

 Related reference:

298 Developing Java Applications

v “Data types that map to SQL data types in JDBC applications” on page 227

sqlj.runtime.StreamWrapper class

 The sqlj.runtime.StreamWrapper class wraps a java.io.InputStream instance and

extends the java.io.InputStream class. The sqlj.runtime.AsciiStream,

sqlj.runtime.BinaryStream, and sqlj.runtime.UnicodeStream classes extend

sqlj.runtime.StreamWrapper. sqlj.runtime.StreamWrapper supports methods for

specifying the length of sqlj.runtime.AsciiStream, sqlj.runtime.BinaryStream,

and sqlj.runtime.UnicodeStream objects.

Constructors:

StreamWrapper(InputStream)

Format:

protected StreamWrapper(InputStream input-stream)

Creates an sqlj.runtime.StreamWrapper object with an unspecified length.

 Parameters:

input-stream

The InputStream object that the sqlj.runtime.StreamWrapper object wraps.

StreamWrapper(InputStream, int)

Format:

protected StreamWrapper(java.io.InputStream input-stream, int length)

Creates an sqlj.runtime.StreamWrapper object with a specified length.

 Parameters:

input-stream

The InputStream object that the sqlj.runtime.StreamWrapper object wraps.

length

The length of the InputStream object in bytes.

Methods:

getInputStream

Format:

public InputStream getInputStream()

Returns the underlying InputStream object that is wrapped by the

StreamWrapper object.

getLength

Format:

public void getLength()

Returns the length in bytes of the wrapped InputStream object, as specified by

the constructor or in the last call to setLength.

setLength

Format:

public void setLength (int length)

Chapter 11. JDBC and SQLJ reference 299

Sets the number of bytes that are read from the wrapped InputStream object

when the object is passed as an input argument to an SQL operation.

 Parameters:

length

The number of bytes that are read from the wrapped InputStream object.

 Related reference:

v “sqlj.runtime.AsciiStream class” on page 288

v “sqlj.runtime.BinaryStream class” on page 289

v “sqlj.runtime.UnicodeStream class” on page 300

sqlj.runtime.UnicodeStream class

 The sqlj.runtime.UnicodeStream class is for an input stream of Unicode data with

a specified length. The sqlj.runtime.UnicodeStream class is derived from the

java.io.InputStream class, and extends the sqlj.runtime.StreamWrapper class. SQLJ

interprets the bytes in an sqlj.runtime.UnicodeStream object as Unicode

characters. An InputStream object with Unicode characters needs to be passed as a

sqlj.runtime.UnicodeStream object.

Constructors:

UnicodeStream(InputStream)

Format:

public UnicodeStream(java.io.InputStream input-stream)

Creates a Unicode java.io.InputStream object with an unspecified length.

 Parameters:

input-stream

The InputStream object that SQLJ interprets as an UnicodeStream object.

UnicodeStream(InputStream, int)

Format:

public UnicodeStream(java.io.InputStream input-stream, int length)

Creates a Unicode java.io.InputStream object with a specified length.

 Parameters:

input-stream

The InputStream object that SQLJ interprets as an UnicodeStream object.

length

The length of the InputStream object that SQLJ interprets as an

UnicodeStream object.

IBM DB2 Driver for JDBC and SQLJ reference information

The topics that follow contain information that is specific to the IBM DB2 Driver

for JDBC and SQLJ.

v “DB2-only classes and interfaces” on page 301

v “JDBC differences between the IBM DB2 Driver for JDBC and SQLJ and other

DB2 JDBC drivers” on page 335

300 Developing Java Applications

v “SQLJ differences between the IBM DB2 Driver for JDBC and SQLJ and other

DB2 JDBC drivers” on page 342

v “Error codes issued by the IBM DB2 Driver for JDBC and SQLJ” on page 344

v “SQLSTATEs issued by the IBM DB2 Driver for JDBC and SQLJ” on page 345

v “How to find IBM DB2 Driver for JDBC and SQLJ version and environment

information” on page 346

DB2-only classes and interfaces

The following topics discuss classes and interfaces that are defined only by the

IBM DB2 Driver for JDBC and SQLJ.

Summary of IBM DB2 Driver for JDBC and SQLJ extensions to

JDBC

 The IBM DB2 Driver for JDBC and SQLJ provides a set of extensions to the

support that is provided by the JDBC specification.

To use DB2-only methods in classes that have corresponding, standard classes, cast

an instance of the related, standard JDBC class to an instance of the DB2-only class.

For example:

javax.sql.DataSource ds =

 new com.ibm.db2.jcc.DB2SimpleDataSource();

((com.ibm.db2.jcc.DB2BaseDataSource) ds).setServerName("sysmvs1.stl.ibm.com");

Table 64 summarizes the DB2-only interfaces.

 Table 64. Summary of DB2-only interfaces provided by the IBM DB2 Driver for JDBC and SQLJ

Interface name Purpose

DB2Connection Extends the java.sql.Connection interface.

DB2DatabaseMetaData Extends the java.sql.DatabaseMetaData interface.

DB2Diagnosable Provides a mechanism for getting DB2 diagnostics from a DB2 SQLException.

DB2PreparedStatement Extends the com.ibm.db2.jcc.DB2Statement and java.sql.PreparedStatement

interfaces.

DB2RowID Used for declaring Java objects for use with the DB2 ROWID data type.

DB2Statement Extends the java.sql.Statement interface.

DB2SystemMonitor Used for collecting system monitoring data for a connection.

DB2Xml Used for updating data in XML columns and retrieving data from XML columns.

Table 65 summarizes the DB2-only classes.

 Table 65. Summary of DB2-only classes provided by the IBM DB2 Driver for JDBC and SQLJ

Class name Purpose

DB2BaseDataSource The abstract data source parent class for all DB2-specific implementations of

javax.sql.DataSource, javax.sql.ConnectionPoolDataSource, and

javax.sql.XADataSource.

DB2JCCPlugin The abstract class for implementation of JDBC security plug-ins.

DB2ClientRerouteServerList Implements the java.io.Serializable and javax.naming.Referenceable interfaces.

DB2ConnectionPoolDataSource A factory for PooledConnection objects.

DB2ExceptionFormatter Contains methods for printing diagnostic information to a stream.

Chapter 11. JDBC and SQLJ reference 301

Table 65. Summary of DB2-only classes provided by the IBM DB2 Driver for JDBC and SQLJ (continued)

Class name Purpose

DB2PooledConnection Provides methods that an application server can use to switch users on a preexisting

trusted connection.

DB2SimpleDataSource Extends the DataBaseDataSource class. Does not support connection pooling or

distributed transactions.

DB2Sqlca An encapsulation of the DB2 SQLCA.

 Related reference:

v “SQLCA (SQL communications area)” in SQL Reference, Volume 1

v “DB2Sqlca class” on page 326

v “DB2BaseDataSource class” on page 302

v “DB2ClientRerouteServerList class” on page 305

v “DB2Connection interface” on page 306

v “DB2ConnectionPoolDataSource class” on page 318

v “DB2Diagnosable interface” on page 320

v “DB2ExceptionFormatter class” on page 320

v “DB2PooledConnection class” on page 322

v “DB2PreparedStatement interface” on page 325

v “DB2RowID interface” on page 325

v “DB2SimpleDataSource class” on page 325

v “DB2Statement interface” on page 327

v “DB2SystemMonitor interface” on page 328

v “DB2Xml interface” on page 333

DB2BaseDataSource class

The com.ibm.db2.jcc.DB2BaseDataSource class is the abstract data source parent

class for all DB2-specific implementations of javax.sql.DataSource,

javax.sql.ConnectionPoolDataSource, and javax.sql.XADataSource.

DB2BaseDataSource properties:

The following properties are defined only for the IBM DB2 Driver for JDBC and

SQLJ. See Properties for the IBM DB2 Driver for JDBC and SQLJ for explanations

of these properties.

Each of these properties has a setXXX method to set the value of the property and

a getXXX method to retrieve the value. A setXXX method has this form:

void setProperty-name(data-type property-value)

A getXXX method has this form:

data-type getProperty-name()

Property-name is the unqualified property name, with the first character capitalized.

Table 66 on page 303 lists the IBM DB2 Driver for JDBC and SQLJ properties and

their data types.

302 Developing Java Applications

Table 66. DB2BaseDataSource properties and their data types

Property name Data type

com.ibm.db2.jcc.DB2BaseDataSource.accountingInterval (DB2 for z/OS only) String

com.ibm.db2.jcc.DB2BaseDataSource.blockingReadConnectionTimeout int

com.ibm.db2.jcc.DB2BaseDataSource.clientAccountingInformation String

com.ibm.db2.jcc.DB2BaseDataSource.clientApplicationInformation String

com.ibm.db2.jcc.DB2BaseDataSource.clientDebugInfo String

com.ibm.db2.jcc.DB2BaseDataSource.clientProgramId String

com.ibm.db2.jcc.DB2BaseDataSource.clientProgramName String

com.ibm.db2.jcc.DB2BaseDataSource.clientRerouteServerListJNDIName String

com.ibm.db2.jcc.DB2BaseDataSource.clientUser String

com.ibm.db2.jcc.DB2BaseDataSource.clientWorkstation String

com.ibm.db2.jcc.DB2BaseDataSource.currentExplainMode String

com.ibm.db2.jcc.DB2BaseDataSource.currentExplainSnapshot String

com.ibm.db2.jcc.DB2BaseDataSource.currentFunctionPath String

com.ibm.db2.jcc.DB2BaseDataSource.currentLockTimeout (DB2 for z/OS only) int

com.ibm.db2.jcc.DB2BaseDataSource.currentMaintainedTableTypesForOptimization String

com.ibm.db2.jcc.DB2BaseDataSource.currentPackagePath String

com.ibm.db2.jcc.DB2BaseDataSource.currentPackageSet String

com.ibm.db2.jcc.DB2BaseDataSource.currentQueryOptimization int

com.ibm.db2.jcc.DB2BaseDataSource.currentRefreshAge long

com.ibm.db2.jcc.DB2BaseDataSource.cursorSensitivity int

com.ibm.db2.jcc.DB2BaseDataSource.currentSchema String

com.ibm.db2.jcc.DB2BaseDataSource.currentSQLID String

com.ibm.db2.jcc.DB2BaseDataSource.databaseName String

com.ibm.db2.jcc.DB2BaseDataSource.deferPrepares boolean

com.ibm.db2.jcc.DB2BaseDataSource.description String

com.ibm.db2.jcc.DB2BaseDataSource.driverType int

com.ibm.db2.jcc.DB2BaseDataSource.enableConnectionConcentrator boolean

com.ibm.db2.jcc.DB2BaseDataSource.enableSysplexWLB boolean

com.ibm.db2.jcc.DB2BaseDataSource.fullyMaterializeInputStreams boolean

com.ibm.db2.jcc.DB2BaseDataSource.fullyMaterializeLobData boolean

com.ibm.db2.jcc.DB2BaseDataSource.gssCredential Object

com.ibm.db2.jcc.DB2BaseDataSource.jdbcCollection String

com.ibm.db2.jcc.DB2BaseDataSource.keepDynamic int

com.ibm.db2.jcc.DB2BaseDataSource.kerberosServerPrincipal String

com.ibm.db2.jcc.DB2BaseDataSource.loginTimeout int

com.ibm.db2.jcc.DB2BaseDataSource.logWriter PrintWriter

com.ibm.db2.jcc.DB2BaseDataSource.maxRetriesForClientReroute int

com.ibm.db2.jcc.DB2BaseDataSource.maxTransportObjects int

com.ibm.db2.jcc.DB2BaseDataSource.pkList String

com.ibm.db2.jcc.DB2BaseDataSource.planName String

Chapter 11. JDBC and SQLJ reference 303

Table 66. DB2BaseDataSource properties and their data types (continued)

Property name Data type

com.ibm.db2.jcc.DB2BaseDataSource.plugin (DB2 Database for Linux, UNIX, and Windows only) Object

com.ibm.db2.jcc.DB2BaseDataSource.pluginName (DB2 Database for Linux, UNIX, and Windows

only)

String

com.ibm.db2.jcc.DB2BaseDataSource.portNumber int

com.ibm.db2.jcc.DB2BaseDataSource.progressiveStreaming int

com.ibm.db2.jcc.DB2BaseDataSource.queryCloseImplicit int

com.ibm.db2.jcc.DB2BaseDataSource.readOnly boolean

com.ibm.db2.jcc.DB2BaseDataSource.resultSetHoldability int

com.ibm.db2.jcc.DB2BaseDataSource.retrieveMessagesFromServerOnGetMessage boolean

com.ibm.db2.jcc.DB2BaseDataSource.retryIntervalForClientReroute int

com.ibm.db2.jcc.DB2BaseDataSource.returnAlias short

com.ibm.db2.jcc.DB2BaseDataSource.securityMechanism int

com.ibm.db2.jcc.DB2BaseDataSource.sendDataAsIs boolean

com.ibm.db2.jcc.DB2BaseDataSource.serverName String

com.ibm.db2.jcc.DB2BaseDataSource.sslConnection boolean

com.ibm.db2.jcc.DB2BaseDataSource.streamBufferSize int

com.ibm.db2.jcc.DB2BaseDataSource.supportsAsynchronousXARollback int

com.ibm.db2.jcc.DB2BaseDataSource.sysSchema String

com.ibm.db2.jcc.DB2BaseDataSource.traceDirectory String

com.ibm.db2.jcc.DB2BaseDataSource.traceFile String

com.ibm.db2.jcc.DB2BaseDataSource.traceLevel int

com.ibm.db2.jcc.DB2BaseDataSource.useCachedCursor boolean

com.ibm.db2.jcc.DB2BaseDataSource.usePool boolean

com.ibm.db2.jcc.DB2BaseDataSource.user String

com.ibm.db2.jcc.DB2BaseDataSource.useTargetColumnEncoding boolean

com.ibm.db2.jcc.DB2BaseDataSource.useTransactionRedirect boolean

DB2BaseDataSource methods:

In addition to the getXXX and setXXX methods for the DB2BaseDataSource

properties, the following methods are defined only for the IBM DB2 Driver for

JDBC and SQLJ.

getReference

Format:

public javax.naming.Reference getReference()

 throws javax.naming.NamingException

Retrieves the Reference of a DataSource object. For an explanation of a

Reference, see the description of javax.naming.Referenceable in the JNDI

documentation at:

http://java.sun.com/products/jndi/docs.html

 Related reference:

304 Developing Java Applications

v “Properties for the IBM DB2 Driver for JDBC and SQLJ” on page 232

DB2ClientRerouteServerList class

 The com.ibm.db2.jcc.DB2ClientRerouteServerList class implements the

java.io.Serializable and javax.naming.Referenceable interfaces.

DB2ClientRerouteServerList methods:

getAlternatePortNumber

Format:

public int[] getAlternatePortNumber()

Retrieves the port numbers that are associated with the alternate DB2 database

servers.

getAlternateServerName

Format:

public String[] getAlternateServerName()

Retrieves an array that contains the names of the alternate DB2 database

servers. These values are IP addresses or DNS server names.

getPrimaryPortNumber

Format:

public int getPrimaryPortNumber()

Retrieves the port number that is associated with the primary DB2 database

server.

getPrimaryServerName

Format:

public String[] getPrimaryServerName()

Retrieves the name of the primary DB2 database server. This value is an IP

address or a DNS server name.

setAlternatePortNumber

Format:

public void setAlternatePortNumber(int[] alternatePortNumberList)

Sets the port numbers that are associated with the alternate DB2 database

servers.

setAlternateServerName

Format:

public void setAlternateServerName(String[] alternateServer)

Sets the alternate server names for DB2 database servers. These values are IP

addresses or DNS server names.

setPrimaryPortNumber

Format:

public void setPrimaryPortNumber(int primaryPortNumber)

Sets the port number that is associated with the primary DB2 database server.

setPrimaryServerName

Format:

Chapter 11. JDBC and SQLJ reference 305

public void setPrimaryServerName(String primaryServer)

Sets the primary server name for a DB2 database server. This value is an IP

address or a DNS server name.

 Related concepts:

v “IBM DB2 Driver for JDBC and SQLJ client reroute support” on page 86

DB2Connection interface

 The com.ibm.db2.jcc.DB2Connection interface extends the java.sql.Connection

interface.

DB2Connection methods:

The following methods are defined only for the IBM DB2 Driver for JDBC and

SQLJ.

changeDB2Password

Format:

public abstract void changeDB2Password(String oldPassword,

 String newPassword)

 throws java.sql.SQLException

Changes the password for accessing the DB2 database server, for the user of

the Connection object.

 Parameter descriptions:

oldPassword

The original password for the Connection.

newPassword

The new password for the Connection.

deregisterDB2XmlObject

Formats:

public void deregisterDB2XmlObject(String sqlIdSchema,

 String sqlIdName)

 throws SQLException

Removes a previously registered XML schema from DB2.

deregisterDB2XmlObject calls the SYSPROC.XSR_REMOVE stored procedure to

remove the XML schema.

 Parameter descriptions:

sqlIdSchema

The SQL schema name for the XML schema. sqlIdSchema is a String value

with a maximum length of 128 bytes. The value of sqlIdSchema must

conform to the naming rules for any SQL schema name. The name cannot

begin with the string 'SYS'. If the value of sqlIdSchema is null, DB2 uses

the value in the CURRENT SCHEMA special register.

sqlIdName

The SQL name for the XML schema. sqlIdName is a String value with a

maximum length of 128 bytes. The value of sqlIdName must conform to

306 Developing Java Applications

the rules for an SQL identifier. If the value of sqlIdSchema is null, the

value of sqlIdName can be null, In that case, DB2 generates the value for

sqlIdName.

getDB2ClientProgramId

Format:

public String getDB2ClientProgramId()

 throws java.sql.SQLException

Returns the user-defined program identifier for the client. The program

identifier can be used to identify the application at the database server.

getDB2ClientAccountingInformation

Format:

public String getDB2ClientAccountingInformation()

 throws SQLException

Returns accounting information for the current client.

getDB2ClientApplicationInformation

Format:

public String getDB2ClientApplicationInformation()

 throws java.sql.SQLException

Returns application information for the current client.

getDB2ClientUser

Format:

public String getDB2ClientUser()

 throws java.sql.SQLException

Returns the current client user name for the connection. This name is not the

user value for the JDBC connection.

getDB2ClientWorkstation

Format:

public String getDB2ClientWorkstation()

 throws java.sql.SQLException

Returns current client workstation name for the current client.

getDB2Correlator

Format:

String getDB2Correlator()

 throws java.sql.SQLException

Returns the value of the crrtkn (correlation token) instance variable that DRDA

sends with the ACCRDB command. The correlation token uniquely identifies a

logical connection to a server.

getDB2CurrentPackagePath

Format:

public String getDB2CurrentPackagePath()

 throws java.sql.SQLException

Returns the list of DB2 package collections that are searched for JDBC and

SQLJ packages.

getDB2CurrentPackageSet

Format:

Chapter 11. JDBC and SQLJ reference 307

public String getDB2CurrentPackageSet()

 throws java.sql.SQLException

Returns the collection ID for the connection.

getDB2SystemMonitor

Format:

public abstract DB2SystemMonitor getDB2SystemMonitor()

 throws java.sql.SQLException

Returns the system monitor object for the connection. Each IBM DB2 Driver for

JDBC and SQLJ connection can have a single system monitor.

getJccLogWriter

Format:

public PrintWriter getJccLogWriter()

 throws java.sql.SQLException

Returns the current trace destination for the IBM DB2 Driver for JDBC and

SQLJ trace.

installDB2JavaStoredProcedure

Format:

public void DB2Connection.installDB2JavaStoredProcedure(

 java.io.InputStream jarFile,

 int jarFileLength,

 String jarId)

 throws java.sql.SQLException

Invokes the sqlj.install_jar stored procedure on a DB2 Database for Linux,

UNIX, and Windows server to create a new definition of a JAR file in the DB2

catalog for that server.

 Parameter descriptions:

jarFile

The contents of the JAR file that is to be defined to the DB2 server.

jarFileLength

The length of the JAR file that is to be defined to the DB2 server.

jarId

The DB2 name of the JAR, in the form schema.JAR-id or JAR-id. This is the

name that you use when you refer to the JAR in SQL statements. If you

omit schema, DB2 uses the SQL authorization ID that is in the CURRENT

SCHEMA special register. The owner of the JAR is the authorization ID in

the CURRENT SQLID special register.

isDB2Alive

Format:

public boolean DB2Connection.isDB2Alive()

 throws java.sql.SQLException

Returns true if the socket for a connection to a DB2 server is still active.

isDB2GatewayConnection

Format:

public boolean DB2Connection.isDB2GatewayConnection()

 throws java.sql.SQLException

308 Developing Java Applications

Returns true if the connection to the server goes through an intermediate DB2

Connect gateway. Returns false otherwise.

reconfigureDB2Connection

Format:

public void reconfigureDB2Connection(java.util.Properties properties)

 throws SQLException

Reconfigures a connection with new settings. The connection does not need to

be returned to a connection pool before it is reconfigured. This method can be

called while a transaction is in progress.

 Parameter descriptions:

properties

New properties for the connection. These properties override any

properties that are already defined on the DB2Connection instance.

recycleDB2Connection

Format:

public void recycleDB2Connection()

 throws SQLException

Notifies the underlying physical connection of a recycle event. Statement

objects on the Connection are closed or recycled for reuse, depending on pool

configuration settings.

registerDB2XmlSchema

Formats:

public void registerDB2XmlSchema(String[] sqlIdSchema,

 String[] sqlIdName,

 String[] xmlSchemaLocations,

 InputStream[] xmlSchemaDocuments,

 int[] xmlSchemaDocumentsLengths,

 InputStream[] xmlSchemaDocumentsProperties,

 int[] xmlSchemaDocumentsPropertiesLengths,

 InputStream xmlSchemaProperties,

 int xmlSchemaPropertiesLength,

 boolean isUsedForShredding)

 throws SQLException

public void registerDB2XmlSchema(String[] sqlIdSchema,

 String[] sqlIdName,

 String[] xmlSchemaLocations,

 String[] xmlSchemaDocuments,

 String[] xmlSchemaDocumentsProperties,

 String xmlSchemaProperties,

 boolean isUsedForShredding)

 throws SQLException

Provides one or more XML schema documents for registering an XML schema

in DB2. registerDB2XmlSchema calls the SYSPROC.XSR_REGISTER,

SYSPROC.XSR_ADDSCHEMADOC, and SYSPROC.XSR_COMPLETE stored

procedures to register an XML schema with one or more XML schema

documents. If multiple XML schema documents are processed with one call to

registerDB2XmlSchema, those documents are processed as part of a single

transaction.

 The first form of registerDB2XmlSchema is for XML schema documents that are

read from an input stream. The second form of registerDB2XmlSchema is for

XML schema documents that are read from strings.

Chapter 11. JDBC and SQLJ reference 309

Parameter descriptions:

sqlIdSchema

The SQL schema name for the XML schema. Only the first element of the

sqlIdSchema array is used. sqlIdSchema is a String value with a maximum

length of 128 bytes. The value of sqlIdSchema must conform to the naming

rules for any SQL schema name. The name cannot begin with the string

'SYS'. If the value of sqlIdSchema is null, DB2 uses the value in the

CURRENT SCHEMA special register.

sqlIdName

The SQL name for the XML schema. Only the first element of the

sqlIdName array is used. sqlIdName is a String value with a maximum

length of 128 bytes. The value of sqlIdName must conform to the rules for

an SQL identifier. If the value of sqlIdSchema is null, the value of

sqlIdName can be null, In that case, DB2 generates the value for

sqlIdName.

xmlSchemaLocations

XML schema locations for the primary XML schema documents of the

schemas that are being registered. XML schema location values are

normally in URI format. Each xmlSchemaLocations value is a String value

with a maximum length of 1000 bytes. The value is used only to match the

information that is specified in the XML schema document that references

this document. DB2 does no validation of the format, and no attempt is

made to resolve the URI.

xmlSchemaDocuments

The content of the primary XML schema documents. Each

xmlSchemaDocuments value is a String or InputStream value with a

maximum length of 30MB. The values must not be null.

xmlSchemaDocumentsLengths

The lengths of the XML schema documents in the xmlSchemaDocuments

parameter, if the first form of registerDB2XmlSchema is used. Each

xmlSchemaDocumentsLengths value is an int value.

xmlSchemaDocumentsProperties

Contains properties of the primary XML schema documents, such as

properties that are used by an external XML schema versioning system.

