
CS112 - INTRODUCTION TO PROGRAMMING

Programming Project #2 - Due Wednesday, March 2, at the start of class

Purposes:

1. To give you further experience with Java arithmetic and the use of the Math class.
2. To give you further experience with drawing in Java using the methods of the Graphics class.

Introduction

This project is based on a variant of problems 5.21 and 5.22 in Wu. As you recall, problem 5.21
was the basis for Lab 5 in this course.

What you will do for this project is to create a Java applet that - as a minimum - displays a nice
clock and two input fields labelled “Hours” and “Minutes”. When the user enters a time into
these fields and presses the “Enter” key on the keyboard, the clock will be set to the new time.
Example:

Your program must consist of a minimum of two classes: an applet class and a clock class. The
latter will be based on the class you created in Lab 5, but with various improvements, as discussed
below. You may enjoy looking at versions of a similar project created by students in previous
years, linked off the course home page.

After the projects are completed, your applet will be posted on the department’s web server so that
fellow students, parents, friends, etc. can see what you’ve created as well.

1

Evaluation
Your grade on this project will be based on three criteria:
1. Correct, neat, and visually pleasing operation. (maximum 40-60 points, depending on options

chosen)
2. Good methodology, including documentation, use of comments, overall structure, choice of

names, and good use of white space to aid readability (indentation and blank lines). (maximum
20 points)

3. A project quiz, to be given on the due date. (maximum 20 points)
A blank project cover sheet is attached and should be stapled to the front of your project
submission.

Requirements
Minimal requirements - up to 40 points for correct operation
Fulfill the requirements as stated above. Improve the appearance of the clock you created in Lab 5
in some or all of the following ways:
• Add numbers and/or markers around the face of the clock
• Improve the appearance of the clock hands. We’ll discuss possibilities for this in class.
• Use color to make the clock more visually appealing.
• Other creative possibilities of your own devising
Credit will be based on the aesthetics of the finished product. It is more beneficial to do what you
do well than to do lots of things sloppily. Full credit will require doing all of the above, while
demonstrating that you understand the formulas for positioning hands, markers etc. and that you
have learned something beyond what we have explicitly covered in class or