DB2 does no validation of the contents of these values. They are stored in

the XSR table for retrieval and used in other tools and XML schema

repository implementations. Each xmlSchemaDocumentsProperties value is

a String or InputStream value with a maximum length of 5MB. A value is

null if there are no properties to be passed.

xmlSchemaDocumentsPropertiesLengths

The lengths of the XML schema properties in the

xmlSchemaDocumentsProperties parameter, if the first form of

registerDB2XmlSchema is used. Each

xmlSchemaDocumentsPropertiesLengths value is an int value.

xmlSchemaProperties

Contains properties of the entire XML schema, such as properties that are

used by an external XML schema versioning system. DB2 does no

validation of the contents of this value. They are stored in the XSR table

for retrieval and used in other tools and XML schema repository

implementations. The xmlSchemaProperties value is a String or

InputStream value with a maximum length of 5MB. The value is null if

there are no properties to be passed.

310 Developing Java Applications

xmlSchemaPropertiesLengths

The length of the XML schema property in the xmlSchemaProperties

parameter, if the first form of registerDB2XmlSchema is used. The

xmlSchemaPropertiesLengths value is an int value.

isUsedForShredding

Indicates whether there are annotations in the schema that are to be used

for XML decomposition. isUsedForShredding is a boolean value.

removeDB2JavaStoredProcedure

Format:

public void DB2Connection.replaceDB2JavaStoredProcedure(

 String jarId)

 throws java.sql.SQLException

Invokes the sqlj.remove_jar stored procedure on a DB2 Database for Linux,

UNIX, and Windows server to delete the definition of a JAR file from the DB2

catalog for that server.

 Parameter descriptions:

jarId

The DB2 name of the JAR, in the form schema.JAR-id or JAR-id. This is the

name that you use when you refer to the JAR in SQL statements. If you

omit schema, DB2 uses the SQL authorization ID that is in the CURRENT

SCHEMA special register.

replaceDB2JavaStoredProcedure

Format:

public void DB2Connection.replaceDB2JavaStoredProcedure(

 java.io.InputStream jarFile,

 int jarFileLength,

 String jarId)

 throws java.sql.SQLException

Invokes the sqlj.replace_jar stored procedure on a DB2 Database for Linux,

UNIX, and Windows server to replace the definition of a JAR file in the DB2

catalog for that server.

 Parameter descriptions:

jarFile

The contents of the JAR file that is to be replaced on the DB2 server.

jarFileLength

The length of the JAR file that is to be replace on the DB2 server.

jarId

The DB2 name of the JAR, in the form schema.JAR-id or JAR-id. This is the

name that you use when you refer to the JAR in SQL statements. If you

omit schema, DB2 uses the SQL authorization ID that is in the CURRENT

SCHEMA special register. The owner of the JAR is the authorization ID in

the CURRENT SQLID special register.

reuseDB2Connection (trusted connection reuse)

Formats:

public Connection reuseDB2Connection(byte[] cookie,

 String user,

 String password,

 String usernameRegistry,

Chapter 11. JDBC and SQLJ reference 311

byte[] userSecToken,

 String originalUser,

 java.util.Properties properties)

 throws java.sql.SQLException

Used by a trusted application server to reuse a preexisting trusted connection

on behalf of a new user. Properties that can be reset are passed, including the

new user ID. The database server resets the associated physical connection. If

reuseDB2Connection executes successfully, the connection becomes available for

immediate use, with different properties, by the new user.

 Parameter descriptions:

cookie

A unique cookie that the JDBC driver generates for the Connection

instance. The cookie is known only to the application server and the

underlying JDBC driver that established the initial trusted connection. The

application server passes the cookie that was created by the driver when

the pooled connection instance was created. The JDBC driver checks that

the supplied cookie matches the cookie of the underlying trusted physical

connection to ensure that the request originated from the application server

that established the trusted physical connection. If the cookies match, the

connection becomes available for immediate use, with different properties,

by the new user .

user

The client ID that the DB2 database server uses to establish the database

authorization ID. If the user was not authenticated by the application

server, the application server needs to pass a client ID that represents an

unauthenticated DB2 user.

password

The password for user.

userNameRegistry

A name that identifies a mapping service that maps a workstation user ID

to a z/OS RACF ID. An example of a mapping service is the Integrated

Security Services Enterprise Identity Mapping (EIM). The mapping service

is defined by a plugin. Valid values for userNameRegistry are defined by the

plugin providers. If userNameRegistry is null, no mapping of user is done.

userSecToken

The client’s security tokens. This value is traced as part of DB2 for z/OS

accounting data. The content of userSecToken is described by the application

server and is referred to by the DB2 server as an application server

security token.

originalUser

The original user ID that was used by the application server.

properties

Properties for the reused connection.

reuseDB2Connection (untrusted reuse with reauthentication)

Formats:

public DB2Connection reuseDB2Connection(String user,

 String password,

 java.util.Properties properties)

 throws java.sql.SQLException

312 Developing Java Applications

public DB2Connection reuseDB2Connection(

 org.ietf.jgss.GSSCredential gssCredential,

 java.util.Properties properties)

 throws java.sql.SQLException

In a heterogeneous pooling environment, reuses an existing Connection

instance after reauthentication.

 Parameter description:

user

The authorization ID that is used to establish the connection.

password

The password for the authorization ID that is used to establish the

connection.

gssCredential

If the data source uses Kerberos security, specifies a delegated credential

that is passed from another principal.

properties

Properties for the reused connection. These properties override any

properties that are already defined on the DB2Connection instance.

reuseDB2Connection (untrusted reuse without reauthentication)

Formats:

public DB2Connection reuseDB2Connection(java.util.Properties properties)

 throws java.sql.SQLException

public DB2Connection reuseDB2Connection()

 throws java.sql.SQLException

public DB2Connection reuseDB2Connection(int connectionReuseProtocol,

 java.util.Properties properties)

 throws java.sql.SQLException

public DB2Connection reuseDB2Connection(int connectionReuseProtocol)

 throws java.sql.SQLException

Reuses an existing Connection instance without reauthentication. The second

and fourth forms of the method is intended for reuse of a Connection instance

when the properties do not change. The third and fourth forms of

getDB2Connection let you specify whether to reset the connection properties

when the connection is reused.

 Parameter description:

properties

Properties for the reused connection. These properties override any

properties that are already defined on the DB2Connection instance.

connectionReuseProtocol

Specifies whether the connection state is reset when a connection is reused

from a connection pool. This value overrides the connectionReuseProtocol

property value. Possible values are:

DIRTY_CONNECTION_REUSE

The connection state is not reset when a Connection is reused from

a connection pool. Special register settings are not reset and

temporary tables are not dropped. Specified property settings

(derived from an application DataSource or WebSphere Application

Server resource reference) might be passed by the pool module to

the JDBC driver for reinitialization. Properties that are not passed

Chapter 11. JDBC and SQLJ reference 313

by the pool module are not changed. All JDBC standard transient

properties, such as isolation level, auto-commit mode, and

read-only mode are reset to their JDBC defaults. These properties

do not change:

v accountingInterval

v databaseName

v driverType

v pkList

v planName

v portNumber

v kerberosServerPrincipal

v password

v readOnly

v securityMechanism

v serverName

v user

RESET_CONNECTIONS_ON_REUSE

The connection state is reset when a Connection is reused from a

connection pool. Special register settings are reset and temporary

tables are dropped. Specified property settings (derived from an

application DataSource or WebSphere Application Server resource

reference) might be passed by the pool module to the JDBC driver

for reinitialization. All JDBC standard transient properties, such as

isolation level, auto-commit mode, and read-only mode are reset to

their JDBC defaults. These properties do not change:

v accountingInterval

v databaseName

v driverType

v pkList

v planName

v portNumber

v kerberosServerPrincipal

v password

v readOnly

v securityMechanism

v serverName

v user

setDB2ClientAccountingInformation

Format:

public void setDB2ClientAccountingInformation(String info)

 throws java.sql.SQLException

Specifies accounting information for the connection. This information is for

client accounting purposes. This value can change during a connection.

 Parameter description:

info

User-specified accounting information. The maximum length depends on

the server. For a DB2 Database for Linux, UNIX, and Windows server, the

maximum length is 255 bytes. For a DB2 for z/OS server, the maximum

length is 22 bytes. A Java empty string ("") is valid for this parameter

value, but a Java null value is not valid.

setDB2ClientDebugInfo

Formats:

314 Developing Java Applications

public void setDB2ClientDebugInformation(String debugInfo)

 throws java.sql.SQLException

public void setDB2ClientDebugInformation(String mgrInfo,

 String traceInfo)

 throws java.sql.SQLException

Sets a value for the DB2 CLIENT DEBUGINFO connection attribute, to notify

the DB2 server that stored procedures and user-defined functions that are

using the connection are running in debug mode. CLIENT DEBUGINFO is

used by the DB2 Unified Debugger. Use the first form to set the entire CLIENT

DEBUGINFO string. Use the second form to modify only the session manager

and trace information in the CLIENT DEBUGINFO string.

 The setDB2ClientDebugInfo method applies only to connections to DB2 for

z/OS database servers.

 Setting the CLIENT DEBUGINFO attribute to a string of length greater than

zero requires one of the following privileges:

v The DEBUGSESSION privilege

v SYSADM authority

Parameter description:

debugInfo

A string of up to 254 bytes, in the following form:

Mip:port,Iip,Ppid,Ttid,Cid,Llvl

The parts of the string are:

Mip:port

Session manager IP address and port number

Iip Client IP address

Ppid Client process ID

Ttid Client thread ID (optional)

Cid Data connection generated ID

Llvl Debug library diagnostic trace level

For example:

M9.72.133.89:8355,I9.72.133.89,P4552,T123,C1,L0

See the description of SET CLIENT DEBUGINFO for a detailed description

of this string.

mgrInfo

A string of the following form, which specifies the IP address and port

number for the Unified Debugger session manager.

Mip:port

For example:

M9.72.133.89:8355

See the description of SET CLIENT DEBUGINFO for a detailed description

of this string.

Chapter 11. JDBC and SQLJ reference 315

trcInfo

A string of the following form, which specifies the debug library

diagnostics trace level.

Llvl

For example:

L0

See the description of SET CLIENT DEBUGINFO for a detailed description

of this string.

setDB2ClientProgramId

Format:

public abstract void setDB2ClientProgramId(String program-ID)

 throws java.sql.SQLException

Sets a user-defined program identifier for the connection, on DB2 for z/OS

servers. That program identifier is an 80-byte string that is used to identify the

caller. The DB2 for z/OS server places the string in IFCID 316 trace records

along with other statistics, so that you can identify which program is

associated with a particular SQL statement.

setDB2ClientUser

Format:

public void setDB2ClientUser(String user)

 throws java.sql.SQLException

Specifies the current client user name for the connection. This name is for

client accounting purposes, and is not the user value for the JDBC connection.

Unlike the user for the JDBC connection, the current client user name can

change during a connection.

 Parameter description:

user

The user ID for the current client.The maximum length depends on the

server. For a DB2 Database for Linux, UNIX, and Windows server, the

maximum length is 255 bytes. For a DB2 for z/OS server, the maximum

length is 16 bytes. A Java empty string ("") is valid for this parameter

value, but a Java null value is not valid.

setDB2ClientWorkstation

Format:

public void setDB2ClientWorkstation(String name)

 throws java.sql.SQLException

Specifies the current client workstation name for the connection. This name is

for client accounting purposes. The current client workstation name can change

during a connection.

 Parameter description:

name

The workstation name for the current client.The maximum length depends

on the server. For a DB2 Database for Linux, UNIX, and Windows server,

the maximum length is 255 bytes. For a DB2 for z/OS server, the

maximum length is 18 bytes. A Java empty string ("") is valid for this

parameter value, but a Java null value is not valid.

316 Developing Java Applications

setDB2CurrentPackagePath

Format:

public void setDB2CurrentPackagePath(String packagePath)

 throws java.sql.SQLException

Specifies a list of collection IDs that the DB2 server searches for JDBC and

SQLJ packages.

 Parameter description:

packagePath

A comma-separated list of collection IDs.

setDB2CurrentPackageSet

Format:

public void setDB2CurrentPackageSet(String packageSet)

 throws java.sql.SQLException

Specifies the collection ID for the connection. When you set this value, you

also set the collection ID of the IBM DB2 Driver for JDBC and SQLJ instance

that is used for the connection.

 Parameter description:

packageSet

The collection ID for the connection. The maximum length for the

packageSet value is 18 bytes. You can invoke this method as an alternative

to executing the SQL SET CURRENT PACKAGESET statement in your

program.

setJccLogWriter

Formats:

public void setJccLogWriter(PrintWriter logWriter)

 throws java.sql.SQLException

public void setJccLogWriter(PrintWriter logWriter, int traceLevel)

 throws java.sql.SQLException

Enables or disables the IBM DB2 Driver for JDBC and SQLJ trace, or changes

the trace destination during an active connection.

 Parameter descriptions:

logWriter

An object of type java.io.PrintWriter to which the IBM DB2 Driver for

JDBC and SQLJ writes trace output. To turn off the trace, set the value of

logWriter to null.

traceLevel

Specifies the types of traces to collect. See the description of the traceLevel

property in Properties for the IBM DB2 Driver for JDBC and SQLJ for valid

values.

 Related concepts:

v “JDBC and SQLJ problem diagnosis with the IBM DB2 Driver for JDBC and

SQLJ” on page 181

 Related tasks:

Chapter 11. JDBC and SQLJ reference 317

v “Providing extended client information to the DB2 server with the IBM DB2

Driver for JDBC and SQLJ” on page 66

DB2ConnectionPoolDataSource class

 The com.ibm.db2.jcc.DB2ConnectionPoolDataSource class extends the

com.ibm.db2.jcc.DB2BaseDataSource class, and implements the

javax.sql.ConnectionPoolDataSource, java.io.Serializable, and

javax.naming.Referenceable interfaces.

DB2ConnectionPoolDataSource is a factory for PooledConnection objects. An object

that implements this interface is registered with a naming service that is based on

the Java Naming and Directory Interface (JNDI).

DB2ConnectionPoolDataSource properties:

These properties are defined only for the IBM DB2 Driver for JDBC and SQLJ. See

Properties for the IBM DB2 Driver for JDBC and SQLJ for explanations of these

properties.

These properties have a setXXX method to set the value of the property and a

getXXX method to retrieve the value. A setXXX method has this form:

void setProperty-name(data-type property-value)

A getXXX method has this form:

data-type getProperty-name()

Property-name is the unqualified property name, with the first character capitalized.

Table 67 lists the IBM DB2 Driver for JDBC and SQLJ properties and their data

types.

 Table 67. DB2ConnectionPoolDataSource properties and their data types

Property name Data type

com.ibm.db2.jcc.DB2ConnectionPoolDataSource.connectionReuseProtocol int

com.ibm.db2.jcc.DB2ConnectionPoolDataSource.statementReuseProtocol int

DB2ConnectionPoolDataSource methods:

getDB2PooledConnection

Formats:

public DB2PooledConnection getDB2PooledConnection(String user,

 String password,

 java.util.Properties properties)

 throws java.sql.SQLException

public DB2PooledConnection getDB2PooledConnection(

 org.ietf.jgss.GSSCredential gssCredential,

 java.util.Properties properties)

 throws java.sql.SQLException

Establishes the initial untrusted connection in a heterogeneous pooling

environment.

 The first form getDB2PooledConnection provides a user ID and password. The

second form of getDB2PooledConnection is for connections that use Kerberos

security.

318 Developing Java Applications

Parameter descriptions:

user

The authorization ID that is used to establish the connection.

password

The password for the authorization ID that is used to establish the

connection.

gssCredential

If the data source uses Kerberos security, specifies a delegated credential

that is passed from another principal.

properties

Properties for the connection.

getDB2TrustedPooledConnection

Formats:

public Object[] getDB2TrustedPooledConnection(String user,

 String password,

 java.util.Properties properties)

 throws java.sql.SQLException

public Object[] getDB2TrustedPooledConnection(

 java.util.Properties properties)

 throws java.sql.SQLException

public Object[] getDB2TrustedPooledConnection(

 org.ietf.jgss.GSSCredential gssCredential,

 java.util.Properties properties)

 throws java.sql.SQLException

An application server using a system authorization ID uses this method to

establish a trusted connection. The following elements are returned in Object[]:

v The first element is a trusted DB2PooledConnection instance.

v The second element is a unique cookie for the generated pooled connection

instance.

The first form getDB2TrustedPooledConnection provides a user ID and

password, while the second form of getDB2TrustedPooledConnection uses the

user ID and password of the DB2ConnectionPoolDataSource object. The third

form of getDB2TrustedPooledConnection is for connections that use Kerberos

security.

 Parameter descriptions:

user

The DB2 authorization ID that is used to establish the trusted connection to

the database server.

password

The password for the authorization ID that is used to establish the trusted

connection.

gssCredential

If the data source uses Kerberos security, specifies a delegated credential

that is passed from another principal.

properties

Properties for the connection.

 Related concepts:

v Chapter 9, “JDBC and SQLJ connection pooling support,” on page 219

Chapter 11. JDBC and SQLJ reference 319

Related reference:

v “Properties for the IBM DB2 Driver for JDBC and SQLJ” on page 232

DB2Diagnosable interface

 The com.ibm.db2.jcc.DB2Diagnosable interface provides a mechanism for getting

DB2 diagnostics from a DB2 SQLException.

DB2Diagnosable methods:

The following methods are defined only for the IBM DB2 Driver for JDBC and

SQLJ.

getSqlca

Format:

public DB2Sqlca getSqlca()

Returns a DB2Sqlca object from a java.sql.Exception that is produced under a

IBM DB2 Driver for JDBC and SQLJ.

getThrowable

Format:

public Throwable getThrowable()

Returns a java.lang.Throwable object from a java.sql.Exception that is

produced under a IBM DB2 Driver for JDBC and SQLJ.

printTrace

Format:

static public void printTrace(java.io.PrintWriter printWriter,

 String header)

Prints diagnostic information after a java.sql.Exception is thrown under a

IBM DB2 Driver for JDBC and SQLJ.

 Parameter descriptions:

printWriter

The destination for the diagnostic information.

header

User-defined information that is printed at the beginning of the output.

 Related tasks:

v “Handling an SQLException under the IBM DB2 Driver for JDBC and SQLJ” on

page 77

v “Handling SQL warnings in an SQLJ application” on page 139

DB2ExceptionFormatter class

 The com.ibm.db2.jcc.DB2ExceptionFormatter class contains methods for printing

diagnostic information to a stream.

DB2ExceptionFormatter methods:

The following methods are defined only for the IBM DB2 Driver for JDBC and

SQLJ.

320 Developing Java Applications

printTrace

Formats:

static public void printTrace(java.sql.SQLException sqlException,

 java.io.PrintWriter printWriter, String header)

static public void printTrace(DB2Sqlca sqlca,

 java.io.PrintWriter printWriter, String header)

static public void printTrace(java.lang.Throwable throwable,

 java.io.PrintWriter printWriter, String header)

Prints diagnostic information after an exception is thrown.

 Parameter descriptions:

sqlException|sqlca|throwable

The exception that was thrown during a previous JDBC or Java operation.

printWriter

The destination for the diagnostic information.

header

User-defined information that is printed at the beginning of the output.

 Related concepts:

v “Example of a trace program under the IBM DB2 Driver for JDBC and SQLJ” on

page 184

DB2JCCPlugin class

 The com.ibm.db2.jcc.DB2JCCPlugin class is an abstract class that defines methods

that can be implemented to provide DB2 Database for Linux, UNIX, and Windows

plug-in support. This class applies only to DB2 Database for Linux, UNIX, and

Windows.

DB2JCCPlugin methods:

The following methods are defined only for the IBM DB2 Driver for JDBC and

SQLJ.

getTicket

Format:

public abstract byte[] getTicket(String user,

 String password,

 byte[] returnedToken)

 throws org.ietf.jgss.GSSException

Retrieves a Kerberos ticket for a user.

 Parameter descriptions:

user

The user ID for which the Kerberos ticket is to be retrieved.

password

The password for user.

returnedToken

 Related concepts:

v “IBM DB2 Driver for JDBC and SQLJ security plugin support” on page 151

Chapter 11. JDBC and SQLJ reference 321

DB2PooledConnection class

 The com.ibm.db2.jcc.DB2PooledConnection class provides methods that an

application server can use to switch users on a preexisting trusted connection.

DB2PooledConnection methods:

The following methods are defined only for the IBM DB2 Driver for JDBC and

SQLJ.

getDB2Connection (trusted reuse)

Formats:

public DB2Connection getDB2Connection(byte[] cookie,

 String user,

 String password,

 String userRegistry,

 byte[] userSecToken,

 String originalUser,

 java.util.Properties properties)

 throws java.sql.SQLException

Switches the user that is associated with a trusted connection without

authentication.

 Parameter descriptions:

cookie

A unique cookie that the JDBC driver generates for the Connection

instance. The cookie is known only to the application server and the

underlying JDBC driver that established the initial trusted connection. The

application server passes the cookie that was created by the driver when

the pooled connection instance was created. The JDBC driver checks that

the supplied cookie matches the cookie of the underlying trusted physical

connection to ensure that the request originated from the application server

that established the trusted physical connection. If the cookies match, the

connection can become available, with different properties, for immediate

use by a new user .

user

The client identity that is used by DB2 to establish the authorization ID for

the database server. If the user was not authenticated by the application

server, the application server must pass a user identity that represents an

unauthenticated DB2 user.

password

The password for user.

userNameRegistry

A name that identifies a mapping service that maps a workstation user ID

to a z/OS RACF ID. An example of a mapping service is the Integrated

Security Services Enterprise Identity Mapping (EIM). The mapping service

is defined by a plugin. Valid values for userNameRegistry are defined by the

plugin providers. If userNameRegistry is null, the connection does not use a

mapping service.

userSecToken

The client’s security tokens. This value is traced as part of DB2 for z/OS

accounting data. The content of userSecToken is described by the application

server and is referred to by DB2 as an application server security token.

322 Developing Java Applications

originalUser

The client identity that sends the original request to the application server.

originalUser is included in DB2 for z/OS accounting data as the original

user ID that was used by the application server.

properties

Properties for the reused connection. These properties override any

properties that are already defined on the DB2PooledConnection instance.

getDB2Connection (untrusted reuse with reauthentication)

Formats:

public DB2Connection getDB2Connection(

 String user,

 String password,

 java.util.Properties properties)

 throws java.sql.SQLException

public DB2Connection getDB2Connection(org.ietf.jgss.GSSCredential gssCredential,

 java.util.Properties properties)

 throws java.sql.SQLException

Switches the user that is associated with a untrusted connection, with

authentication.

 The first form getDB2Connection provides a user ID and password. The second

form of getDB2Connection is for connections that use Kerberos security.

 Parameter descriptions:

user

The user ID that is used by DB2 to establish the authorization ID for the

database server. user and password can be specified only under the

following circumstances:

v When the connection pool is configured with the WebSphere Application

Server resource reference authentication property res-auth is set to 1

(true).

v When the DB2ConnectionPoolDataSource.connectionReuseProtocol

property is not set to DIRTY_CONNECTION_REUSE.

password

The password for user.

properties

Properties for the reused connection. These properties override any

properties that are already defined on the DB2PooledConnection instance.

getDB2Connection (untrusted reuse without reauthentication)

Formats:

public java.sql.Connection getDB2Connection(

 java.util.Properties properties)

 throws java.sql.SQLException

public DB2Connection getDB2Connection(int connectionReuseProtocol,

 java.util.Properties properties)

 throws java.sql.SQLException

Reuses a untrusted connection, without reauthentication.

 The second form of getDB2Connection lets you specify whether to reset the

connection properties when the connection is reused.

 Parameter descriptions:

Chapter 11. JDBC and SQLJ reference 323

properties

Properties for the reused connection. These properties override any

properties that are already defined on the DB2PooledConnection instance.

connectionReuseProtocol

Specifies whether the connection state is reset when a connection is reused

from a connection pool. This value overrides the connectionReuseProtocol

property value. Possible values are:

DIRTY_CONNECTION_REUSE

The connection state is not reset when a Connection is reused from

a connection pool. Special register settings are not reset and

temporary tables are not dropped. Specified property settings

(derived from an application DataSource or WebSphere Application

Server resource reference) might be passed by the pool module to

the JDBC driver for reinitialization. Properties that are not passed

by the pool module are not changed. All JDBC standard transient

properties, such as isolation level, auto-commit mode, and

read-only mode are reset to their JDBC defaults. These properties

do not change:

v accountingInterval

v databaseName

v driverType

v pkList

v planName

v portNumber

v kerberosServerPrincipal

v password

v readOnly

v securityMechanism

v serverName

v user

RESET_CONNECTIONS_ON_REUSE

The connection state is reset when a Connection is reused from a

connection pool. Special register settings are reset and temporary

tables are dropped. Specified property settings (derived from an

application DataSource or WebSphere Application Server resource

reference) might be passed by the pool module to the JDBC driver

for reinitialization. All JDBC standard transient properties, such as

isolation level, auto-commit mode, and read-only mode are reset to

their JDBC defaults. These properties do not change:

v accountingInterval

v databaseName

v driverType

v pkList

v planName

v portNumber

v kerberosServerPrincipal

v password

v readOnly

v securityMechanism

v serverName

v user

recycleDB2Connection

Format:

324 Developing Java Applications

public void recycleDB2Connection()

 throws SQLException

Notifies the underlying physical connection of a recycle event. Statement

objects on the Connection are closed or recycled for reuse, depending on pool

configuration settings. This method is used under a pooling model in which

the pool module provides the logical connection wrapper.

 Related concepts:

v Chapter 9, “JDBC and SQLJ connection pooling support,” on page 219

 Related reference:

v “DB2ConnectionPoolDataSource class” on page 318

DB2PreparedStatement interface

 The com.ibm.db2.jcc.DB2PreparedStatement interface extends the

com.ibm.db2.jcc.DB2Statement and java.sql.PreparedStatement interfaces.

DB2PreparedStatement methods:

The following methods are defined only for the IBM DB2 Driver for JDBC and

SQLJ.

executeDB2QueryBatch

Format:

public void executeDB2QueryBatch()

 throws java.sql.SQLException

Executes a statement batch that contains queries with parameters.

 Related tasks:

v “Making batch queries in JDBC applications” on page 48

DB2RowID interface

 The com.ibm.db2.jcc.DB2RowID interface is used for declaring Java objects for use

with the DB2 ROWID data type.

DB2RowID methods:

The following method is defined only for the IBM DB2 Driver for JDBC and SQLJ.

getBytes

Format:

public byte[] getBytes()

Converts a com.ibm.jcc.DB2RowID object to bytes.

 Related concepts:

v “ROWIDs in JDBC with the IBM DB2 Driver for JDBC and SQLJ” on page 61

v “ROWIDs in SQLJ with the IBM DB2 Driver for JDBC and SQLJ” on page 130

DB2SimpleDataSource class

 The com.ibm.db2.jcc.DB2SimpleDataSource class extends the DataBaseDataSource

class. A DataBaseDataSource object does not support connection pooling or

Chapter 11. JDBC and SQLJ reference 325

distributed transactions. It contains all of the properties and methods that the

DB2BaseDataSource class contains. In addition, DB2SimpleDataSource contains the

following IBM DB2 Driver for JDBC and SQLJ-only properties.

DB2SimpleDataSource properties:

The following property is defined only for the IBM DB2 Driver for JDBC and SQLJ.

See Properties for the IBM DB2 Driver for JDBC and SQLJ for an explanation of

this property.

 String com.ibm.db2.jcc.DB2SimpleDataSource.password

DB2SimpleDataSource methods:

The following method is defined only for the IBM DB2 Driver for JDBC and SQLJ.

setPassword

Format:

public void setPassword(String password)

Sets the password for the DB2SimpleDataSource object. There is no

corresponding getPassword method. Therefore, the password cannot be

encrypted because there is no way to retrieve the password so that you can

decrypt it.

 Related tasks:

v “Connecting to a data source using the DataSource interface” on page 30

v “Creating and deploying DataSource objects” on page 33

DB2Sqlca class

 The com.ibm.db2.jcc.DB2Sqlca class is an encapsulation of the DB2 SQLCA. .

DB2Sqlca methods:

The following methods are defined only for the IBM DB2 Driver for JDBC and

SQLJ.

getMessage

Format:

public abstract String getMessage()

Returns error message text.

getSqlCode

Format:

public abstract int getSqlCode()

Returns an SQL error code value.

getSqlErrd

Format:

public abstract int[] getSqlErrd()

Returns an array, each element of which contains an SQLCA SQLERRD.

getSqlErrmc

Format:

326 Developing Java Applications

public abstract String getSqlErrmc()

Returns a string that contains the SQLCA SQLERRMC values, delimited with

spaces.

getSqlErrmcTokens

Format:

public abstract String[] getSqlErrmcTokens()

Returns an array, each element of which contains an SQLCA SQLERRMC

token.

getSqlErrd

Format:

public abstract int[] getSqlErrd()

Returns an array, each element of which contains an SQLCA SQLERRP value.

getSqlErrp

Format:

public abstract String getSqlErrp()

Returns the SQLCA SQLERRP value.

getSqlState

Format:

public abstract String getSqlState()

Returns the SQLCA SQLSTATE value.

getSqlWarn

Format:

public abstract char[] getSqlWarn()

Returns an array, each element of which contains an SQLCA SQLWARN value.

 Related tasks:

v “Handling an SQLException under the IBM DB2 Driver for JDBC and SQLJ” on

page 77

v “Handling SQL warnings in an SQLJ application” on page 139

DB2Statement interface

 The com.ibm.db2.jcc.DB2Statement interface extends the java.sql.Statement

interface.

DB2Statement methods:

The following methods are defined only for the IBM DB2 Driver for JDBC and

SQLJ.

getDB2ClientProgramId

Format:

public String getDB2ClientProgramId()

 throws java.sql.SQLException

Returns the user-defined client program identifier for the connection, which is

stored on the database server.

Chapter 11. JDBC and SQLJ reference 327

setDB2ClientProgramId

Format:

public abstract void setDB2ClientProgramId(String program-ID)

 throws java.sql.SQLException

Sets a user-defined program identifier for the connection, on DB2 for z/OS

servers. That program identifier is an 80-byte string that is used to identify the

caller. The DB2 for z/OS server places the string in IFCID 316 trace records

along with other statistics, so that you can identify which program is

associated with a particular SQL statement.

 Related reference:

v “DB2PreparedStatement interface” on page 325

DB2SystemMonitor interface

 The com.ibm.db2.jcc.DB2SystemMonitor interface is used for collecting system

monitoring data for a connection. Each connection can have one DB2SystemMonitor

instance.

DB2SystemMonitor fields:

The following fields are defined only for the IBM DB2 Driver for JDBC and SQLJ.

public final static int RESET_TIMES

public final static int ACCUMULATE_TIMES

These values are arguments for the DB2SystemMonitor.start method.

RESET_TIMES sets time counters to zero before monitoring starts.

ACCUMULATE_TIMES does not set time counters to zero.

 DB2SystemMonitor methods:

The following methods are defined only for the IBM DB2 Driver for JDBC and

SQLJ.

enable

Format:

public void enable(boolean on)

 throws java.sql.SQLException

Enables the system monitor that is associated with a connection. This method

cannot be called during monitoring. All times are reset when enable is

invoked.

getApplicationTimeMillis

Format:

public long getApplicationTimeMillis()

 throws java.sql.SQLException

Returns the sum of the application, JDBC driver, network I/O, and DB2 server

elapsed times. The time is in milliseconds.

 A monitored elapsed time interval is the difference, in milliseconds, between

these points in the JDBC driver processing:

Interval beginning

When start is called.

328 Developing Java Applications

Interval end

When stop is called.

 getApplicationTimeMillis returns 0 if system monitoring is disabled. Calling

this method without first calling the stop method results in an SQLException.

getCoreDriverTimeMicros

Format:

public long getCoreDriverTimeMicros()

 throws java.sql.SQLException

Returns the sum of elapsed monitored API times that were collected while

system monitoring was enabled. The time is in microseconds.

 A monitored API is a JDBC driver method for which processing time is

collected. In general, elapsed times are monitored only for APIs that might

result in network I/O or DB2 server interaction. For example,

PreparedStatement.setXXX methods and ResultSet.getXXX methods are not

monitored.

 Monitored API elapsed time includes the total time that is spent in the driver

for a method call. This time includes any network I/O time and DB2 server

elapsed time.

 A monitored API elapsed time interval is the difference, in microseconds,

between these points in the JDBC driver processing:

Interval beginning

When a monitored API is called by the application.

Interval end

Immediately before the monitored API returns control to the application.

 getCoreDriverTimeMicros returns 0 if system monitoring is disabled. Calling

this method without first calling the stop method, or calling this method when

the underlying JVM does not support reporting times in microseconds results

in an SQLException.

getNetworkIOTimeMicros

Format:

public long getNetworkIOTimeMicros()

 throws java.sql.SQLException

Returns the sum of elapsed network I/O times that were collected while

system monitoring was enabled. The time is in microseconds.

 Elapsed network I/O time includes the time to write and read DRDA data

from network I/O streams. A network I/O elapsed time interval is the time

interval to perform the following operations in the JDBC driver:

v Issue a TCP/IP command to send a DRDA message to the DB2 server. This

time interval is the difference, in microseconds, between points immediately

before and after a write and flush to the network I/O stream is performed.

v Issue a TCP/IP command to receive DRDA reply messages from the DB2

server. This time interval is the difference, in microseconds, between points

immediately before and after a read on the network I/O stream is

performed.

Chapter 11. JDBC and SQLJ reference 329

Network I/O time intervals are captured for all send and receive operations,

including the sending of messages for commits and rollbacks.

 The time spent waiting for network I/O might be impacted by delays in CPU

dispatching at the DB2 server for low-priority SQL requests. Network I/O time

intervals include DB2 server elapsed time.

 getNetworkIOTimeMicros returns 0 if system monitoring is disabled. Calling this

method without first calling the stop method, or calling this method when the

underlying JVM does not support reporting times in microseconds results in an

SQLException.

getServerTimeMicros

Format:

public long getServerTimeMicros()

 throws java.sql.SQLException

Returns the sum of all reported DB2 server elapsed times that were collected

while system monitoring was enabled. The time is in microseconds.

 The DB2 server reports elapsed times under these conditions:

v The server supports returning elapsed time data to the client.

Currently, DB2 Database for Linux, UNIX, and Windows servers do not

support this function.

v The server performs operations that can be monitored. For example, DB2

server elapsed time is not returned for commits or rollbacks.

DB2 server elapsed time is defined as the elapsed time to parse the request

data stream, process the command, and generate the reply data stream at the

server. Network time to receive or send the data stream is not included.

 a DB2 server elapsed time interval is the difference, in microseconds, between

these points in the server processing:

Interval beginning

When the operating system dispatches DB2 to process a TCP/IP message

that is received from the JDBC driver.

Interval end

When DB2 is ready to issue the TCP/IP command to return the reply

message to the client.

 getServerTimeMicros returns 0 if system monitoring is disabled. Calling this

method without first calling the stop method results in an SQLException.

start

Format:

public void start (int lapMode)

 throws java.sql.SQLException

If the system monitor is enabled, start begins the collection of system

monitoring data for a connection. Valid values for lapMode are RESET_TIMES

or ACCUMULATE_TIMES.

 Calling this method with system monitoring disabled does nothing. Calling

this method more than once without an intervening stop call results in an

SQLException.

330 Developing Java Applications

stop

Format:

public void stop()

 throws java.sql.SQLException

If the system monitor is enabled, stop ends the collection of system monitoring

data for a connection. After monitoring is stopped, monitored times can be

obtained with the getXXX methods of DB2SystemMonitor.

 Calling this method with system monitoring disabled does nothing. Calling

this method without first calling start, or calling this method more than once

without an intervening start call results in an SQLException.

 Related tasks:

v “System monitoring for the IBM DB2 Driver for JDBC and SQLJ” on page 189

DB2XADataSource class

 The com.ibm.db2.jcc.DB2XADataSource class extends the

com.ibm.db2.jcc.DB2BaseDataSource class, and implements the

javax.sql.XADataSource, java.io.Serializable, and javax.naming.Referenceable

interfaces.

DB2XADataSource is a factory for XADataSource objects. An object that implements

this interface is registered with a naming service that is based on the Java Naming

and Directory Interface (JNDI).

DB2XADataSource methods:

getDB2TrustedXAConnection

Formats:

public Object[] getDB2TrustedXAConnection(String user,

 String password,

 java.util.Properties properties)

 throws java.sql.SQLException

public Object[] getDB2TrustedXAConnection(

 java.util.Properties properties)

 throws java.sql.SQLException

public Object[] getDB2TrustedXAConnection(

 org.ietf.jgss.GSSCredential gssCredential,

 java.util.Properties properties)

 throws java.sql.SQLException

An application server using a system authorization ID uses this method to

establish a trusted connection. The following elements are returned in Object[]:

v The first element is a DB2TrustedXAConnection instance.

v The second element is a unique cookie for the generated XA connection

instance.

The first form getDB2TrustedXAConnection provides a user ID and password.

The second form of getDB2TrustedXAConnection uses the user ID and password

of the DB2XADataSource object. The third form of getDB2TrustedXAConnection is

for connections that use Kerberos security.

 Parameter descriptions:

user

The authorization ID that is used to establish the trusted connection.

Chapter 11. JDBC and SQLJ reference 331

password

The password for the authorization ID that is used to establish the trusted

connection.

gssCredential

If the data source uses Kerberos security, specifies a delegated credential

that is passed from another principal.

properties

Properties for the connection.

getDB2TrustedPooledConnection

Format:

public Object[] getDB2TrustedPooledConnection(java.util.Properties properties)

 throws java.sql.SQLException

An application server using a system authorization ID uses this method to

establish a trusted connection, using the user ID and password for the

DB2XADataSource object. The following elements are returned in Object[]:

v The first element is a trusted DB2TrustedPooledConnection instance.

v The second element is a unique cookie for the generated pooled connection

instance.

Parameter descriptions:

properties

Properties for the connection.

getDB2XAConnection

Formats:

public DB2XAConnection getDB2XAConnection(String user,

 String password,

 java.util.Properties properties)

 throws java.sql.SQLException

public DB2XAConnection getDB2XAConnection(

 org.ietf.jgss.GSSCredential gssCredential,

 java.util.Properties properties)

 throws java.sql.SQLException

Establishes the initial untrusted connection in a heterogeneous pooling

environment.

 The first form getDB2PooledConnection provides a user ID and password. The

second form of getDB2XAConnection is for connections that use Kerberos

security.

 Parameter descriptions:

user

The authorization ID that is used to establish the connection.

password

The password for the authorization ID that is used to establish the

connection.

gssCredential

If the data source uses Kerberos security, specifies a delegated credential

that is passed from another principal.

properties

Properties for the connection.

332 Developing Java Applications

Related concepts:

v “Example of a distributed transaction that uses JTA methods” on page 210

v “Java transaction management” on page 209

 Related tasks:

v “Creating and deploying DataSource objects” on page 33

DB2Xml interface

 The com.ibm.db2.jcc.DB2Xml interface is used for declaring Java objects for use

with the DB2 XML data type.

DB2Xml methods:

The following method is defined only for the IBM DB2 Driver for JDBC and SQLJ.

close

Format:

public void close()

 throws SQLException

Releases the resources that are associated with a com.ibm.jcc.DB2Xml object.

getDB2AsciiStream

Format:

public java.io.InputStream getDB2AsciiStream()

 throws SQLExceptionn

Retrieves data from a DB2Xml object, and converts the data to US-ASCII

encoding.

getDB2BinaryStream

Format:

public java.io.InputStream getDB2BinaryStream()

 throws SQLException

Retrieves data from a DB2Xml object as a UTF-8-encoded binary stream.

getDB2Bytes

Format:

public byte[] getDB2Bytes()

 throws SQLExceptionn

Retrieves data from a DB2Xml object as a UTF-8-encoded byte array.

getDB2CharacterStream

Format:

public java.io.Reader getDB2CharacterStream()

 throws SQLExceptionn

Retrieves data from a DB2Xml object as a java.io.Reader object.

getDB2String

Format:

public String getDB2String()

 throws SQLExceptionn

Retrieves data from a DB2Xml object as a String value.

Chapter 11. JDBC and SQLJ reference 333

getDB2XmlAsciiStream

Format:

public InputStream getDB2XmlAsciiStream()

 throws SQLExceptionn

Retrieves data from a DB2Xml object, converts the data to US-ASCII encoding,

and imbeds an XML declaration with an encoding specification for US-ASCII

in the returned data.

getDB2XmlBinaryStream

Format:

public java.io.InputStream getDB2XmlBinaryStream(String targetEncoding)

 throws SQLExceptionn

Retrieves data from a DB2Xml object as a binary stream, converts the data to

targetEncoding, and imbeds an XML declaration with an encoding specification

for targetEncoding in the returned data.

 Parameter:

targetEncoding

A valid encoding name that is listed in the IANA Charset Registry. The

encoding names that are supported by the DB2 server are listed in

"Mappings of CCSIDs to encoding names for serialized XML output data".

getDB2XmlBytes

Format:

public byte[] getDB2XmlBytes(String targetEncoding)

 throws SQLExceptionn

Retrieves data from a DB2Xml object as a byte array, converts the data to

targetEncoding, and imbeds an XML declaration with an encoding specification

for targetEncoding in the returned data.

 Parameter:

targetEncoding

A valid encoding name that is listed in the IANA Charset Registry. The

encoding names that are supported by the DB2 server are listed in

"Mappings of CCSIDs to encoding names for serialized XML output data".

getDB2XmlCharacterStream

Format:

public java.io.Reader getDB2XmlCharacterStream()

 throws SQLExceptionn

Retrieves data from a DB2Xml object as a java.io.Reader object, converts the

data to ISO-10646-UCS-2 encoding, and imbeds an XML declaration with an

encoding specification for ISO-10646-UCS-2 in the returned data.

getDB2XmlString

Format:

public String getDB2XmlString()

 throws SQLExceptionn

Retrieves data from a DB2Xml object as a String object, converts the data to

ISO-10646-UCS-2 encoding, and imbeds an XML declaration with an encoding

specification for ISO-10646-UCS-2 in the returned data.

334 Developing Java Applications

isDB2XmlClosed

Format:

public boolean isDB2XmlClosed()

 throws SQLException

Indicates whether a com.ibm.jcc.DB2Xml object has been closed.

 Related concepts:

v “XML column updates in JDBC applications” on page 68

v “XML column updates in SQLJ applications” on page 134

v “XML data retrieval in JDBC applications” on page 70

v “XML data retrieval in SQLJ applications” on page 136

 Related reference:

v “Mappings of CCSIDs to encoding names for serialized XML output data” in

XML Guide

v “Data types that map to SQL data types in JDBC applications” on page 227

JDBC differences between the IBM DB2 Driver for JDBC and

SQLJ and other DB2 JDBC drivers

 The DB2 JDBC Type 2 Driver for Linux, UNIX and Windows (DB2 JDBC Type 2

Driver) is deprecated. This information is provided to assist you in moving your

applications to the IBM DB2 Driver for JDBC and SQLJ.

 Supported methods:

 For a comparison of method support by the JDBC drivers, see Driver support for

JDBC APIs.

 Support for scrollable and updatable ResultSets:

 The IBM DB2 Driver for JDBC and SQLJ supports scrollable and updatable

ResultSets.

The DB2 JDBC Type 2 Driver supports scrollable ResultSets but not updatable

ResultSets.

 Difference in URL syntax:

 The syntax of the url parameter in the DriverManager.getConnection method is

different for each driver. See the following topics for more information:

v Connect to a data source using the DriverManager interface with the IBM DB2

Driver for JDBC and SQLJ

v

 Difference in error codes and SQLSTATEs returned for driver errors:

 The IBM DB2 Driver for JDBC and SQLJ does not use existing SQLCODEs or

SQLSTATEs for internal errors, as the other drivers do. See Error codes issued by

the IBM DB2 Driver for JDBC and SQLJ and SQLSTATEs issued by the IBM DB2

Driver for JDBC and SQLJ.

Chapter 11. JDBC and SQLJ reference 335

The JDBC/SQLJ driver for z/OS return ODBC SQLSTATEs when internal errors

occur.

 How much error message text is returned:

 With the IBM DB2 Driver for JDBC and SQLJ, when you execute

SQLException.getMessage(), formatted message text is not returned unless you set

the retrieveMessagesFromServerOnGetMessage property to true.

With the DB2 JDBC Type 2 Driver, when you execute SQLException.getMessage(),

formatted message text is returned.

 Security mechanisms:

 The JDBC drivers have different security mechanisms.

For information on IBM DB2 Driver for JDBC and SQLJ security mechanisms,

seeSecurity under the IBM DB2 Driver for JDBC and SQLJ.

For information on security mechanisms for the DB2 JDBC Type 2 Driver, see

Security under the DB2 JDBC Type 2 Driver.

 Support for read-only connections:

 With the IBM DB2 Driver for JDBC and SQLJ, you can make a connection

read-only through the readOnly property for a Connection or DataSource object.

The DB2 JDBC Type 2 Driver uses the Connection.setReadOnly value when it

determines whether to make a connection read-only. However, setting

Connection.setReadOnly(true) does not guarantee that the connection is read-only.

 Results returned from ResultSet.getString for a BIT DATA column:

 The IBM DB2 Driver for JDBC and SQLJ returns data from a ResultSet.getString

call for a CHAR FOR BIT DATA or VARCHAR FOR BIT DATA column as a

lowercase hexadecimal string.

The DB2 JDBC Type 2 Driver returns the data as an uppercase hexadecimal string.

 Result of an executeUpdate call that affects no rows:

 The IBM DB2 Driver for JDBC and SQLJ generates an SQLWarning when an

executeUpdate call affects no rows.

The DB2 JDBC Type 2 Driver does not generate an SQLWarning.

 Result of a getDate or getTime call for a TIMESTAMP column:

 The IBM DB2 Driver for JDBC and SQLJ does not generate an SQLWarning when a

getDate or getTime call is made against a TIMESTAMP column.

The DB2 JDBC Type 2 Driver generates an SQLWarning when a getDate or getTime

call is made against a TIMESTAMP column.

 When an exception is thrown for PreparedStatement.setXXXStream with a length

mismatch:

336 Developing Java Applications

When you use the PreparedStatement.setBinaryStream ,

PreparedStatement.setCharacterStream, or PreparedStatement.setUnicodeStream

method, the length parameter value must match the number of bytes in the input

stream.

If the numbers of bytes do not match, the IBM DB2 Driver for JDBC and SQLJ

does not throw an exception until the subsequent

PreparedStatement.executeUpdate method executes. Therefore, for the IBM DB2

Driver for JDBC and SQLJ, some data might be sent to the server when the lengths

to not match. That data is truncated or padded by the server. The calling

application needs to issue a rollback request to undo the database updates that

include the truncated or padded data.

The DB2 JDBC Type 2 Driver throws an exception after the

PreparedStatement.setBinaryStream, PreparedStatement.setCharacterStream, or

PreparedStatement.setUnicodeStream method executes.

 Default mappings for PreparedStatement.setXXXStream:

 With the IBM DB2 Driver for JDBC and SQLJ, when you use the

PreparedStatement.setBinaryStream , PreparedStatement.setCharacterStream, or

PreparedStatement.setUnicodeStream method, and no information about the data

type of the target column is available, the input data is mapped to a BLOB or

CLOB data type.

For the DB2 JDBC Type 2 Driver, the input data is mapped to a VARCHAR FOR

BIT DATA or VARCHAR data type.

 How character conversion is done:

 When character data is transferred between a client and a server, the data must be

converted to a form that the receiver can process.

For the IBM DB2 Driver for JDBC and SQLJ, character data that is sent from the

database server to the client is converted using Java’s built-in character converters.

The conversions that the IBM DB2 Driver for JDBC and SQLJ supports are limited

to those that are supported by the underlying JRE implementation.

A IBM DB2 Driver for JDBC and SQLJ client using type 4 connectivity sends data

to the database server as Unicode UTF-8.

For the DB2 JDBC Type 2 Driver, character conversions can be performed if the

conversions are supported by the DB2 server.

Those drivers use CCSID information from the database server if it is available.

The drivers convert input parameter data to the CCSID of the database server

before sending the data. If target CCSID information is not available, the drivers

send the data as Unicode UTF-8.

 Implicit or explicit data type conversion for input parameters:

 If you execute a PreparedStatement.setXXX method, and the resulting data type

from the setXXX method does not match the data type of the table column to

which the parameter value is assigned, the driver returns an error unless data type

conversion occurs.

Chapter 11. JDBC and SQLJ reference 337

With the IBM DB2 Driver for JDBC and SQLJ, conversion to the correct SQL data

type occurs implicitly if the target data type is known and if the deferPrepares

and sendDataAsIs connection properties are set to false. In this case, the implicit

values override any explicit values in the setXXX call. If the deferPrepares

connection property or the sendDataAsIs connection property is set to true, you

must use the PreparedStatement.setObject method to convert the parameter to the

correct SQL data type.

For the DB2 JDBC Type 2 Driver, if the data type of a parameter does not match its

default SQL data type, you must use the PreparedStatement.setObject method to

convert the parameter to the correct SQL data type.

 Support for String to BINARY conversions for input parameters:

 The IBM DB2 Driver for JDBC and SQLJ does not support

PreparedStatement.setObject calls of the following form when x is an object of

type String:

setObject(parameterIndex, x, java.sqlTypes.BINARY)

The DB2 JDBC Type 2 Driver supports calls of this type. The driver interprets the

value of x as a hexadecimal string.

 Result of PreparedStatement.setObject with a decimal scale mismatch:

 With the IBM DB2 Driver for JDBC and SQLJ, if you call

PreparedStatement.setObject with a decimal input parameter, and the scale of the

input parameter is greater than the scale of the target column, the driver truncates

the trailing digits of the input value before assigning the value to the column.

The DB2 JDBC Type 2 Driver rounds the trailing digits of the input value before

assigning the value to the column.

 Valid range for ResultSet.getBigDecimal scale parameter:

 The deprecated form of ResultSet.getBigDecimal has a scale parameter as the

second parameter. The IBM DB2 Driver for JDBC and SQLJ allows a range of 0 to

32 for the scale parameter.

The DB2 JDBC Type 2 Driver allows a range of -1 to 32.

 Support for conversions from the java.lang.Character data type for input

parameters:

 For the following form of PreparedStatement.setObject, the IBM DB2 Driver for

JDBC and SQLJ supports the standard data type mappings of Java objects to JDBC

data types when it converts x to a JDBC data type:

setObject(parameterIndex, x)

The DB2 JDBC Type 2 Driver supports the non-standard mapping of x from

java.lang.Character to CHAR.

 Support for ResultSet.getBinaryStream against a character column:

 The IBM DB2 Driver for JDBC and SQLJ supports ResultSet.getBinaryStream with

an argument that represents a character column only if the column has the FOR

BIT DATA attribute.

338 Developing Java Applications

For the DB2 JDBC Type 2 Driver, if the ResultSet.getBinaryStream argument is a

character column, that column does not need to have the FOR BIT DATA attribute.

 Data returned from ResultSet.getBinaryStream against a binary column:

 With the IBM DB2 Driver for JDBC and SQLJ, when you execute

ResultSet.getBinaryStream against a binary column, the returned data is in the

form of lowercase, hexadecimal digit pairs.

With the DB2 JDBC Type 2 Driver, when you execute ResultSet.getBinaryStream

against a binary column, the returned data is in the form of uppercase,

hexadecimal digit pairs.

 Result of using setObject with a Boolean input type and a CHAR target type:

 With the IBM DB2 Driver for JDBC and SQLJ, when you execute

PreparedStatement.setObject(parameterIndex,x,CHAR), and x is Boolean, the value

″0″ or ″1″ is inserted into the table column.

With the DB2 JDBC Type 2 Driver, the string ″false″ or ″true″ is inserted into the

table column. The table column length must be at least 5.

 Result of using getBoolean to retrieve a value from a CHAR column:

 With the IBM DB2 Driver for JDBC and SQLJ, when you execute

ResultSet.getBoolean or CallableStatement.getBoolean to retrieve a Boolean

value from a CHAR column, and the column contains the value ″false″ or ″0″, the

value false is returned. If the column contains any other value, true is returned.

With the DB2 JDBC Type 2 Driver, when you execute ResultSet.getBoolean or

CallableStatement.getBoolean to retrieve a Boolean value from a CHAR column,

and the column contains the value ″true″ or ″1″, the value true is returned. If the

column contains any other value, false is returned.

 Result of executing ResultSet.next() on a closed cursor:

 With the IBM DB2 Driver for JDBC and SQLJ, when you execute ResultSet.next()

on a closed cursor, an SQLException is thrown. This conforms with the JDBC

standard.

With the DB2 JDBC Type 2 Driver, when you execute ResultSet.next() on a

closed cursor, a value of false is returned, and now exception is thrown.

 Result of specifying null arguments in DatabaseMetaData calls:

 With the IBM DB2 Driver for JDBC and SQLJ, you can specify null for an

argument in a DatabaseMetaData method call only where the JDBC specification

states that null is allowed. Otherwise, an exception is thrown.

With the DB2 JDBC Type 2 Driver, null means that the argument is not used to

narrow the search.

 Support for DATALINKs:

 The IBM DB2 Driver for JDBC and SQLJ does not support the DATALINK SQL

type.

Chapter 11. JDBC and SQLJ reference 339

The DB2 JDBC Type 2 Driver supports the DATALINK type in method calls of

these forms:

v PreparedStatement.setObject(parameterIndex, x, DB2Constants.DATALINK)

v PreparedStatement.setObject(parameterIndex, x, java.sql.Types.DATALINK)

(Java 1.4 or later)

v PreparedStatement.setURL(parameterIndex, java.net.URL)

v PreparedStatement.setObject(parameterIndex, java.net.URL)

v PreparedStatement.setObject(parameterIndex, java.net.URL,

java.sql.Types.DATALINK) (Java 1.4 or later)

v ResultSet.getString for a DATALINK column

v ResultSet.getURL for a DATALINK column

 Folding of method arguments to uppercase:

 The IBM DB2 Driver for JDBC and SQLJ does not fold any arguments in method

calls to uppercase.

The DB2 JDBC Type 2 Driver folds the argument of a Statement.setCursorName

call to uppercase. To prevent the cursor name from being folded to uppercase,

precede and follow the cursor name with the characters \". For example:

Statement.setCursorName("\"mycursor\"");

 Support for timestamp escape clauses:

 The IBM DB2 Driver for JDBC and SQLJ supports the standard form of an escape

clause for TIME:

{t ’hh:mm:ss’}

In addition to the standard form, the DB2 JDBC Type 2 Driver supports the

following form of a TIME escape clause:

{ts ’hh:mm:ss’}

 Including a CALL statement in a statement batch:

 The IBM DB2 Driver for JDBC and SQLJ supports CALL statements in a statement

batch.

The DB2 JDBC Type 2 Driver does not support CALL statements in a statement

batch.

 Removal of extra characters from SQL statement text:

 The IBM DB2 Driver for JDBC and SQLJ does not remove white-space characters,

such as spaces, tabs, and new-line characters, from SQL statement text before it

passes that text to the database server.

The DB2 JDBC Type 2 Driver removes white-space characters from SQLstatement

text before it passes that text to the database server.

 Result of executing PreparedStatement.executeBatch:

 When a PreparedStatement.executeBatch statement is executed under the IBM DB2

Driver for JDBC and SQLJ, the driver returns an int array of update counts. Each

element of the array contains the number of rows that were updated by a

statement in the batch.

340 Developing Java Applications

When a PreparedStatement.executeBatch statement is executed under the DB2

JDBC Type 2 Driver, the driver cannot determine the update counts, so it returns -3

for each update count.

 Support for compound SQL:

 The IBM DB2 Driver for JDBC and SQLJ driver does not support compound SQL

blocks.

Compound SQL allows multiple SQL statements to be grouped into a single

executable block. For example:

EXEC SQL BEGIN COMPOUND ATOMIC STATIC

 UPDATE ACCOUNTS SET ABALANCE = ABALANCE + :delta

 WHERE AID = :aid;

 UPDATE TELLERS SET TBALANCE = TBALANCE + :delta

 WHERE TID = :tid;

 INSERT INTO TELLERS (TID, BID, TBALANCE) VALUES (:i, :branch_id, 0);

 COMMIT;

END COMPOUND;

The DB2 JDBC Type 2 Driver supports execution of compound SQL blocks with

PreparedStatement.executeUpdate or Statement.executeUpdate.

 Result of not setting a parameter in a batched update:

 The IBM DB2 Driver for JDBC and SQLJ driver throws an exception after a

PreparedStatement.addBatch call if a parameter is not set.

The DB2 JDBC Type 2 Driver throws an exception after the

PreparedStatement.executeBatch call if a parameter is not set for any of the

statements in the batch.

 Ability to call uncatalogued stored procedures:

 The IBM DB2 Driver for JDBC and SQLJ driver does not let you call stored

procedures that are not defined in the DB2 catalog.

The DB2 JDBC Type 2 Driver lets you call stored procedures that are not defined in

the DB2 catalog.

 Specification of data types for stored procedure parameters:

 With the IBM DB2 Driver for JDBC and SQLJ driver, if the database server does

not support dynamic execution of the CALL statement, you must specify CALL

statement parameters exactly as they are specified in the stored procedure

definition.

For example, DB2 for z/OS database servers do not support dynamic execution of

CALL statements. Suppose that the first parameter of a stored procedure on a DB2

for z/OS server is defined like this in the CREATE PROCEDURE statement:

OUT PARM1 DECIMAL(3,0)

In the calling application, a statement like cs.registerOutParameter(1,

Types.DECIMAL) is not correct. You need to use the form of the

registerOutParameter method that specifies the scale as well as the data type:

cs.registerOutParameter (1, Types.DECIMAL, 0).

Chapter 11. JDBC and SQLJ reference 341

The DB2 JDBC Type 2 Driver does not require that the parameter data types in a

calling application match the data types in the CREATE PROCEDURE statement.

 Connection.Commit() and Connection.Rollback() when autocommit mode is

enabled:

 In the current release of DB2, the IBM DB2 Driver for JDBC and SQLJ does not let

you execute Connection.Commit() and Connection.Rollback() when autocommit

mode is enabled. This behavior is compliant with the JDBC specification. Previous

releases of the IBM DB2 Driver for JDBC and SQLJ, and earlier JDBC drivers

allowed Connection.Commit() and Connection.Rollback() when autocommit mode

was enabled.

 Related concepts:

v “Security under the DB2 JDBC Type 2 Driver” on page 141

v “Security under the IBM DB2 Driver for JDBC and SQLJ” on page 142

v “LOBs in JDBC applications with the IBM DB2 Driver for JDBC and SQLJ” on

page 57

 Related tasks:

v “Connecting to a data source using the DataSource interface” on page 30

v “Connecting to a data source using the DriverManager interface with the IBM

DB2 Driver for JDBC and SQLJ” on page 27

v “Handling an SQLException under the IBM DB2 Driver for JDBC and SQLJ” on

page 77

v “Making batch updates in JDBC applications” on page 42

v “Specifying updatability, scrollability, and holdability for ResultSets in JDBC

applications” on page 49

v “Calling stored procedures using CallableStatement methods” on page 53

v “Updating data in DB2 tables using the PreparedStatement.executeUpdate

method” on page 40

v “Creating and modifying DB2 objects using the Statement.executeUpdate

method” on page 39

 Related reference:

v “Driver support for JDBC APIs” on page 247

v “Error codes issued by the IBM DB2 Driver for JDBC and SQLJ” on page 344

v “Data types that map to SQL data types in JDBC applications” on page 227

v “Properties for the IBM DB2 Driver for JDBC and SQLJ” on page 232

v “SQLSTATEs issued by the IBM DB2 Driver for JDBC and SQLJ” on page 345

SQLJ differences between the IBM DB2 Driver for JDBC and

SQLJ and other DB2 JDBC drivers

 The DB2 JDBC Type 2 Driver for Linux, UNIX and Windows (DB2 JDBC Type 2

Driver) is deprecated. This information is provided to assist you in moving your

applications to the IBM DB2 Driver for JDBC and SQLJ.

SQLJ support in the IBM DB2 Driver for JDBC and SQLJ differs from SQLJ support

in the other DB2 JDBC drivers in the following areas:

342 Developing Java Applications

db2sqljcustomize errors and the -collection parameter:

 The db2sqljcustomize utility that is part of the IBM DB2 Driver for JDBC and SQLJ

has a -collection parameter. The db2profc utility that is part of the DB2 JDBC Type

2 Driver does not have a -collection parameter. If the target of a bind operation

with the db2sqljcustomize utility is a DB2 for z/OS server, and the -collection

parameter contains any lowercase characters. db2sqljcustomize returns a -4499

error because collection IDs cannot contain lowercase characters in DB2 for z/OS.

This situation cannot occur with db2profc.

 Differences in serialized profiles:

 The DB2 JDBC Type 2 Driver and the IBM DB2 Driver for JDBC and SQLJ produce

different binary code when you execute their SQLJ translator and the SQLJ

customizer utilities. Therefore, SQLJ applications that you translated and

customized using the DB2 JDBC Type 2 Driver sqlj and db2profc utilities do not

run under the IBM DB2 Driver for JDBC and SQLJ. Before you can run those SQLJ

applications under the IBM DB2 Driver for JDBC and SQLJ, you must retranslate

and recustomize the applications using the IBM DB2 Driver for JDBC and SQLJ

sqlj and db2sqljcustomize utilities. You must do so even if you have not

modified the applications.

 SQL VALUES support:

 The DB2 JDBC Type 2 Driver supports the SQL VALUES statement in an SQLJ

statement clause, but the IBM DB2 Driver for JDBC and SQLJ does not. Therefore,

you need to modify your SQLJ applications that include VALUES statements.

Example: Suppose that an SQLJ program contains the following statement:

#sql [ctxt] hv = {VALUES (MY_ROUTINE(1))};

For the IBM DB2 Driver for JDBC and SQLJ, you need to change that statement to

something like this:

#sql [ctxt] {SELECT MY_ROUTINE(1) INTO :hv FROM SYSIBM.SYSDUMMY1};

 Compound SQL statement support:

 The DB2 JDBC Type 2 Driver supports compound SQL statements in an SQLJ

statement clause, but the IBM DB2 Driver for JDBC and SQLJ does not. Therefore,

you need to modify your SQLJ applications that include SQLJ statements with

BEGIN COMPOUND and END COMPOUND. If you use compound statements to

do batch updates, you can use the SQLJ batch update programming interfaces

instead.

 Difference in connection techniques:

 The connection techniques that are available, and the driver names and URLs that

are used for those connection techniques, vary from driver to driver. See Connect

to a data source using SQLJ for more information.

 Support for scrollable and updatable iterators:

 SQLJ with the IBM DB2 Driver for JDBC and SQLJ supports scrollable and

updatable iterators.

Chapter 11. JDBC and SQLJ reference 343

The DB2 JDBC Type 2 Driver for Linux, UNIX and Windows (DB2 JDBC Type 2

Driver) supports scrollable cursors but not updatable iterators.

 Dynamic execution of SQL statements under WebSphere Application Server:

 For WebSphere Application Server Version 5.0.1 and above, if you customize your

SQLJ program, SQL statements are executed statically.

 Alternative names for db2sqljcustomize and db2sqljprint are not supported:

 The DB2 JDBC Type 2 Driver originally used the name db2profc for the SQLJ

profile customizer command, and the name db2profp for the SQLJ profile printer

command. For the IBM DB2 Driver for JDBC and SQLJ, the SQLJ profile

customizer command is named db2sqljcustomize, and the SQLJ profile printer

command is named db2sqljprint. In previous releases of DB2 Database for Linux,

UNIX, and Windows, db2profc was accepted as an alternative name for

db2sqljcustomize, and db2profp was accepted as an alternative name for

db2sqljprint. These alternative names are no longer accepted.

 Related tasks:

v “Connecting to a data source using SQLJ” on page 92

Error codes issued by the IBM DB2 Driver for JDBC and SQLJ

 Error codes in the ranges +4200 to +4299, +4450 to +4499, -4200 to -4299, and -4450

to -4499 are reserved for the IBM DB2 Driver for JDBC and SQLJ. Currently, the

IBM DB2 Driver for JDBC and SQLJ issues the following error codes:

 Table 68. Error codes issued by the IBM DB2 Driver for JDBC and SQLJ

Error Code Message text and explanation

+4204 Errors were encountered and tolerated as specified by the RETURN DATA

UNTIL clause.

Explanation: Tolerated errors include federated connection, authentication, and

authorization errors. This warning applies only to connections to DB2 Database

for Linux, UNIX, and Windows servers. It is issued only when a cursor

operation, such as a ResultSet.next() or ResultSet.previous() call, returns

false.

-4200 Invalid operation: An invalid COMMIT or ROLLBACK has been called in an

XA environment during a Global Transaction.

Explanation: An application that was in a global transaction in an XA

environment issued a commit or rollback. A commit or rollback operation in a

global transaction is invalid.

-4201 Invalid operation: setAutoCommit(true) is not allowed during Global

Transaction.

Explanation: An application that was in a global transaction in an XA

environment executed the setAutoCommit(true) statement. Issuing

setAutoCommit(true) in a global transaction is invalid.

344 Developing Java Applications

Table 68. Error codes issued by the IBM DB2 Driver for JDBC and SQLJ (continued)

Error Code Message text and explanation

-4203 Error executing function. Server returned rc.

Explanation: An error occurred on an XA connection during execution of an

SQL statement.

For network optimization, the IBM DB2 Driver for JDBC and SQLJ delays some

XA flows until the next SQL statement is executed. If an error occurs in a

delayed XA flow, that error is reported as part of the SQLException that is

thrown by the current SQL statement.

-4450 Feature not supported: feature-name is not supported.

-4496 An SQL OPEN for a held cursor was issued on an XA connection. The JDBC

driver does not allow a held cursor to be opened on the DB2 server for an XA

connection.

-4497 The application must issue a rollback. The unit of work has already been rolled

back in the DB2 server, but other resource managers involved in the unit of

work might not have rolled back their changes. To ensure integrity of the

application, all SQL requests are rejected until the application issues a rollback.

-4498 A connection failed but has been re-established. The host name or IP address is

\host-name\ and the service name or port number is port. Special registers may

or may not be re-attempted (Reason code = rc).

Explanation: host-name and port indicate the database server at which the

connection is reestablished. rc can have the following values:

1 The database server attempted to reset special registers to their original

values.

2 The database server did not attempt to reset special registers to their

original values.
The application is rolled back to the previous commit point.

-4499 A fatal error occurred that resulted in a disconnect.

Explanation: One possible cause is that a network error caused a socket to

disconnect.

-99999 The IBM DB2 Driver for JDBC and SQLJ issued an error that does not yet have

an error code.

 Related tasks:

v “Handling an SQLException under the IBM DB2 Driver for JDBC and SQLJ” on

page 77

v “Handling SQL errors in an SQLJ application” on page 138

 Related reference:

v “JDBC differences between the IBM DB2 Driver for JDBC and SQLJ and other

DB2 JDBC drivers” on page 335

SQLSTATEs issued by the IBM DB2 Driver for JDBC and SQLJ

 SQLSTATEs in the range 46600 to 466ZZ are reserved for the IBM DB2 Driver for

JDBC and SQLJ. Currently, the IBM DB2 Driver for JDBC and SQLJ returns a null

SQLSTATE value for an internal error, unless the error is a DRDA error. The

following SQLSTATEs are issued for DRDA errors:

02506 Tolerable error. This SQLSTATE is issued for SQLCODE +4204.

Chapter 11. JDBC and SQLJ reference 345

08003 A connection does not exist.

08004 The application server rejected establishment of the connection.

08506 Client reroute exception. This SQLSTATE is issued for SQLCODE -4498.

22021 A character is not in the coded character set.

24501 The identified cursor is not open.

2D521 SQL COMMIT or ROLLBACK are invalid in the current operating

environment.

58008 Execution failed due to a distribution protocol error that will not affect the

successful execution of subsequent DDM commands or SQL statements.

58009 Execution failed due to a distribution protocol error that caused

deallocation of the conversation.

58010 Execution failed due to a distribution protocol error that will affect the

successful execution of subsequent DDM commands or SQL statements.

58014 The DDM command is not supported.

58015 The DDM object is not supported.

58016 The DDM parameter is not supported.

58017 The DDM parameter value is not supported.

 Related tasks:

v “Handling an SQLException under the IBM DB2 Driver for JDBC and SQLJ” on

page 77

v “Handling SQL errors in an SQLJ application” on page 138

 Related reference:

v “JDBC differences between the IBM DB2 Driver for JDBC and SQLJ and other

DB2 JDBC drivers” on page 335

How to find IBM DB2 Driver for JDBC and SQLJ version and

environment information

To determine the version of the IBM DB2 Driver for JDBC and SQLJ, as well as

information about the environment in which the driver is running, run the DB2Jcc

utility on the command line.

 DB2Jcc syntax:

�� java com.ibm.db2.jcc.DB2Jcc

-version

-configuration

-help
 ��

 DB2Jcc option descriptions:

-version

Specifies that the IBM DB2 Driver for JDBC and SQLJ displays its name and

version.

-configuration

Specifies that the IBM DB2 Driver for JDBC and SQLJ displays its name and

version, and information about its environment, such as information about the

Java runtime environment, operating system, path information, and license

restrictions.

346 Developing Java Applications

-help

Specifies that the DB2Jcc utility describes each of the options that it supports. If

any other options are specified with -help, they are ignored.

 DB2Jcc sample output:

 The following output is the result of invoking DB2Jcc with the -configuration

parameter.

Commands for SQLJ program preparation

The topics that follow contain commands for SQLJ program preparation.

v “sqlj - SQLJ translator” on page 348

v “db2sqljcustomize - SQLJ profile customizer” on page 351

v “db2sqljbind - SQLJ profile binder” on page 361

v “db2sqljprint - SQLJ profile printer” on page 367

(myid@mymachine) /home/myid $ java com.ibm.db2.jcc.DB2Jcc -version

IBM DB2 Driver for JDBC and SQLJ Architecture 2.1.29 Test Build

(myid@mymachine) /home/myid $ java com.ibm.db2.jcc.DB2Jcc -configuration

[ibm][db2][jcc] BEGIN TRACE_DRIVER_CONFIGURATION

[ibm][db2][jcc] Driver: IBM DB2 Driver for JDBC and SQLJ Architecture 2.1.29 Test Build

[ibm][db2][jcc] Compatible JRE versions: { 1.4 }

[ibm][db2][jcc][ibm][db2][jcc] Target server licensing restrictions: { z/OS: disabled; SQLDS: disabl

ed; iSeries: disabled; DB2 for Unix/Windows: disabled; Cloudscape:disabled }

[ibm][db2][jcc] Range checking enabled: true

[ibm][db2][jcc] Bug check level: 0xff

[ibm][db2][jcc] Default fetch size: 64

[ibm][db2][jcc] Default isolation: 2

[ibm][db2][jcc] Collect performance statistics: false

[ibm][db2][jcc] No security manager detected.

[ibm][db2][jcc] Detected local client host: mymachine/9.99.99.999

[ibm][db2][jcc] Access to package sun.io is permitted by security manager.

[ibm][db2][jcc] JDBC 1 system property jdbc.drivers = null

[ibm][db2][jcc] Java Runtime Environment version 1.4.2

[ibm][db2][jcc] Java Runtime Environment vendor = IBM Corporation

[ibm][db2][jcc] Java vendor URL = http://www.ibm.com/

[ibm][db2][jcc] Java installation directory = /wsdb/v91/bldsupp/AIX/jdk1.4.2/jre

[ibm][db2][jcc] Java Virtual Machine specification version = 1.0

[ibm][db2][jcc] Java Virtual Machine specification vendor = Sun Microsystems Inc.

[ibm][db2][jcc] Java Virtual Machine specification name = Java Virtual Machine Specification

[ibm][db2][jcc] Java Virtual Machine implementation version = 1.4.2

[ibm][db2][jcc] Java Virtual Machine implementation vendor = IBM Corporation

[ibm][db2][jcc] Java Virtual Machine implementation name = Classic VM

[ibm][db2][jcc] Java Runtime Environment specification version = 1.4.2

[ibm][db2][jcc] Java Runtime Environment specification vendor = Sun Microsystems Inc.

[ibm][db2][jcc] Java Runtime Environment specification name = Java Platform API Specification

[ibm][db2][jcc] Java class format version number = 46.0

[ibm][db2][jcc] Java class path = .:/home/myid/sqllib/java/db2jcc.jar:/home/myid/sqllib/java/db2

java.zip:/home/myid/sqllib/java/sqlj.zip:/home/myid/sqllib/java/runtime.zip:/wsdb/v91/bldsupp/AI

X/jdk1.4.2/jdbc2.0_stdext/jdbc2_0-stdext.jar:/wsdb/v91/bldsupp/AIX/jdk1.4.2/jta1.0.1/jta-spec1_0_1.j

ar:/wsdb/v91/bldsupp/AIX/jdk1.4.2/jndi1.2/lib/jndi.jar:/home/myid/util:./test:/home/myid/build/c

ur/engn/lib/db2jcc_license_cisuz.jar:/home/myid/build/cur/engn/lib/db2jcc_license_cu.jar

[ibm][db2][jcc] Java native library path = /wsdb/v91/bldsupp/AIX/jdk1.4.2/jre/bin:/wsdb/v91/bldsupp/

AIX/jdk1.4.2/jre/bin/classic:/home/myid/sqllib/lib:/local/cobol:/usr/lib

[ibm][db2][jcc] Path of extension directory or directories = /wsdb/v91/bldsupp/AIX/jdk1.4.2/jre/lib/

ext

[ibm][db2][jcc] Operating system name = AIX

[ibm][db2][jcc] Operating system architecture = ppc

[ibm][db2][jcc] Operating system version = 4.3

[ibm][db2][jcc] File separator ("/" on UNIX) = /

[ibm][db2][jcc] Path separator (":" on UNIX) = :

[ibm][db2][jcc] User’s account name = myid

[ibm][db2][jcc] User’s home directory = /home/myid

[ibm][db2][jcc] User’s current working directory = /home/myid

[ibm][db2][jcc] END TRACE_DRIVER_CONFIGURATION

(myid@mymachine) /home/myid $

Figure 65. Sample DB2Jcc output

Chapter 11. JDBC and SQLJ reference 347

sqlj - SQLJ translator

The sqlj command translates an SQLJ source file into a Java source file and zero or

more SQLJ serialized profiles. By default, the sqlj command also compiles the Java

source file.

 Authorization:

 None

 Command syntax:

�� sqlj

-help

-dir=directory

-d=directory

-props=properties-file
 �

�
 -compile=true

-compile=false

 -linemap=NO

-linemap=YES

 -smap=NO

-smap=YES

-encoding=encoding

-db2optimize

�

�
-ser2class

-status

-version

-C-help

�

(1)

-Ccompiler-option

 �

�

�

-JJVM-option

�

SQLJ-source-file-name

 ��

Notes:

1 The -C-classpath and -C-sourcepath options are used by the SQLJ translator as well as by the Java

compiler.

 Command parameters:

-help

Specifies that the SQLJ translator describes each of the options that the

translator supports. If any other options are specified with -help, they are

ignored.

-dir=directory

Specifies the name of the directory into which SQLJ puts .java files that are

generated by the translator. The default directory is the directory that contains

the SQLJ source files.

 The translator uses the directory structure of the SQLJ source files when it puts

the generated files in directories. For example, suppose that you want the

translator to process two files:

v file1.sqlj, which is not in a Java package

v file2.sqlj, which is in Java package sqlj.test

Also suppose that you specify the parameter -dir=/src when you invoke the

translator. The translator puts the Java source file for file1.sqlj in directory /src

and puts the Java source file for file2.sqlj in directory /src/sqlj/test.

sqlj - SQLJ translator

348 Developing Java Applications

-d=directory

Specifies the name of the directory into which SQLJ puts the binary files that

are generated by the translator. These files include:

v The serialized profile files (.ser files)

v If the sqlj command invokes the Java compiler, the class files that are

generated by the compiler (.class files)

The default directory is the directory that contains the SQLJ source files.

The translator uses the directory structure of the SQLJ source files when it puts

the generated files in directories. For example, suppose that you want the

translator to process two files:

v file1.sqlj, which is not in a Java package

v file2.sqlj, which is in Java package sqlj.test

Also suppose that you specify the parameter -d=/src when you invoke the

translator. The translator puts the serialized profiles for file1.sqlj in directory

/src and puts the serialized profiles for file2.sqlj in directory /src/sqlj/test.

-props=properties-file

Specifies the name of a file from which the SQLJ translator is to obtain a list of

options.

-compile=true|false

Specifies whether the SQLJ translator compiles the generated Java source into

bytecodes.

true

The translator compiles the generated Java source code. This is the default.

false

The translator does not compile the generated Java source code.

-linemap=no|yes

Specifies whether line numbers in Java exceptions match line numbers in the

SQLJ source file (the .sqlj file), or line numbers in the Java source file that is

generated by the SQLJ translator (the .java file).

no Line numbers in Java exceptions match line numbers in the Java source

file. This is the default.

yes

Line numbers in Java exceptions match line numbers in the SQLJ source

file.

-smap=no|yes

Specifies whether the SQLJ translator generates a source map (SMAP) file for

each SQLJ source file. An SMAP file is used by some Java language debug

tools. This file maps lines in the SQLJ source file to lines in the Java source file

that is generated by the SQLJ translator. The file is in the Unicode UTF-8

encoding scheme. Its format is described by Original Java Specification Request

(JSR) 45, which is available from this web site:

http://www.jcp.org

no Do not generated SMAP files. This is the default.

yes

Generate SMAP files. An SMAP file name is SQLJ-source-file-
name.java.smap. The SQLJ translator places the SMAP file in the same

directory as the generated Java source file.

sqlj - SQLJ translator

Chapter 11. JDBC and SQLJ reference 349

-encoding=encoding-name

Specifies the encoding of the source file. Examples are JIS or EUC. If this

option is not specified, the default converter for the operating system is used.

-db2optimize

Specifies that the SQLJ translator generates code for a connection context class

that is optimized for DB2. -db2optimize optimizes the code for the

user-defined context but not the default context. When you run the SQLJ

translator with the -db2optimize option, the IBM DB2 Driver for JDBC and

SQLJ file db2jcc.jar must be in the CLASSPATH for compiling the generated

Java application.

-ser2class

Specifies that the SQLJ translator converts .ser files to .class files.

-status

Specifies that the SQLJ translator displays status messages as it runs.

-version

Specifies that the SQLJ translator displays the version of the IBM DB2 Driver

for JDBC and SQLJ. The information is in this form:

IBM SQLJ xxxx.xxxx.xx

-C-help

Specifies that the SQLJ translator displays help information for the Java

compiler.

-Ccompiler-option

Specifies a valid Java compiler option that begins with a dash (-). Do not

include spaces between -C and the compiler option. If you need to specify

multiple compiler options, precede each compiler option with -C. For example:

-C-g -C-verbose

All options are passed to the Java compiler and are not used by the SQLJ

translator, except for the following options:

-classpath

Specifies the user class path that is to be used by the SQLJ translator

and the Java compiler. This value overrides the CLASSPATH

environment variable.

-sourcepath

Specifies the source code path that the SQLJ translator and the Java

compiler search for class or interface definitions. The SQLJ translator

searches for .sqlj and .java files only in directories, not in JAR or zip

files.

-JJVM-option

Specifies an option that is to be passed to the Java virtual machine (JVM) in

which the sqlj command runs. The option must be a valid JVM option that

begins with a dash (-). Do not include spaces between -J and the JVM option.

If you need to specify multiple JVM options, precede each compiler option

with -J. For example:

-J-Xmx128m -J-Xmine2M

SQLJ-source-file-name

Specifies a list of SQLJ source files to be translated. This is a required

parameter. All SQLJ source file names must have the extension .sqlj.

 Output:

sqlj - SQLJ translator

350 Developing Java Applications

For each source file, program-name.sqlj, the SQLJ translator produces the following

files:

v The generated source program

The generated source file is named program-name.java.

v A serialized profile file for each connection context class that is used in an SQLJ

executable clause

A serialized profile name is of the following form:

program-name_SJProfileIDNumber.ser

v If the SQLJ translator invokes the Java compiler, the class files that the compiler

generates.

 Examples:

 sqlj -encoding=UTF8 -C-O MyApp.sqlj

 Related reference:

v “db2sqljbind - SQLJ profile binder” on page 361

v “db2sqljcustomize - SQLJ profile customizer” on page 351

v “db2sqljprint - SQLJ profile printer” on page 367

db2sqljcustomize - SQLJ profile customizer

db2sqljcustomize processes an SQLJ profile, which contains embedded SQL

statements. By default, db2sqljcustomize produces four DB2 packages: one for each

isolation level. db2sqljcustomize augments the profile with DB2-specific

information for use at run time.

 Authorization:

 The privilege set of the process must include one of the following authorities:

v SYSADM authority

v DBADM authority

v If the package does not exist, the BINDADD privilege, and one of the following

privileges:

– CREATEIN privilege

– IMPLICIT_SCHEMA authority on the database if the schema name of the

package does not exist
v If the package exists:

– ALTERIN privilege on the schema

– BIND privilege on the package

The user also needs all privileges that are required to compile any static SQL

statements in the application. Privileges that are granted to groups are not used for

authorization checking of static statements. If the user has SYSADM authority, but

no explicit privileges to complete the bind, the DB2 database manager grants

explicit DBADM authority automatically.

 Command syntax:

�� db2sqljcustomize

-help

�

-url

jdbc:db2://server

/database

:port

:

property=value;

-datasource

JNDI-name

 �

sqlj - SQLJ translator

Chapter 11. JDBC and SQLJ reference 351

�

-user

user-ID

-password

password

 -automaticbind YES

-automaticbind

NO

-pkgversion

AUTO

-pkgversion

version-id

�

�
-bindoptions

"

options-string

"

-storebindoptions

-collection

collection-name
 �

�
 -onlinecheck YES

-onlinecheck

NO

-qualifier

qualifier-name

-rootpkgname

package-name-stem

-singlepkgname

package-name

-longpkgname

�

�
 -staticpositioned NO

-staticpositioned

YES

�

-tracelevel

TRACE_SQLJ

-tracefile

file-name

,

-tracelevel

TRACE_NONE

TRACE_CONNECTION_CALLS

TRACE_STATEMENT_CALLS

TRACE_RESULT_SET_CALLS

TRACE_DRIVER_CONFIGURATION

TRACE_CONNECTS

TRACE_DRDA_FLOWS

TRACE_RESULT_SET_META_DATA

TRACE_PARAMETER_META_DATA

TRACE_DIAGNOSTICS

TRACE_SQLJ

TRACE_XA_CALLS

TRACE_ALL

�

�

�

serialized-profile-name

file-name.grp

��

options-string:

�� DB2-for-z/OS-options

DB2-Database-for-Linux-UNIX-and-Windows-options
 ��

db2sqljcustomize - SQLJ profile customizer

352 Developing Java Applications

DB2 for z/OS options:

��

 ACTION(REPLACE)

(1)

REPLVER(version-id)

ACTION(ADD)

DBPROTOCOL(DRDA)

DBPROTOCOL(PRIVATE)

DEGREE(1)

DEGREE(ANY)

�

�
 EXPLAIN(NO)

EXPLAIN(YES)

 IMMEDWRITE(NO)

IMMEDWRITE(PH1)

IMMEDWRITE(YES)

 ISOLATION(RR)

ISOLATION(RS)

ISOLATION(CS)

ISOLATION(UR)

 NOREOPT(VARS)

REOPT(VARS)

OPTHINT(hint-ID)

�

�
OWNER(authorization-ID)

�

,

PATH(

schema-name

)

USER

QUALIFIER(qualifier-name)
 �

�
 RELEASE(COMMIT)

RELEASE(DEALLOCATE)

 SQLERROR(NOPACKAGE)

SQLERROR(CONTINUE)

 VALIDATE(RUN)

VALIDATE(BIND)

��

Notes:

1 These options can be specified in any order.

db2sqljcustomize - SQLJ profile customizer

Chapter 11. JDBC and SQLJ reference 353

DB2 Database for Linux, UNIX, and Windows options

��
 (1) BLOCKING UNAMBIG

BLOCKING ALL

BLOCKING NO

DEC 15

DEC 31

 DEGREE 1

DEGREE ANY

 EXPLAIN NO

EXPLAIN YES

 EXPLSNAP NO

EXPLSNAP ALL

EXPLSNAP YES

�

�
 FEDERATED NO

FEDERATED YES

FUNCPATH schema-name

 INSERT DEF

INSERT BUF

 ISOLATION CS

ISOLATION RR

ISOLATION RS

ISOLATION UR

�

�
OWNER authorization-ID

QUALIFIER qualifier-name

QUERYOPT optimization-level
 �

�
 SQLERROR NOPACKAGE

SQLERROR CONTINUE

 SQLWARN YES

SQLWARN NO

 STATICREADONLY NO

STATICREADONLY YES

 VALIDATE RUN

VALIDATE BIND

��

Notes:

1 These options can be specified in any order.

 Command parameters:

-help

Specifies that the SQLJ customizer describes each of the options that the

customizer supports. If any other options are specified with -help, they are

ignored.

-url

Specifies the URL for the data source for which the profile is to be customized.

A connection is established to the data source that this URL represents if the

-automaticbind or -onlinecheck option is specified as YES or defaults to YES.

The variable parts of the -url value are:

server

The domain name or IP address of the MVS system on which the DB2

subsystem resides.

port

The TCP/IP server port number that is assigned to the DB2 subsystem.

The default is 446.

database

A name for the database server for which the profile is to be customized.

 If the connection is to a DB2 for z/OS server, database is the DB2 location

name that is defined during installation. All characters in this value must

be uppercase characters. You can determine the location name by executing

the following SQL statement on the server:

SELECT CURRENT SERVER FROM SYSIBM.SYSDUMMY1;

If the connection is to a DB2 Database for Linux, UNIX, and Windows

server, database is the database name that is defined during installation.

 If the connection is to an IBM Cloudscape server, the database is the

fully-qualified name of the file that contains the database. This name must

be enclosed in double quotation marks ("). For example:

db2sqljcustomize - SQLJ profile customizer

354 Developing Java Applications

"c:/databases/testdb"

property=value;

A property for the JDBC connection. For the definitions of these properties,

see Properties for the IBM DB2 Driver for JDBC and SQLJ.

-datasource JNDI-name

Specifies the logical name of a DataSource object that was registered with

JNDI. The DataSource object represents the data source for which the profile is

to be customized. A connection is established to the data source if the

-automaticbind or -onlinecheck option is specified as YES or defaults to YES.

Specifying -datasource is an alternative to specifying -url. The DataSource

object must represent a connection that uses IBM DB2 Driver for JDBC and

SQLJ type 4 connectivity.

-user user-ID

Specifies the user ID to be used to connect to the data source for online

checking or binding a package. You must specify -user if you specify -url. You

must specify -user if you specify -datasource, and the DataSource object that

JNDI-name represents does not contain a user ID.

-password password

Specifies the password to be used to connect to the data source for online

checking or binding a package. You must specify -password if you specify -url.

You must specify -password if you specify -datasource, and the DataSource

object that JNDI-name represents does not contain a password.

-automaticbind YES|NO

Specifies whether the customizer binds DB2 packages at the data source that is

specified by the -url parameter.

 The default is YES.

 The number of packages and the isolation levels of those packages are

controlled by the -rootpkgname and -singlepkgname options.

 Before the bind operation can work, the following conditions need to be met:

v TCP/IP and DRDA must be installed at the target data source.

v Valid -url, -username, and -password values must be specified.

v The -username value must have authorization to bind a package at the

target data source.

-pkgversion AUTO|version-id

Specifies the package version that is to be used when packages are bound at

the server for the serialized profile that is being customized. db2sqljcustomize

stores the version ID in the serialized profile and in the DB2 package.

Run-time version verification is based on the consistency token, not the version

name. To automatically generate a version name that is based on the

consistency token, specify -pkgversion AUTO.

 The default is that there is no version.

-bindoptions options-string

Specifies a list of options, separated by spaces. These options have the same

function as DB2 precompile and bind options with the same names. If you are

preparing your program to run on a DB2 for z/OS system, specify DB2 for

z/OS options. If you are preparing your program to run on a DB2 Database for

Linux, UNIX, and Windows system, specify DB2 Database for Linux, UNIX,

and Windows options.

 Notes on bind options:

db2sqljcustomize - SQLJ profile customizer

Chapter 11. JDBC and SQLJ reference 355

v Specify ISOLATION only if you also specify the -singlepkgname option.

v The value for STATICREADONLY is YES for servers that support

STATICREADONLY, and NO for other servers. When you specify

STATICREADONLY YES, DB2 processes ambiguous cursors as if they were

read-only cursors. For troubleshooting iterator declaration errors, you need

to explicitly specify STATICREADONLY NO, or declare iterators so that they

are unambiguous. For example, if you want an iterator to be unambiguously

updatable, declare the iterator to implement sqlj.runtime.ForUpdate. If you

want an iterator to be read-only, include the FOR READ ONLY clause in

SELECT statements that use the iterator.

Important: Specify only those program preparation options that are

appropriate for the data source at which you are binding a package. Some

values and defaults for the IBM DB2 Driver for JDBC and SQLJ are different

from the values and defaults for DB2.

-storebindoptions

Specifies that values for the -bindoptions and -staticpositioned parameters are

stored in the serialized profile. If db2sqljbind is invoked without the

-bindoptions or -staticpositioned parameter, the values that are stored in the

serialized profile are used during the bind operation. When multiple serialized

profiles are specified for one invocation of db2sqljcustomize, the parameter

values are stored in each serialized profile. The stored values are displayed in

the output from the db2sqljprint utility.

-collection collection-name

The qualifier for the packages that db2sqljcustomize binds. db2sqljcustomize

stores this value in the customized serialied profile, and it is used when the

associated packages are bound. If you do not specify this parameter,

db2sqljcustomize uses a collection ID of NULLID.

-onlinecheck YES|NO

Specifies whether online checking of data types in the SQLJ program is to be

performed. The -url or -datasource option determines the data source that is to

be used for online checking. The default is YES if the -url or -datasource

parameter is specified. Otherwise, the default is NO.

-qualifier qualifier-name

Specifies the qualifier that is to be used for unqualified objects in the SQLJ

program during online checking. This value is not used as the qualifier when

the packages are bound.

-rootpkgname|-singlepkgname

Specifies the names for the packages that are associated with the program. If

-automaticbind is NO, these package names are used when db2sqljbind runs.

The meanings of the parameters are:

-rootpkgname package-name-stem

Specifies that the customizer creates four packages, one for each of the four

DB2 isolation levels. The names for the four packages are:

package-name-stem1 For isolation level UR

package-name-stem2 For isolation level CS

package-name-stem3 For isolation level RS

package-name-stem4 For isolation level RR

If -longpkgname is not specified, package-name-stem must be an

alphanumeric string of seven or fewer bytes.

db2sqljcustomize - SQLJ profile customizer

356 Developing Java Applications

If -longpkgname is specified, package-name-stem must be an alphanumeric

string of 127 or fewer bytes.

-singlepkgname package-name

Specifies that the customizer creates one package, with the name

package-name. If you specify this option, your program can run at only one

isolation level. You specify the isolation level for the package by specifying

the ISOLATION option in the -bindoptions options string.

 If -longpkgname is not specified, package-name must be an alphanumeric

string of eight or fewer bytes.

 If -longpkgname is specified, package-name must be an alphanumeric string

of 128 or fewer bytes.

 Using the -singlepkgname option is not recommended.

If you do not specify -rootpkgname or -singlepkgname, db2sqljcustomize

generates four package names that are based on the serialized profile name. A

serialized profile name is of the following form:

program-name_SJProfileIDNumber.ser

The four generated package names are of the following form:

Bytes-from-program-nameIDNumberPkgIsolation

Table 69 shows the parts of a generated package name and the number of

bytes for each part.

 The maximum length of a package name is maxlen. maxlen is 8 if -longpkgname

is not specified. maxlen is 128 if -longpkgname is specified.

 Table 69. Parts of a package name that is generated by db2sqljcustomize

Package name part Number of bytes Value

Bytes-from-program-name m=min(Length(program-name),

maxlen–1–Length(IDNumber))

First m bytes of program-name, in

uppercase

IDNumber Length(IDNumber) IDNumber

PkgIsolation 1 1, 2, 3, or 4. This value represents the

transaction isolation level for the

package. See Table 70.

 Table 70 shows the values of the PkgIsolation portion of a package name that is

generated by db2sqljcustomize.

 Table 70. PkgIsolation values and associated isolation levels

PkgNumber value Isolation level for package

1 Uncommitted read (UR)

2 Cursor stability (CS)

3 Read stability (RS)

4 Repeatable read (RR)

Example: Suppose that a profile name is ThisIsMyProg_SJProfile111.ser. The

db2sqljcustomize option -longpkgname is not specified. Therefore,

Bytes-from-program-name is the first four bytes of ThisIsMyProg, translated to

uppercase, or THIS. IDNumber is 111. The four package names are:

db2sqljcustomize - SQLJ profile customizer

Chapter 11. JDBC and SQLJ reference 357

THIS1111

THIS1112

THIS1113

THIS1114

Example: Suppose that a profile name is ThisIsMyProg_SJProfile111.ser. The

db2sqljcustomize option -longpkgname is specified. Therefore,

Bytes-from-program-name is ThisIsMyProg, translated to uppercase, or

THISISMYPROG. IDNumber is 111. The four package names are:

THISISMYPROG1111

THISISMYPROG1112

THISISMYPROG1113

THISISMYPROG1114

Example: Suppose that a profile name is A_SJProfile0.ser. Bytes-from-program-
name is A. IDNumber is 0. Therefore, the four package names are:

A01

A02

A03

A04

Letting db2sqljcustomize generate package names is not recommended. If any

generated package names are the same as the names of existing packages,

db2sqljcustomize overwrites the existing packages. To ensure uniqueness of

package names, specify -rootpkgname.

-longpkgname

Specifies that the names of the DB2 packages that db2sqljcustomize generates

can be up to 128 bytes. Use this option only if you are binding packages at a

server that supports long package names. If you specify -singlepkgname or

-rootpkgname, you must also specify -longpkgname under the following

conditions:

v The argument of -singlepkgname is longer than eight bytes.

v The argument of -rootpkgname is longer than seven bytes.

-staticpositioned NO|YES

For iterators that are declared in the same source file as positioned UPDATE

statements that use the iterators, specifies whether the positioned UPDATEs

are executed as statically bound statements. The default is NO. NO means that

the positioned UPDATEs are executed as dynamically prepared statements.

-tracefile file-name

Enables tracing and identifies the output file for trace information. This option

should be specified only under the direction of IBM Software Support.

-tracelevel

If -tracefile is specified, indicates what to trace while db2sqljcustomize runs.

The default is TRACE_SQLJ. This option should be specified only under the

direction of IBM Software Support.

serialized-profile-name|file-name.grp

Specifies the names of one or more serialized profiles that are to be

customized. A serialized profile name is of the following form:

program-name_SJProfileIDNumber.ser

You can specify the serialized profile name with or without the .ser extension.

 program-name is the name of the SQLJ source program, without the extension

.sqlj. n is an integer between 0 and m-1, where m is the number of serialized

profiles that the SQLJ translator generated from the SQLJ source program.

db2sqljcustomize - SQLJ profile customizer

358 Developing Java Applications

You can specify serialized profile names in one of the following ways:

v List the names in the db2sqljcustomize command. Multiple serialized profile

names must be separated by spaces.

v Specify the serialized profile names, one on each line, in a file with the name

file-name.grp, and specify file-name.grp in the db2sqljcustomize command.

If you specify more than one serialized profile name, and if you specify or use

the default value of -automaticbind YES, db2sqljcustomize binds a single DB2

package from the profiles. When you use db2sqljcustomize to create a single

DB2 package from multiple serialized profiles, you must also specify the

-rootpkgname or -singlepkgname option.

 If you specify more than one serialized profile name, and you specify

-automaticbind NO, if you want to bind the serialized profiles into a single

DB2 package when you run db2sqljbind, you need to specify the same list of

serialized profile names, in the same order, in db2sqljcustomize and

db2sqljbind.

 Output:

 When db2sqljcustomize runs, it creates a customized serialized profile. It also

creates DB2 packages, if the automaticbind value is YES.

 Examples:

 db2sqljcustomize -user richler -password mordecai

 -url jdbc:db2:/server:50000/sample -collection duddy

 -bindoptions "EXPLAIN YES" pgmname_SJProfile0.ser

 Usage notes:

 Online checking is always recommended: It is highly recommended that you use

online checking when you customize your serialized profiles. Online checking

determines information about the data types and lengths of DB2 host variables,

and is especially important for the following items:

v Predicates with java.lang.String host variables and CHAR columns

Unlike character variables in other host languages, Java String host variables are

not declared with a length attribute. To optimize a query properly that contains

character host variables, DB2 needs the length of the host variables. For

example, suppose that a query has a predicate in which a String host variable is

compared to a CHAR column, and an index is defined on the CHAR column. If

DB2 cannot determine the length of the host variable, it might do a table space

scan instead of an index scan. Online checking avoids this problem by providing

the lengths of the corresponding character columns.

v Predicates with java.lang.String host variables and GRAPHIC columns

Without online checking, DB2 might issue a bind error (SQLCODE -134) when it

encounters a predicate in which a String host variable is compared to a

GRAPHIC column.

v Column names in the result table of an SQLJ SELECT statement at a remote

server:

Without online checking, the driver cannot determine the column names for the

result table of a remote SELECT.

Customizing multiple serialized profiles together: Multiple serialized profiles can

be customized together to create a single DB2 package. If you do this, and if you

db2sqljcustomize - SQLJ profile customizer

Chapter 11. JDBC and SQLJ reference 359

specify -staticpostioned YES, any positioned UPDATE or DELETE statement that

references a cursor that is declared earlier in the package executes statically, even if

the UPDATE or DELETE statement is in a different source file from the cursor

declaration. If you want -staticpositioned YES behavior when your program

consists of multiple source files, you need to order the profiles in the

db2sqljcustomize command to cause cursor declarations to be ahead of positioned

UPDATE or DELETE statements in the package. To do that, list profiles that

contain SELECT statements that assign result tables to iterators before profiles that

contain the positioned UPDATE or DELETE statements that reference those

iterators.

Using a customized serialized profile at one data source that was customized at

another data source: You can run db2sqljcustomize to produce a customized

serialized profile for an SQLJ program at one data source, and then use that profile

at another data source. You do this by running db2sqljbind multiple times on

customized serialized profiles that you created by running db2sqljcustomize once.

When you run the programs at these data sources, the DB2 objects that the

programs access must be identical at every data source. For example, tables at all

data sources must have the same encoding schemes and the same columns with

the same data types.

Using the -collection parameter: db2sqljcustomize stores the DB2 collection name

in each customized serialized profile that it produces. When an SQLJ program is

executed, the driver uses the collection name that is stored in the customized

serialized profile to search for packages to execute. The name that is stored in the

customized serialized profile is determined by the value of the -collection

parameter. Only one collection ID can be stored in the serialized profile. However,

you can bind the same serialized profile into multiple package collections by

specifying the COLLECTION option in the -bindoptions parameter. To execute a

package that is in a collection other than the collection that is specified in the

serialized profile, include a SET CURRENT PACKAGESET statement in the

program.

Using the VERSION parameter: Use the VERSION parameter to bind two or more

versions of a package for the same SQLJ program into the same collection. You

might do this if you have changed an SQLJ source program, and you want to run

the old and new versions of the program.

To maintain two versions of a package, follow these steps:

1. Change the code in your source program.

2. Translate the source program to create a new serialized profile. Ensure that you

do not overwrite your original serialized profile.

3. Run db2sqljcustomize to customize the serialized profile and create DB2

packages with the same package names and in the same collection as the

original packages. Do this by using the same values for -rootpkgname and

-collection when you bind the new packages that you used when you created

the original packages. Specify the VERSION option in the -bindoptions

parameter to put a version ID in the new customized serialized profile and in

the new packages.

It is essential that you specify the VERSION option when you perfom this step.

If you do not, you overwrite your original packages.

When you run the old version of the program, DB2 loads the old versions of the

packages. When you run the new version of the program, DB2 loads the new

versions of the packages.

db2sqljcustomize - SQLJ profile customizer

360 Developing Java Applications

Related reference:

v “BIND command” in Command Reference

v “db2sqljprint - SQLJ profile printer” on page 367

v “db2sqljbind - SQLJ profile binder” on page 361

db2sqljbind - SQLJ profile binder

db2sqljbind binds DB2 packages for a serialized profile that was previously

customized with the db2sqljcustomize command.

 Authorization:

 The privilege set of the process must include one of the following authorities:

v SYSADM authority

v DBADM authority

v If the package does not exist, the BINDADD privilege, and one of the following

privileges:

– CREATEIN privilege

– IMPLICIT_SCHEMA authority on the database if the schema name of the

package does not exist
v If the package exists:

– ALTERIN privilege on the schema

– BIND privilege on the package

The user also needs all privileges that are required to compile any static SQL

statements in the application. Privileges that are granted to groups are not used for

authorization checking of static statements. If the user has SYSADM authority, but

no explicit privileges to complete the bind, the DB2 database manager grants

explicit DBADM authority automatically.

 Command syntax:

�� db2sqljbind

-help

�

 -url jdbc:db2://server /database

:port

:

property=value;

 �

� -user user-ID -password password

-bindoptions

"

options-string

"
 �

�
 -staticpositioned NO

-staticpositioned

YES

�

db2sqljcustomize - SQLJ profile customizer

Chapter 11. JDBC and SQLJ reference 361

�

�

-tracelevel

TRACE_SQLJ

-tracefile

file-name

,

-tracelevel

TRACE_NONE

TRACE_CONNECTION_CALLS

TRACE_STATEMENT_CALLS

TRACE_RESULT_SET_CALLS

TRACE_DRIVER_CONFIGURATION

TRACE_CONNECTS

TRACE_DRDA_FLOWS

TRACE_RESULT_SET_META_DATA

TRACE_PARAMETER_META_DATA

TRACE_DIAGNOSTICS

TRACE_SQLJ

TRACE_XA_CALLS

TRACE_ALL

 �

�

�

serialized-profile-name

��

options-string:

�� DB2-for-z/OS-options

DB2-Database-for-Linux-UNIX-and-Windows-options
 ��

db2sqljbind - SQLJ profile binder

362 Developing Java Applications

DB2 for z/OS options:

��

 ACTION(REPLACE)

(1)

REPLVER(version-id)

ACTION(ADD)

DBPROTOCOL(DRDA)

DBPROTOCOL(PRIVATE)

DEGREE(1)

DEGREE(ANY)

�

�
 EXPLAIN(NO)

EXPLAIN(YES)

 IMMEDWRITE(NO)

IMMEDWRITE(PH1)

IMMEDWRITE(YES)

 ISOLATION(RR)

ISOLATION(RS)

ISOLATION(CS)

ISOLATION(UR)

 NOREOPT(VARS)

REOPT(VARS)

OPTHINT(hint-ID)

�

�
OWNER(authorization-ID)

�

,

PATH(

schema-name

)

USER

QUALIFIER(qualifier-name)
 �

�
 RELEASE(COMMIT)

RELEASE(DEALLOCATE)

 SQLERROR(NOPACKAGE)

SQLERROR(CONTINUE)

 VALIDATE(RUN)

VALIDATE(BIND)

��

Notes:

1 These options can be specified in any order.

db2sqljbind - SQLJ profile binder

Chapter 11. JDBC and SQLJ reference 363

DB2 Database for Linux, UNIX, and Windows options

��
 (1) BLOCKING UNAMBIG

BLOCKING ALL

BLOCKING NO

DEC 15

DEC 31

 DEGREE 1

DEGREE ANY

 EXPLAIN NO

EXPLAIN YES

 EXPLSNAP NO

EXPLSNAP ALL

EXPLSNAP YES

�

�
 FEDERATED NO

FEDERATED YES

FUNCPATH schema-name

 INSERT DEF

INSERT BUF

 ISOLATION CS

ISOLATION RR

ISOLATION RS

ISOLATION UR

�

�
OWNER authorization-ID

QUALIFIER qualifier-name

QUERYOPT optimization-level
 �

�
 SQLERROR NOPACKAGE

SQLERROR CONTINUE

 SQLWARN YES

SQLWARN NO

 STATICREADONLY NO

STATICREADONLY YES

 VALIDATE RUN

VALIDATE BIND

��

Notes:

1 These options can be specified in any order.

 Command parameters:

-help

Specifies that db2sqljbind describes each of the options that it supports. If any

other options are specified with -help, they are ignored.

-url

Specifies the URL for the data source for which the profile is to be customized.

This URL is used if the -automaticbind or -onlinecheck option is YES. The

variable parts of the -url value are:

server

The domain name or IP address of the MVS system on which the DB2

subsystem resides.

port

The TCP/IP server port number that is assigned to the DB2 subsystem.

The default is 446.

database

A name for the database server for which the profile is to be customized.

 If the connection is to a DB2 for z/OS server, database is the DB2 location

name that is defined during installation. All characters in this value must

be uppercase characters. You can determine the location name by executing

the following SQL statement on the server:

SELECT CURRENT SERVER FROM SYSIBM.SYSDUMMY1;

If the connection is to a DB2 Database for Linux, UNIX, and Windows

server, database is the database name that is defined during installation.

 If the connection is to an IBM Cloudscape server, the database is the

fully-qualified name of the file that contains the database. This name must

be enclosed in double quotation marks ("). For example:

"c:/databases/testdb"

db2sqljbind - SQLJ profile binder

364 Developing Java Applications

property=value;

A property for the JDBC connection. For the definitions of these properties,

see Properties for the IBM DB2 Driver for JDBC and SQLJ.

-user user-ID

Specifies the user ID to be used to connect to the data source for binding the

package.

-password password

Specifies the password to be used to connect to the data source for binding the

package.

-bindoptions options-string

Specifies a list of options, separated by spaces. These options have the same

function as DB2 precompile and bind options with the same names. If you are

preparing your program to run on a DB2 for z/OS system, specify DB2 for

z/OS options. If you are preparing your program to run on a DB2 Database for

Linux, UNIX, and Windows system, specify DB2 Database for Linux, UNIX,

and Windows options.

 Notes on bind options:

v Specify VERSION only if the following conditions are true:

– If you are binding a package at a DB2 Database for Linux, UNIX, and

Windows system, the system is at Version 8 or later.

– You rerun the translator on a program before you bind the associated

package with a new VERSION value.
v The value for STATICREADONLY is YES for servers that support

STATICREADONLY, and NO for other servers. When you specify

STATICREADONLY YES, DB2 processes ambiguous cursors as if they were

read-only cursors. For troubleshooting iterator declaration errors, you need

to explicitly specify STATICREADONLY NO, or declare iterators so that they

are unambiguous. For example, if you want an iterator to be unambiguously

updatable, declare the iterator to implement sqlj.runtime.ForUpdate. If you

want an iterator to be read-only, include the FOR READ ONLY clause in

SELECT statements that use the iterator.

Important: Specify only those program preparation options that are

appropriate for the data source at which you are binding a package. Some

values and defaults for the IBM DB2 Driver for JDBC and SQLJ are different

from the values and defaults for DB2.

-staticpositioned NO|YES

For iterators that are declared in the same source file as positioned UPDATE

statements that use the iterators, specifies whether the positioned UPDATEs

are executed as statically bound statements. The default is NO. NO means that

the positioned UPDATEs are executed as dynamically prepared statements.

This value must be the same as the -staticpositioned value for the previous

db2sqljcustomize invocation for the serialized profile.

-tracefile file-name

Enables tracing and identifies the output file for trace information. This option

should be specified only under the direction of IBM Software Support.

-tracelevel

If -tracefile is specified, indicates what to trace while db2sqljcustomize runs.

The default is TRACE_SQLJ. This option should be specified only under the

direction of IBM Software Support.

db2sqljbind - SQLJ profile binder

Chapter 11. JDBC and SQLJ reference 365

serialized-profile-name

Specifies the name of one or more serialized profiles from which the package is

bound. A serialized profile name is of the following form:

program-name_SJProfileIDNumber.ser

program-name is the name of the SQLJ source program, without the extension

.sqlj. n is an integer between 0 and m-1, where m is the number of serialized

profiles that the SQLJ translator generated from the SQLJ source program.

 If you specify more than one serialized profile name to bind a single DB2

package from several serialized profiles, you must have specified the same

serialized profile names, in the same order, when you ran db2sqljcustomize.

 Examples:

 db2sqljbind -user richler -password mordecai

 -url jdbc:db2://server:50000/sample -bindoptions "EXPLAIN YES"

 pgmname_SJProfile0.ser

 Usage notes:

 Package names produced by db2sqljbind: The names of the packages that are

created by db2sqljbind are the names that you specified using the-rootpkgname or

-singlepkgname parameter when you ran db2sqljcustomize. If you did not specify

-rootpkgname or -singlepkgname, the package names are the first seven bytes of

the profile name, appended with the isolation level character.

DYNAMICRULES value for db2sqljbind: The DYNAMICRULES bind option

determines a number of run-time attributes for a DB2 package. Two of those

attributes are the authorization ID that is used to check authorization, and the

qualifier that is used for unqualified objects. To ensure the correct authorization for

dynamically executed positioned UPDATE and DELETE statements in SQLJ

programs, db2sqljbind always binds the DB2 packages with the

DYNAMICRULES(BIND) option. You cannot modify this option. The

DYNAMICRULES(BIND) option causes the SET CURRENT SQLID statement and

the SET CURRENT SCHEMA statement to have no impact on an SQLJ program,

because those statements affect only dynamic statements that are bound with

DYNAMICRULES values other than BIND.

With DYNAMICRULES(BIND), unqualified table, view, index, and alias names in

dynamic SQL statements are implicitly qualified with value of the bind option

QUALIFIER. If you do not specify QUALIFIER, DB2 uses the authorization ID of

the package owner as the implicit qualifier. If this behavior is not suitable for your

program, you can use one of the following techniques to set the correct qualifier:

v Force positioned UDPATE and DELETE statements to execute statically. You can

use the -staticpositioned YES option of db2sqljcustomize or db2sqljbind to do

this if the cursor (iterator) for a positioned UPDATE or DELETE statement is in

the same package as the positioned UPDATE or DELETE statement.

v Fully qualify DB2 table names in positioned UPDATE and positioned DELETE

statements.

 Related reference:

v “BIND command” in Command Reference

v “db2sqljcustomize - SQLJ profile customizer” on page 351

v “db2sqljprint - SQLJ profile printer” on page 367

db2sqljbind - SQLJ profile binder

366 Developing Java Applications

v “sqlj - SQLJ translator” on page 348

db2sqljprint - SQLJ profile printer

db2sqljprint prints the contents of a DB2 customized version of a profile as plain

text.

 Authorization:

 None

 Command syntax:

�� db2sqljprint profilename ��

 Command parameters:

profilename

Specifies the relative or absolute name of an SQLJ profile file. When an

SQLJ file is translated into a Java source file, information about the SQL

operations it contains is stored in SQLJ-generated resource files called

profiles. Profiles are identified by the suffix _SJProfileN (where N is an

integer) following the name of the original input file. They have a .ser

extension. Profile names can be specified with or without the .ser

extension.

 Examples:

 db2sqljprint pgmname_SJProfile0.ser

 Related reference:

v “db2sqljcustomize - SQLJ profile customizer” on page 351

v “db2sqljbind - SQLJ profile binder” on page 361

db2sqljbind - SQLJ profile binder

Chapter 11. JDBC and SQLJ reference 367

db2sqljprint - SQLJ profile printer

368 Developing Java Applications

Appendix A. DB2 Database technical information

Overview of the DB2 technical information

 DB2 technical information is available through the following tools and methods:

v DB2 Information Center

– Topics

– Help for DB2 tools

– Sample programs

– Tutorials
v DB2 books

– PDF files (downloadable)

– PDF files (from the DB2 PDF CD)

– printed books
v Command line help

– Command help

– Message help
v Sample programs

IBM periodically makes documentation updates available. If you access the online

version on the DB2 Information Center at ibm.com®, you do not need to install

documentation updates because this version is kept up-to-date by IBM. If you have

installed the DB2 Information Center, it is recommended that you install the

documentation updates. Documentation updates allow you to update the

information that you installed from the DB2 Information Center CD or downloaded

from Passport Advantage as new information becomes available.

Note: The DB2 Information Center topics are updated more frequently than either

the PDF or the hard-copy books. To get the most current information, install

the documentation updates as they become available, or refer to the DB2

Information Center at ibm.com.

You can access additional DB2 technical information such as technotes, white

papers, and Redbooks™ online at ibm.com. Access the DB2 Information

Management software library site at http://www.ibm.com/software/data/sw-
library/.

Documentation feedback

We value your feedback on the DB2 documentation. If you have suggestions for

how we can improve the DB2 documentation, send an e-mail to

db2docs@ca.ibm.com. The DB2 documentation team reads all of your feedback, but

cannot respond to you directly. Provide specific examples wherever possible so

that we can better understand your concerns. If you are providing feedback on a

specific topic or help file, include the topic title and URL.

Do not use this e-mail address to contact DB2 Customer Support. If you have a

DB2 technical issue that the documentation does not resolve, contact your local

IBM service center for assistance.

© Copyright IBM Corp. 2006 369

http://www.ibm.com/software/data/sw-library/
http://www.ibm.com/software/data/sw-library/

Related concepts:

v “Features of the DB2 Information Center” in Online DB2 Information Center

v “Sample files” in Samples Topics

 Related tasks:

v “Invoking command help from the command line processor” in Command

Reference

v “Invoking message help from the command line processor” in Command

Reference

v “Updating the DB2 Information Center installed on your computer or intranet

server” on page 375

 Related reference:

v “DB2 technical library in hardcopy or PDF format” on page 370

DB2 technical library in hardcopy or PDF format

 The following tables describe the DB2 library available from the IBM Publications

Center at www.ibm.com/shop/publications/order. DB2 Version 9 manuals in PDF

format can be downloaded from www.ibm.com/software/data/db2/udb/support/
manualsv9.html.

Although the tables identify books available in print, the books might not be

available in your country or region.

The information in these books is fundamental to all DB2 users; you will find this

information useful whether you are a programmer, a database administrator, or

someone who works with DB2 Connect or other DB2 products.

 Table 71. DB2 technical information

Name Form Number Available in print

Administration Guide:

Implementation

SC10-4221 Yes

Administration Guide: Planning SC10-4223 Yes

Administrative API Reference SC10-4231 Yes

Administrative SQL Routines and

Views

SC10-4293 No

Call Level Interface Guide and

Reference, Volume 1

SC10-4224 Yes

Call Level Interface Guide and

Reference, Volume 2

SC10-4225 Yes

Command Reference SC10-4226 No

Data Movement Utilities Guide

and Reference

SC10-4227 Yes

Data Recovery and High

Availability Guide and Reference

SC10-4228 Yes

Developing ADO.NET and OLE

DB Applications

SC10-4230 Yes

Developing Embedded SQL

Applications

SC10-4232 Yes

370 Developing Java Applications

http://www.ibm.com/shop/publications/order
http://www.ibm.com/software/data/db2/udb/support/manualsv9.html
http://www.ibm.com/software/data/db2/udb/support/manualsv9.html

Table 71. DB2 technical information (continued)

Name Form Number Available in print

Developing SQL and External

Routines

SC10-4373 No

Developing Java Applications SC10-4233 Yes

Developing Perl and PHP

Applications

SC10-4234 No

Getting Started with Database

Application Development

SC10-4252 Yes

Getting started with DB2

installation and administration on

Linux and Windows

GC10-4247 Yes

Message Reference Volume 1 SC10-4238 No

Message Reference Volume 2 SC10-4239 No

Migration Guide GC10-4237 Yes

Net Search Extender

Administration and User’s Guide

Note: HTML for this

document is not installed from

the HTML documentation CD.

SH12-6842 Yes

Performance Guide SC10-4222 Yes

Query Patroller Administration

and User’s Guide

GC10-4241 Yes

Quick Beginnings for DB2

Clients

GC10-4242 No

Quick Beginnings for DB2

Servers

GC10-4246 Yes

Spatial Extender and Geodetic

Data Management Feature User’s

Guide and Reference

SC18-9749 Yes

SQL Guide SC10-4248 Yes

SQL Reference, Volume 1 SC10-4249 Yes

SQL Reference, Volume 2 SC10-4250 Yes

System Monitor Guide and

Reference

SC10-4251 Yes

Troubleshooting Guide GC10-4240 No

Visual Explain Tutorial SC10-4319 No

What’s New SC10-4253 Yes

XML Extender Administration

and Programming

SC18-9750 Yes

XML Guide SC10-4254 Yes

XQuery Reference SC18-9796 Yes

 Table 72. DB2 Connect-specific technical information

Name Form Number Available in print

DB2 Connect User’s Guide SC10-4229 Yes

Appendix A. DB2 Database technical information 371

Table 72. DB2 Connect-specific technical information (continued)

Name Form Number Available in print

Quick Beginnings for DB2

Connect Personal Edition

GC10-4244 Yes

Quick Beginnings for DB2

Connect Servers

GC10-4243 Yes

 Table 73. WebSphere Information Integration technical information

Name Form Number Available in print

WebSphere Information

Integration: Administration Guide

for Federated Systems

SC19-1020 Yes

WebSphere Information

Integration: ASNCLP Program

Reference for Replication and

Event Publishing

SC19-1018 Yes

WebSphere Information

Integration: Configuration Guide

for Federated Data Sources

SC19-1034 No

WebSphere Information

Integration: SQL Replication

Guide and Reference

SC19-1030 Yes

Note: The DB2 Release Notes provide additional information specific to your

product’s release and fix pack level. For more information, see the related

links.

 Related concepts:

v “Overview of the DB2 technical information” on page 369

v “About the Release Notes” in Release notes

 Related tasks:

v “Ordering printed DB2 books” on page 372

Ordering printed DB2 books

 If you require printed DB2 books, you can buy them online in many but not all

countries or regions. You can always order printed DB2 books from your local IBM

representative. Keep in mind that some softcopy books on the DB2 PDF

Documentation CD are unavailable in print. For example, neither volume of the DB2

Message Reference is available as a printed book.

Printed versions of many of the DB2 books available on the DB2 PDF

Documentation CD can be ordered for a fee from IBM. Depending on where you

are placing your order from, you may be able to order books online, from the IBM

Publications Center. If online ordering is not available in your country or region,

you can always order printed DB2 books from your local IBM representative. Note

that not all books on the DB2 PDF Documentation CD are available in print.

372 Developing Java Applications

Note: The most up-to-date and complete DB2 documentation is maintained in the

DB2 Information Center at http://publib.boulder.ibm.com/infocenter/
db2help/.

 Procedure:

 To order printed DB2 books:

v To find out whether you can order printed DB2 books online in your country or

region, check the IBM Publications Center at http://www.ibm.com/shop/
publications/order. You must select a country, region, or language to access

publication ordering information and then follow the ordering instructions for

your location.

v To order printed DB2 books from your local IBM representative:

– Locate the contact information for your local representative from one of the

following Web sites:

- The IBM directory of world wide contacts at www.ibm.com/planetwide

- The IBM Publications Web site at http://www.ibm.com/shop/
publications/order. You will need to select your country, region, or

language to the access appropriate publications home page for your

location. From this page, follow the ″About this site″ link.
– When you call, specify that you want to order a DB2 publication.

– Provide your representative with the titles and form numbers of the books

that you want to order.

 Related concepts:

v “Overview of the DB2 technical information” on page 369

 Related reference:

v “DB2 technical library in hardcopy or PDF format” on page 370

Displaying SQL state help from the command line processor

 DB2 returns an SQLSTATE value for conditions that could be the result of an SQL

statement. SQLSTATE help explains the meanings of SQL states and SQL state class

codes.

 Procedure:

 To invoke SQL state help, open the command line processor and enter:

 ? sqlstate or ? class code

where sqlstate represents a valid five-digit SQL state and class code represents the

first two digits of the SQL state.

For example, ? 08003 displays help for the 08003 SQL state, and ? 08 displays help

for the 08 class code.

 Related tasks:

v “Invoking command help from the command line processor” in Command

Reference

v “Invoking message help from the command line processor” in Command

Reference

Appendix A. DB2 Database technical information 373

http://publib.boulder.ibm.com/infocenter/db2help/
http://publib.boulder.ibm.com/infocenter/db2help/
http://www.ibm.com/shop/publications/order
http://www.ibm.com/shop/publications/order
http://www.ibm.com/planetwide
http://www.ibm.com/shop/publications/order
http://www.ibm.com/shop/publications/order

Accessing different versions of the DB2 Information Center

 For DB2 Version 9 topics, the DB2 Information Center URL is http://
publib.boulder.ibm.com/infocenter/db2luw/v9/.

For DB2 Version 8 topics, go to the Version 8 Information Center URL at:

http://publib.boulder.ibm.com/infocenter/db2luw/v8/.

 Related tasks:

v “Updating the DB2 Information Center installed on your computer or intranet

server” on page 375

Displaying topics in your preferred language in the DB2 Information

Center

 The DB2 Information Center attempts to display topics in the language specified in

your browser preferences. If a topic has not been translated into your preferred

language, the DB2 Information Center displays the topic in English.

 Procedure:

 To display topics in your preferred language in the Internet Explorer browser:

1. In Internet Explorer, click the Tools —> Internet Options —> Languages...

button. The Language Preferences window opens.

2. Ensure your preferred language is specified as the first entry in the list of

languages.

v To add a new language to the list, click the Add... button.

Note: Adding a language does not guarantee that the computer has the fonts

required to display the topics in the preferred language.

v To move a language to the top of the list, select the language and click the

Move Up button until the language is first in the list of languages.
3. Clear the browser cache and then refresh the page to display the DB2

Information Center in your preferred language.

To display topics in your preferred language in a Firefox or Mozilla browser:

1. Select the Tools —> Options —> Languages button. The Languages panel is

displayed in the Preferences window.

2. Ensure your preferred language is specified as the first entry in the list of

languages.

v To add a new language to the list, click the Add... button to select a language

from the Add Languages window.

v To move a language to the top of the list, select the language and click the

Move Up button until the language is first in the list of languages.
3. Clear the browser cache and then refresh the page to display the DB2

Information Center in your preferred language.

On some browser and operating system combinations, you might have to also

change the regional settings of your operating system to the locale and language of

your choice.

374 Developing Java Applications

http://publib.boulder.ibm.com/infocenter/db2luw/v9/
http://publib.boulder.ibm.com/infocenter/db2luw/v9/
http://publib.boulder.ibm.com/infocenter/db2luw/v8/

Related concepts:

v “Overview of the DB2 technical information” on page 369

Updating the DB2 Information Center installed on your computer or

intranet server

 If you have a locally-installed DB2 Information Center, updated topics can be

available for download. The 'Last updated' value found at the bottom of most

topics indicates the current level for that topic.

To determine if there is an update available for the entire DB2 Information Center,

look for the 'Last updated' value on the Information Center home page. Compare

the value in your locally installed home page to the date of the most recent

downloadable update at http://www.ibm.com/software/data/db2/udb/support/
icupdate.html. You can then update your locally-installed Information Center if a

more recent downloadable update is available.

Updating your locally-installed DB2 Information Center requires that you:

1. Stop the DB2 Information Center on your computer, and restart the Information

Center in stand-alone mode. Running the Information Center in stand-alone

mode prevents other users on your network from accessing the Information

Center, and allows you to download and apply updates.

2. Use the Update feature to determine if update packages are available from

IBM.

Note: Updates are also available on CD. For details on how to configure your

Information Center to install updates from CD, see the related links.
If update packages are available, use the Update feature to download the

packages. (The Update feature is only available in stand-alone mode.)

3. Stop the stand-alone Information Center, and restart the DB2 Information

Center service on your computer.

 Procedure:

 To update the DB2 Information Center installed on your computer or intranet

server:

1. Stop the DB2 Information Center service.

v On Windows, click Start → Control Panel → Administrative Tools → Services.

Then right-click on DB2 Information Center service and select Stop.

v On Linux, enter the following command:

/etc/init.d/db2icdv9 stop

2. Start the Information Center in stand-alone mode.

v On Windows:

a. Open a command window.

b. Navigate to the path where the Information Center is installed. By

default, the DB2 Information Center is installed in the C:\Program

Files\IBM\DB2 Information Center\Version 9 directory.

c. Run the help_start.bat file using the fully qualified path for the DB2

Information Center:

<DB2 Information Center dir>\doc\bin\help_start.bat

v On Linux:

Appendix A. DB2 Database technical information 375

http://www.ibm.com/software/data/db2/udb/support/icupdate.html
http://www.ibm.com/software/data/db2/udb/support/icupdate.html

a. Navigate to the path where the Information Center is installed. By

default, the DB2 Information Center is installed in the /opt/ibm/db2ic/V9

directory.

b. Run the help_start script using the fully qualified path for the DB2

Information Center:

<DB2 Information Center dir>/doc/bin/help_start

The systems default Web browser launches to display the stand-alone

Information Center.

3. Click the Update button (

). On the right hand panel of the Information

Center, click Find Updates. A list of updates for existing documentation

displays.

4. To initiate the download process, check the selections you want to download,

then click Install Updates.

5. After the download and installation process has completed, click Finish.

6. Stop the stand-alone Information Center.

v On Windows, run the help_end.bat file using the fully qualified path for the

DB2 Information Center:

<DB2 Information Center dir>\doc\bin\help_end.bat

Note: The help_end batch file contains the commands required to safely

terminate the processes that were started with the help_start batch file.

Do not use Ctrl-C or any other method to terminate help_start.bat.

v On Linux, run the help_end script using the fully qualified path for the DB2

Information Center:

<DB2 Information Center dir>/doc/bin/help_end

Note: The help_end script contains the commands required to safely

terminate the processes that were started with the help_start script. Do

not use any other method to terminate the help_start script.
7. Restart the DB2 Information Center service.

v On Windows, click Start → Control Panel → Administrative Tools → Services.

Then right-click on DB2 Information Center service and select Start.

v On Linux, enter the following command:

/etc/init.d/db2icdv9 start

The updated DB2 Information Center displays the new and updated topics.

 Related concepts:

v “DB2 Information Center installation options” in Quick Beginnings for DB2 Servers

 Related tasks:

v “Installing the DB2 Information Center using the DB2 Setup wizard (Linux)” in

Quick Beginnings for DB2 Servers

v “Installing the DB2 Information Center using the DB2 Setup wizard (Windows)”

in Quick Beginnings for DB2 Servers

376 Developing Java Applications

DB2 tutorials

 The DB2 tutorials help you learn about various aspects of DB2 products. Lessons

provide step-by-step instructions.

 Before you begin:

 You can view the XHTML version of the tutorial from the Information Center at

http://publib.boulder.ibm.com/infocenter/db2help/.

Some lessons use sample data or code. See the tutorial for a description of any

prerequisites for its specific tasks.

 DB2 tutorials:

 To view the tutorial, click on the title.

Native XML data store

Set up a DB2 database to store XML data and to perform basic operations

with the native XML data store.

Visual Explain Tutorial

Analyze, optimize, and tune SQL statements for better performance using

Visual Explain.

 Related concepts:

v “Visual Explain overview” in Administration Guide: Implementation

DB2 troubleshooting information

 A wide variety of troubleshooting and problem determination information is

available to assist you in using DB2 products.

DB2 documentation

Troubleshooting information can be found in the DB2 Troubleshooting

Guide or the Support and Troubleshooting section of the DB2 Information

Center. There you will find information on how to isolate and identify

problems using DB2 diagnostic tools and utilities, solutions to some of the

most common problems, and other advice on how to solve problems you

might encounter with your DB2 products.

 DB2 Technical Support Web site

Refer to the DB2 Technical Support Web site if you are experiencing

problems and want help finding possible causes and solutions. The

Technical Support site has links to the latest DB2 publications, TechNotes,

Authorized Program Analysis Reports (APARs or bug fixes), fix packs, and

other resources. You can search through this knowledge base to find

possible solutions to your problems.

 Access the DB2 Technical Support Web site at http://www.ibm.com/
software/data/db2/udb/support.html

 Related concepts:

v “Introduction to problem determination” in Troubleshooting Guide

v “Overview of the DB2 technical information” on page 369

Appendix A. DB2 Database technical information 377

http://publib.boulder.ibm.com/infocenter/db2help/
http://www.ibm.com/software/data/db2/udb/support.html
http://www.ibm.com/software/data/db2/udb/support.html

Terms and Conditions

 Permissions for the use of these publications is granted subject to the following

terms and conditions.

Personal use: You may reproduce these Publications for your personal, non

commercial use provided that all proprietary notices are preserved. You may not

distribute, display or make derivative work of these Publications, or any portion

thereof, without the express consent of IBM.

Commercial use: You may reproduce, distribute and display these Publications

solely within your enterprise provided that all proprietary notices are preserved.

You may not make derivative works of these Publications, or reproduce, distribute

or display these Publications or any portion thereof outside your enterprise,

without the express consent of IBM.

Except as expressly granted in this permission, no other permissions, licenses or

rights are granted, either express or implied, to the Publications or any

information, data, software or other intellectual property contained therein.

IBM reserves the right to withdraw the permissions granted herein whenever, in its

discretion, the use of the Publications is detrimental to its interest or, as

determined by IBM, the above instructions are not being properly followed.

You may not download, export or re-export this information except in full

compliance with all applicable laws and regulations, including all United States

export laws and regulations.

IBM MAKES NO GUARANTEE ABOUT THE CONTENT OF THESE

PUBLICATIONS. THE PUBLICATIONS ARE PROVIDED ″AS-IS″ AND WITHOUT

WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING

BUT NOT LIMITED TO IMPLIED WARRANTIES OF MERCHANTABILITY,

NON-INFRINGEMENT, AND FITNESS FOR A PARTICULAR PURPOSE.

378 Developing Java Applications

Appendix B. Notices

 IBM may not offer the products, services, or features discussed in this document in

all countries. Consult your local IBM representative for information on the

products and services currently available in your area. Any reference to an IBM

product, program, or service is not intended to state or imply that only that IBM

product, program, or service may be used. Any functionally equivalent product,

program, or service that does not infringe any IBM intellectual property right may

be used instead. However, it is the user’s responsibility to evaluate and verify the

operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter

described in this document. The furnishing of this document does not give you

any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing

IBM Corporation

North Castle Drive

Armonk, NY 10504-1785

U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM

Intellectual Property Department in your country/region or send inquiries, in

writing, to:

IBM World Trade Asia Corporation

Licensing

2-31 Roppongi 3-chome, Minato-ku

Tokyo 106, Japan

The following paragraph does not apply to the United Kingdom or any other

country/region where such provisions are inconsistent with local law:

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS

PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER

EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED

WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY, OR FITNESS

FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of express or

implied warranties in certain transactions; therefore, this statement may not apply

to you.

This information could include technical inaccuracies or typographical errors.

Changes are periodically made to the information herein; these changes will be

incorporated in new editions of the publication. IBM may make improvements

and/or changes in the product(s) and/or the program(s) described in this

publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for

convenience only and do not in any manner serve as an endorsement of those Web

sites. The materials at those Web sites are not part of the materials for this IBM

product, and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it

believes appropriate without incurring any obligation to you.

© Copyright IBM Corp. 2006 379

Licensees of this program who wish to have information about it for the purpose

of enabling: (i) the exchange of information between independently created

programs and other programs (including this one) and (ii) the mutual use of the

information that has been exchanged, should contact:

IBM Canada Limited

Office of the Lab Director

8200 Warden Avenue

Markham, Ontario

L6G 1C7

CANADA

Such information may be available, subject to appropriate terms and conditions,

including in some cases payment of a fee.

The licensed program described in this document and all licensed material

available for it are provided by IBM under terms of the IBM Customer Agreement,

IBM International Program License Agreement, or any equivalent agreement

between us.

Any performance data contained herein was determined in a controlled

environment. Therefore, the results obtained in other operating environments may

vary significantly. Some measurements may have been made on development-level

systems, and there is no guarantee that these measurements will be the same on

generally available systems. Furthermore, some measurements may have been

estimated through extrapolation. Actual results may vary. Users of this document

should verify the applicable data for their specific environment.

Information concerning non-IBM products was obtained from the suppliers of

those products, their published announcements, or other publicly available sources.

IBM has not tested those products and cannot confirm the accuracy of

performance, compatibility, or any other claims related to non-IBM products.

Questions on the capabilities of non-IBM products should be addressed to the

suppliers of those products.

All statements regarding IBM’s future direction or intent are subject to change or

withdrawal without notice, and represent goals and objectives only.

This information may contain examples of data and reports used in daily business

operations. To illustrate them as completely as possible, the examples include the

names of individuals, companies, brands, and products. All of these names are

fictitious, and any similarity to the names and addresses used by an actual

business enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information may contain sample application programs, in source language,

which illustrate programming techniques on various operating platforms. You may

copy, modify, and distribute these sample programs in any form without payment

to IBM for the purposes of developing, using, marketing, or distributing

application programs conforming to the application programming interface for the

operating platform for which the sample programs are written. These examples

have not been thoroughly tested under all conditions. IBM, therefore, cannot

guarantee or imply reliability, serviceability, or function of these programs.

Each copy or any portion of these sample programs or any derivative work must

include a copyright notice as follows:

380 Developing Java Applications

© (your company name) (year). Portions of this code are derived from IBM Corp.

Sample Programs. © Copyright IBM Corp. _enter the year or years_. All rights

reserved.

Trademarks

Company, product, or service names identified in the documents of the DB2

Version 9 documentation library may be trademarks or service marks of

International Business Machines Corporation or other companies. Information on

the trademarks of IBM Corporation in the United States, other countries, or both is

located at http://www.ibm.com/legal/copytrade.shtml.

The following terms are trademarks or registered trademarks of other companies

and have been used in at least one of the documents in the DB2 documentation

library:

Microsoft, Windows, Windows NT®, and the Windows logo are trademarks of

Microsoft Corporation in the United States, other countries, or both.

Intel, Itanium®, Pentium®, and Xeon® are trademarks of Intel Corporation in the

United States, other countries, or both.

Java and all Java-based trademarks are trademarks of Sun Microsystems, Inc. in the

United States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other

countries.

Linux is a trademark of Linus Torvalds in the United States, other countries, or

both.

Other company, product, or service names may be trademarks or service marks of

others.

Appendix B. Notices 381

http://www.ibm.com/legal/copytrade.shtml

382 Developing Java Applications

Index

A
accessing Java packages

JDBC 35

SQLJ 97

APIs
comparison of JDBC

implementations 247

applets
building JDBC 157

building SQLJ 160

JDBC samples 169

points for using 163

SQLJ samples 174

application development
supported Java software 3

applications
supported by Java 2 Platform,

Enterprise Edition 207

assignment-clause, SQLJ 275

B
batch queries

JDBC application 48

batch updates
JDBC application 42

SQLJ application 107

BatchUpdateException
retrieving information from, JDBC 82

C
CLI (call level interface)

trace facility 192

trace files 197

CLI/ODBC/JDBC
trace

facility 192

files 197

client reroute support
IBM DB2 Driver for JDBC and

SQLJ 86

closing connection
JDBC data source 88

SQLJ data source 140

com.ibm.db2.jcc.DB2BaseDataSource
methods 301

properties 301

com.ibm.db2.jcc.DB2DatabaseMetaData
methods 301

com.ibm.db2.jcc.DB2Diagnosable
methods 301

com.ibm.db2.jcc.DB2Driver
methods 301

com.ibm.db2.jcc.DB2ExceptionFormatter
methods 301

com.ibm.db2.jcc.DB2JccDataSource
methods 301

com.ibm.db2.jcc.DB2SimpleDataSource
methods 301

com.ibm.db2.jcc.DB2SimpleDataSource

(continued)
properties 301

com.ibm.db2.jcc.DB2Sqlca
methods 301

commands
DB2 SQLJ Profile Binder 361

DB2 SQLJ Translator 348

db2sqljbind 361

db2sqljcustomize 351

db2sqljprint 367

sqlj 348

comments
SQLJ application 99

commit
transaction, JDBC 76

transaction, SQLJ 138

configuration properties
JDBC 11

connecting
to a data source using DataSource 30

to a data source using DriverManager
DB2 JDBC Type 2 Driver 25

IBM DB2 Driver for JDBC and

SQLJ 27

to a data source using SQLJ 92

Connection concentrator
JDBC 221

connection pooling
JDBC and SQLJ 219

connection-declaration-clause, SQLJ 269

connections
using in JDBC 33

contacting IBM 385

containers
Java 2 Platform, Enterprise

Edition 208

context-clause, SQLJ 272

controlling statement execution
SQLJ 130

creating
DB2 objects, JDBC 39

DB2 objects, SQLJ 101

D
data source

retrieving data about, JDBC 35

data sources
connecting to

JDBC 24

data type mappings
Java, JDBC, and SQL 227

data types and scrollable cursors
restrictions 49, 118

DataSource interface
SQLJ 94

DataSource objects, JDBC
creating and deploying 33

DB2 for z/OS servers
setup for accessing from Java

programs 15

DB2 Information Center
updating 375

versions 374

viewing in different languages 374

DB2 JDBC driver 1

DB2 JDBC Type 2 Driver
connecting to data source

DriverManager interface 25

handling SQLException 84

security 141

DB2 SQLJ Profile Binder command 361

DB2 SQLJ Profile Customizer

command 351

DB2 SQLJ Profile Printer command 367

DB2 SQLJ Translator command 348

DB2 Universal JDBC Driver
methods defined only in 301

DB2Binder utility 8

DB2ClientRerouteServerList class 305

DB2Connection interface 306

DB2ConnectionPoolDataSource class 318

DB2Diagnosable interface 320

DB2ExceptionFormatter class 320

DB2JCCPlugin class 321

DB2LobTableCreator utility 10

DB2PooledConnection class 322

DB2PreparedStatement interface 325

DB2RowID interface 325

DB2SimpleDataSource class 325

DB2Sqlca class 326

db2sqljbind command 361

db2sqljcustomize command 351

db2sqljprint command 367

DB2Statement interface 327

DB2SystemMonitor interface 328

DB2T4XAIndoubtUtil
distributed transactions with DB2

UDB for z/OS V7 16

DB2XADataSource class 331

DB2Xml interface 333

declaring
variables in a JDBC application 37

variables in an SQLJ application 98

deregisterDB2XMLObject 74

distinct types
in JDBC applications 61

in SQLJ applications 131

distributed transactions
example 210

documentation 369, 370

terms and conditions of use 378

driver version
IBM DB2 Driver for JDBC and

SQLJ 346

DriverManager interface
SQLJ 92

© Copyright IBM Corp. 2006 383

E
Enterprise Java beans 215

error codes, JDBC
for IBM DB2 Driver for JDBC and

SQLJ errors 344

errors
handling in SQLJ 138

example
deregisterDB2XMLObject 74

registerDB2XMLSchema 74

executable-clause, SQLJ 271

executing
SQL in a JDBC application 38

SQL in an SQLJ application 100

execution context
SQLJ 130

extended client information
IBM DB2 Driver for JDBC and

SQLJ 66

H
help

displaying 374

for SQL statements 373

holdable result set, JDBC 49

host expression, SQLJ 98

host-expression, SQLJ 266

HP-UX
Java environment setup 19

I
IBM DB2 Driver for JDBC and SQLJ

client reroute support 86

connecting to a data source
DriverManager interface 27

DB2PreparedStatement 325

DB2T4XAIndoubtUtil 16

determining version 346

determining version and

environment 346

diagnosing JDBC problems 181

diagnosing SQLJ problems 181

encrypted user ID or encrypted

password security 146

error codes for driver errors 344

example, trace program 184

example, tracing with configuration

parameters 184

extended client information 66

handling SQLException 77

installing 4

Kerberos security 148

LOB support, JDBC 57

LOB support, SQLJ 124

properties 232

ROWID, JDBC 61

ROWID, SQLJ 130

security 142

security plugin support 151

setup for accessing DB2 for z/OS

servers 15

SQLSTATEs for driver errors 345

trace data, collecting 181

trusted context support 153

IBM DB2 Driver for JDBC and SQLJ

(continued)
user ID and password security 144

user ID-only security 146

IBM DB2 Driver for JDBC and SQLJ

classes
DB2ClientRerouteServerList 305

DB2ConnectionPoolDataSource 318

DB2ExceptionFormatter 320

DB2JCCPlugin 321

DB2PooledConnection 322

DB2SimpleDataSource 325

DB2Sqlca 326

DB2XADataSource 331

IBM DB2 Driver for JDBC and SQLJ

connection concentrator
enabling 222

techniques for monitoring 224

IBM DB2 Driver for JDBC and SQLJ

interfaces
DB2Connection 306

DB2Diagnosable 320

DB2RowID 325

DB2Statement 327

DB2SystemMonitor 328

DB2Xml 333

IBM DB2 Driver for JDBC and SQLJ type

2 connectivity
when to use 32

IBM DB2 Driver for JDBC and SQLJ type

4 connectivity
when to use 32

identity columns
retrieving data from, JDBC 63

implements-clause, SQLJ 266

Information Center
updating 375

versions 374

viewing in different languages 374

installing
IBM DB2 Driver for JDBC and

SQLJ 4

isolation level
setting for JDBC application 76

setting for SQLJ application 138

iterator
named, SQLJ 112

obtaining JDBC result sets from 127

positioned, SQLJ 114

scrollable, SQLJ 118

iterator-conversion-clause, SQLJ 275

iterator-declaration-clause, SQLJ 269

J
Java

applets, points for using 163

building
JDBC applets 157

JDBC applications 158

SQLJ applets 160

SQLJ applications 162

building JDBC routines 158

building SQLJ routines 165

Enterprise Java beans 215

HP-UX environment setup 19

Java (continued)
Java 2 Platform, Enterprise Edition

database requirements 209

overview 207

server 209

JDBC samples 169

plug-in sample files 178

SQLJ samples 174

WebSphere sample files 179

Java 2 Platform, Enterprise Edition
application support 207

containers 208

Enterprise Java beans 215

overview 207

requirements 209

server 209

transaction management 209

Java application
customizing environment 11

Java application development
supported software 3

Java application support 1

introduction 1

Java naming and directory interface

(JNDI) 209

Java setup
Accessing DB2 for z/OS servers 15

Java transaction API 209

Java transaction service 209

JDBC
accessing Java packages for 35

calling stored procedures 53

closing connection to a data

source 88

comparison of DB2 driver

support 247

configuring 11

connecting to a data source,

DataSource interface 30

connection concentrator 221

connection pooling 219

data type mappings 227

DataSource objects
creating and deploying 33

DB2 JDBC Type 2 Driver
error handling 84

diagnosing problems, IBM DB2 Driver

for JDBC and SQLJ 181

differences, JDBC drivers 335

distinct types, using 61

distributed transaction 210

handling an SQL warning 81, 85

holdable result set 49

IBM DB2 Driver for JDBC and SQLJ
error handling 77

retrieving data from DB2 tables 46,

47

retrieving information about a

ResultSet 45

retrieving information about statement

parameters 41

scrollable result set 49

stored procedure, retrieving multiple

result sets 54

supported drivers 1

Sysplex workload balancing 221

transaction, committing 76

384 Developing Java Applications

JDBC (continued)
transaction, rolling back 76

updatable result set 49

updating data in DB2 tables 40

using a connection 33

JDBC (Java database connectivity)
applets, points for using 163

building applets 157

building applications 158

building routines 158

IBM DB2 Driver for JDBC and SQLJ
installing 4

samples 169

JDBC application
basic steps 21

batch queries 48

batch updates 42

connecting to a data source 24

creating and modifying DB2

objects 39

declaring variables 37

example 21

executing SQL 38

retrieving data from identity

columns 63

setting isolation level for 76

using SQLJ 127

working with savepoints 62

XML column updates 68

XML data 68

XML data retrieval 70

JDBC driver type
definition 1

JDBC ResultSet
IBM DB2 Driver for JDBC and

SQLJ 44

JDBC setup
Accessing DB2 for z/OS servers 15

JNDI (Java naming and directory

interface) 209

JTA 209

JTS 209

L
large objects (LOBs)

IBM DB2 Driver for JDBC and

SQLJ 57, 124

LOB column
choosing compatible Java data types,

JDBC 59

choosing compatible Java data types,

SQLJ 125

M
modifying

DB2 objects, JDBC 39

DB2 objects, SQLJ 101

multiple result sets
retrieving from a stored

procedure 122

retrieving, SQLJ application 122

N
named iterators in SQLJ

applications 112

notices 379

O
ordering DB2 books 372

P
parameter markers

retrieving information about,

JDBC 41

plug-ins
Java samples 178

positioned delete
SQLJ 101

positioned iterator
passed as variable, SQLJ 106

SQLJ application 114

positioned update
SQLJ 101

PreparedStatement methods
SQL statements with no parameter

markers 40

printed books
ordering 372

problem determination
online information 377

tutorials 377

properties
IBM DB2 Driver for JDBC and

SQLJ 232

properties, JDBC
configuration

parameters 11

R
registerDB2XMLSchema 74

restriction on data types
scrollable iterator 118

scrollable result set 49

restrictions
SQLJ variable names 99

result set iterator
public declaration in separate

file 127

restrictions on declaration 114

ResultSet
IBM DB2 Driver for JDBC and

SQLJ 44

retrieving data
from DB2 tables, JDBC 46, 47

from DB2 tables, SQLJ 111

using multiple instances of an iterator,

SQLJ 117

using multiple iterators on a DB2

table, SQLJ 116

using named iterator, SQLJ 112

using positioned iterator, SQLJ 114

retrieving information about a data

source
JDBC 35

retrieving information about parameter

markers
JDBC 41

retrieving information about result sets
JDBC 45

retrieving information from a

BatchUpdateException 82

rollback
to savepoint, JDBC 62

to savepoint, SQLJ 132

transaction, JDBC 76

transaction, SQLJ 138

routines
invocation from Java programs

XML parameters 72

ROWID
IBM DB2 Driver for JDBC and

SQLJ 61, 130

S
samples

Java plug-in 178

Java WebSphere 179

JDBC 169

SQLJ 174

savepoints
creating, JDBC 62

creating, SQLJ 132

releasing, JDBC 62

releasing, SQLJ 132

scrollable iterator
restrictions on data types 118

using in an SQLJ application 118

scrollable result set
JDBC 49

restriction on data types 49

SDK for Java
HP-UX Java environment setup 19

security
DB2 JDBC Type 2 Driver 141

encrypted user ID or encrypted

password
IBM DB2 Driver for JDBC and

SQLJ 146

IBM DB2 Driver for JDBC and

SQLJ 142

Kerberos
IBM DB2 Driver for JDBC and

SQLJ 148

SQLJ program preparation 155

user ID and password
IBM DB2 Driver for JDBC and

SQLJ 144

user ID-only
IBM DB2 Driver for JDBC and

SQLJ 146

security plugin
JDBC support 151

SET-TRANSACTION-clause, SQLJ 274

SQL statements
displaying help 373

SQL warning
handling in JDBC 81, 85

handling in SQLJ 139

SQLJ
accessing Java packages for 97

Index 385

SQLJ (continued)
applications

compile options on UNIX 164

compile options on Windows 164

calling stored procedures 122

closing connection to a data

source 140

connecting to a data source 92

connection pooling 219

diagnosing problems, IBM DB2 Driver

for JDBC and SQLJ 181

differences, JDBC drivers 342

distinct types, using 131

execution context 130

handling an SQL warning 139

host expression 98

multiple instances of an iterator 117

multiple iterators on a table 116

positioned iterator, passed as

variable 106

routines
compile options on UNIX 166

compile options on Windows 167

security, program preparation 155

transaction, committing 138

transaction, rolling back 138

using DataSource interface 94

using default connection 97

using DriverManager interface 92

SQLJ (embedded SQL for Java)
applets

building 160

applets. points for using 163

applications
building 162

building routines 165

samples 174

SQLJ and JDBC
in the same application 127

SQLJ application
basic steps 89

batch updates 107

comments 99

controlling statement execution 130

creating and modifying DB2

objects 101

declaring variables 98

example 89

executing SQL 100

handling errors 138

named iterator, using 112

positioned delete 101

positioned update 101

retrieving data from DB2 tables 111

retrieving multiple stored procedure

result sets 122

setting isolation level for 138

using a scrollable iterator 118

using JDBC 127

working with savepoints 132

XML column updates 134

XML data 133

XML data retrieval 136

SQLJ assignment-clause 275

SQLJ classes
sqlj.runtime.AsciiStream 288

sqlj.runtime.BinaryStream 289

SQLJ classes (continued)
sqlj.runtime.CharacterStream 290

sqlj.runtime.ExecutionContext 291

sqlj.runtime.SQLNullException 298

sqlj.runtime.StreamWrapper 299

sqlj.runtime.UnicodeStream 300

SQLJ clause 265

sqlj command 348

SQLJ connection-declaration-clause 269

SQLJ context-clause 272

SQLJ executable-clause 271

SQLJ host-expression 266

SQLJ implements-clause 266

SQLJ interfaces
sqlj.runtime.ConnectionContext 277

sqlj.runtime.ForUpdate 282

sqlj.runtime.NamedIterator 282

sqlj.runtime.PositionedIterator 283

sqlj.runtime.ResultSetIterator 283

sqlj.runtime.Scrollable 286

SQLJ iterator-conversion-clause 275

SQLJ iterator-declaration-clause 269

SQLJ Profile Binder command 361

SQLJ SET-TRANSACTION-clause 274

SQLJ statement-clause 272

SQLJ Translator command 348

SQLJ variable names
restrictions 99

SQLJ with-clause 267

sqlj.runtime
Summary of interfaces and

classes 276

sqlj.runtime.AsciiStream class 288

sqlj.runtime.BinaryStream class 289

sqlj.runtime.CharacterStream class 290

sqlj.runtime.ConnectionContext

interface 277

sqlj.runtime.ExecutionContext class 291

sqlj.runtime.ForUpdate interface 282

sqlj.runtime.NamedIterator interface 282

sqlj.runtime.PositionedIterator

interface 283

sqlj.runtime.ResultSetIterator

interface 283

sqlj.runtime.Scrollable interface
methods 286

sqlj.runtime.SQLNullException class 298

sqlj.runtime.StreamWrapper class 299

sqlj.runtime.UnicodeStream class 300

SQLSTATE
codes issued by the IBM DB2 Driver

for JDBC and SQLJ 345

statement-clause, SQLJ 272

stored procedure
retrieving multiple result sets, SQLJ

application 122

retrieving result sets 122

stored procedures
calling

JDBC 53

SQLJ 122

retrieving multiple result sets,

JDBC 54

Sysplex workload balancing
JDBC 221

system monitoring, IBM DB2 Driver for

JDBC and SQLJ 189

T
terms and conditions

use of publications 378

trace program
IBM DB2 Driver for JDBC and SQLJ

example 184

traces
CLI/ODBC/JDBC 192

tracing with configuration parameters
IBM DB2 Driver for JDBC and SQLJ,

example 184

troubleshooting
online information 377

tutorials 377

trusted context
JDBC support 153

tutorials
troubleshooting and problem

determination 377

Visual Explain 377

U
UNIX

SQLJ applications
compile options 164

SQLJ routines
compile options 166

updatable result set
JDBC 49

updates
DB2 Information Center 375

Information Center 375

to DB2 tables, JDBC 40

V
Visual Explain

tutorial 377

W
Windows

SQLJ applications
compile options 164

SQLJ routines
compile options 167

with-clause, SQLJ 267

X
XML columns

updates
JDBC applications 68

SQLJ applications 134

XML data
JDBC applications 68

SQLJ applications 133

XML data retrieval
JDBC applications 70

SQLJ application 136

XML parameters
invocation of routines from Java

programs 72

386 Developing Java Applications

XML schema registration
Java 74

XML schema removal
Java 74

Index 387

388 Developing Java Applications

Contacting IBM

 To contact IBM in your country or region, check the IBM Directory of Worldwide

Contacts at http://www.ibm.com/planetwide

To learn more about DB2 products, go to

http://www.ibm.com/software/data/db2/.

© Copyright IBM Corp. 2006 389

http://www.ibm.com/planetwide
http://www.ibm.com/software/data/db2/udb/

390 Developing Java Applications

����

Printed in USA

SC10-4233-00

Sp
in
e
in
fo
rm
at
io
n:

 IB
M

DB

2
DB

2
Ve

rs
io

n
9

De
ve

lo
pi

ng

Ja

va

Ap

pl
ic

at
io

ns

�
�

�

	Contents
	Chapter 1. Introduction
	Introduction to Java application development for DB2
	Supported drivers for JDBC and SQLJ
	Supported Java application development software
	Setting up the DB2 JDBC and SQLJ development environment
	Installing the IBM DB2 Driver for JDBC and SQLJ
	DB2Binder utility
	DB2LobTableCreator utility
	IBM DB2 Driver for JDBC and SQLJ configuration properties customization
	Special setup for accessing DB2 for z/OS servers from Java programs
	DB2T4XAIndoubtUtil for distributed transactions with DB2 UDB for OS/390 and z/OS Version 7 servers
	Special setup for running Java routines in the HP-UX environment

	Chapter 2. Programming JDBC applications
	Basic steps in writing a JDBC application
	Connecting to database servers in JDBC applications
	How JDBC applications connect to a data source
	How DB2 applications connect to a data source using the DriverManager interface with the DB2 JDBC Type 2 Driver
	Connecting to a data source using the DriverManager interface with the IBM DB2 Driver for JDBC and SQLJ
	Connecting to a data source using the DataSource interface
	How to determine which type of IBM DB2 Driver for JDBC and SQLJ connectivity to use
	JDBC connection objects
	Creating and deploying DataSource objects

	Java packages for JDBC support
	Learning about a data source using DatabaseMetaData methods
	Variables in JDBC applications
	Executing SQL statements in JDBC applications
	JDBC interfaces for executing SQL
	Updating DB2 tables in JDBC applications
	Creating and modifying DB2 objects using the Statement.executeUpdate method
	Updating data in DB2 tables using the PreparedStatement.executeUpdate method
	Learning about parameters in a PreparedStatement using ParameterMetaData methods
	Making batch updates in JDBC applications

	Retrieving data from DB2 tables in JDBC applications
	Characteristics of a JDBC ResultSet under the IBM DB2 Driver for JDBC and SQLJ
	Learning about a ResultSet using ResultSetMetaData methods
	Retrieving data from DB2 tables using the Statement.executeQuery method
	Retrieving data from DB2 using the PreparedStatement.executeQuery method
	Making batch queries in JDBC applications
	Specifying updatability, scrollability, and holdability for ResultSets in JDBC applications

	Calling stored procedures in JDBC applications
	Calling stored procedures using CallableStatement methods
	Retrieving multiple result sets from a stored procedure in a JDBC application

	Working with LOBs in JDBC applications
	LOBs in JDBC applications with the IBM DB2 Driver for JDBC and SQLJ
	Java data types for retrieving or updating LOB column data in JDBC applications

	ROWIDs in JDBC with the IBM DB2 Driver for JDBC and SQLJ
	Distinct types in JDBC applications
	Savepoints in JDBC applications
	Retrieving identity column values in JDBC applications
	Providing extended client information to the DB2 server with the IBM DB2 Driver for JDBC and SQLJ

	Working with XML data in JDBC applications
	XML data in JDBC applications
	XML column updates in JDBC applications
	XML data retrieval in JDBC applications
	Invocation of routines with XML parameters in Java applications
	Java support for XML schema registration and removal

	Transaction control in JDBC applications
	Setting the isolation level for a JDBC transaction
	Committing or rolling back JDBC transactions

	Handling errors and warnings in JDBC applications
	Handling an SQLException under the IBM DB2 Driver for JDBC and SQLJ
	Handling an SQLWarning under the IBM DB2 Driver for JDBC and SQLJ
	Retrieving information from a BatchUpdateException
	Handling an SQLException under the DB2 JDBC Type 2 Driver
	Handling an SQLWarning under the DB2 JDBC Type 2 Driver

	IBM DB2 Driver for JDBC and SQLJ client reroute support
	Disconnecting from database servers in JDBC applications

	Chapter 3. Programming SQLJ applications
	Basic steps in writing an SQLJ application
	Connecting to a data source using SQLJ
	Java packages for SQLJ support
	Variables in SQLJ applications
	Comments in an SQLJ application
	Executing SQL statements in SQLJ applications
	SQL statements in an SQLJ application
	Updating DB2 tables in SQLJ applications
	Creating and modifying DB2 objects in an SQLJ application
	Performing positioned UPDATE and DELETE operations in an SQLJ application
	Iterators as passed variables for positioned UPDATE or DELETE operations in an SQLJ application
	Making batch updates in SQLJ applications

	Retrieving data from DB2 tables in SQLJ applications
	How an SQLJ application retrieves data from DB2 tables
	Using a named iterator in an SQLJ application
	Using a positioned iterator in an SQLJ application
	Multiple open iterators for the same SQL statement in an SQLJ application
	Multiple open instances of an iterator in an SQLJ application
	Using scrollable iterators in an SQLJ application

	Calling stored procedures in SQLJ applications
	Calling stored procedures in an SQLJ application
	Retrieving multiple result sets from a stored procedure in an SQLJ application

	Working with LOBs in SQLJ applications
	LOBs in SQLJ applications with the IBM DB2 Driver for JDBC and SQLJ
	Java data types for retrieving or updating LOB column data in SQLJ applications

	Using SQLJ and JDBC in the same application
	Controlling the execution of SQL statements in SQLJ
	ROWIDs in SQLJ with the IBM DB2 Driver for JDBC and SQLJ
	Distinct types in SQLJ applications
	Savepoints in SQLJ applications

	Working with XML data in SQLJ applications
	XML data in SQLJ applications
	XML column updates in SQLJ applications
	XML data retrieval in SQLJ applications

	Transaction control in SQLJ applications
	Setting the isolation level for an SQLJ transaction
	Committing or rolling back SQLJ transactions

	Handling errors and warnings in SQLJ applications
	Handling SQL errors in an SQLJ application
	Handling SQL warnings in an SQLJ application

	Closing the connection to a data source in an SQLJ application

	Chapter 4. JDBC and SQLJ security
	Security under the DB2 JDBC Type 2 Driver
	Security under the IBM DB2 Driver for JDBC and SQLJ
	User ID and password security under the IBM DB2 Driver for JDBC and SQLJ
	User ID-only security under the IBM DB2 Driver for JDBC and SQLJ
	Encrypted password security or encrypted user ID and encrypted password security under the IBM DB2 Driver for JDBC and SQLJ
	Kerberos security under the IBM DB2 Driver for JDBC and SQLJ
	IBM DB2 Driver for JDBC and SQLJ security plugin support
	IBM DB2 Driver for JDBC and SQLJ trusted context support
	Security for preparing SQLJ applications with the IBM DB2 Driver for JDBC and SQLJ

	Chapter 5. Building Java database applications
	Building JDBC applets
	Building JDBC applications
	Building JDBC routines
	Building SQLJ applets
	Building SQLJ applications
	Java applet considerations
	SQLJ application and applet options for UNIX
	SQLJ application and applet options for Windows
	Building SQLJ routines
	SQLJ routine options for UNIX
	SQLJ routine options for Windows

	Chapter 6. Java sample applications
	JDBC samples
	SQLJ samples
	Java plug-in samples
	Java WebSphere samples

	Chapter 7. Diagnosing JDBC and SQLJ problems
	Diagnosing JDBC and SQLJ problems under the IBM DB2 Driver for JDBC and SQLJ
	JDBC and SQLJ problem diagnosis with the IBM DB2 Driver for JDBC and SQLJ
	Example of using configuration properties to start a JDBC trace
	Example of a trace program under the IBM DB2 Driver for JDBC and SQLJ
	System monitoring for the IBM DB2 Driver for JDBC and SQLJ

	Diagnosing JDBC and SQLJ problems under the DB2 JDBC Type 2 Driver
	CLI/ODBC/JDBC trace facility
	CLI and JDBC trace files

	Chapter 8. Java 2 Platform, Enterprise Edition
	Java 2 Platform, Enterprise Edition Overview
	Java 2 Platform, Enterprise Edition
	Java 2 Platform, Enterprise Edition containers
	Java 2 Platform, Enterprise Edition Server
	Java 2 Platform, Enterprise Edition database requirements
	Java Naming and Directory Interface (JNDI)
	Java transaction management
	Example of a distributed transaction that uses JTA methods
	Enterprise Java Beans

	Chapter 9. JDBC and SQLJ connection pooling support
	Chapter 10. IBM DB2 Driver for JDBC and SQLJ support for connection concentrator and Sysplex workload balancing
	JDBC connection concentrator and Sysplex workload balancing
	Example of enabling the IBM DB2 Driver for JDBC and SQLJ connection concentrator and Sysplex workload balancing
	Techniques for monitoring IBM DB2 Driver for JDBC and SQLJ connection concentrator and Sysplex workload balancing

	Chapter 11. JDBC and SQLJ reference
	Data types that map to SQL data types in JDBC applications
	Properties for the IBM DB2 Driver for JDBC and SQLJ
	Driver support for JDBC APIs
	SQLJ statement reference
	SQLJ clause
	SQLJ host-expression
	SQLJ implements-clause
	SQLJ with-clause
	SQLJ connection-declaration-clause
	SQLJ iterator-declaration-clause
	SQLJ executable-clause
	SQLJ context-clause
	SQLJ statement-clause
	SQLJ SET-TRANSACTION-clause
	SQLJ assignment-clause
	SQLJ iterator-conversion-clause

	sqlj.runtime reference
	Summary of interfaces and classes in the sqlj.runtime package
	sqlj.runtime.ConnectionContext interface
	sqlj.runtime.ForUpdate interface
	sqlj.runtime.NamedIterator interface
	sqlj.runtime.PositionedIterator interface
	sqlj.runtime.ResultSetIterator interface
	sqlj.runtime.Scrollable interface
	sqlj.runtime.AsciiStream class
	sqlj.runtime.BinaryStream class
	sqlj.runtime.CharacterStream class
	sqlj.runtime.ExecutionContext class
	sqlj.runtime.SQLNullException class
	sqlj.runtime.StreamWrapper class
	sqlj.runtime.UnicodeStream class

	IBM DB2 Driver for JDBC and SQLJ reference information
	DB2-only classes and interfaces
	Summary of IBM DB2 Driver for JDBC and SQLJ extensions to JDBC
	DB2BaseDataSource class
	DB2ClientRerouteServerList class
	DB2Connection interface
	DB2ConnectionPoolDataSource class
	DB2Diagnosable interface
	DB2ExceptionFormatter class
	DB2JCCPlugin class
	DB2PooledConnection class
	DB2PreparedStatement interface
	DB2RowID interface
	DB2SimpleDataSource class
	DB2Sqlca class
	DB2Statement interface
	DB2SystemMonitor interface
	DB2XADataSource class
	DB2Xml interface

	JDBC differences between the IBM DB2 Driver for JDBC and SQLJ and other DB2 JDBC drivers
	SQLJ differences between the IBM DB2 Driver for JDBC and SQLJ and other DB2 JDBC drivers
	Error codes issued by the IBM DB2 Driver for JDBC and SQLJ
	SQLSTATEs issued by the IBM DB2 Driver for JDBC and SQLJ
	How to find IBM DB2 Driver for JDBC and SQLJ version and environment information

	Commands for SQLJ program preparation
	sqlj - SQLJ translator
	db2sqljcustomize - SQLJ profile customizer
	db2sqljbind - SQLJ profile binder
	db2sqljprint - SQLJ profile printer

	Appendix A. DB2 Database technical information
	Overview of the DB2 technical information
	Documentation feedback

	DB2 technical library in hardcopy or PDF format
	Ordering printed DB2 books
	Displaying SQL state help from the command line processor
	Accessing different versions of the DB2 Information Center
	Displaying topics in your preferred language in the DB2 Information Center
	Updating the DB2 Information Center installed on your computer or intranet server
	DB2 tutorials
	DB2 troubleshooting information
	Terms and Conditions

	Appendix B. Notices
	Trademarks

	Index
	Contacting IBM

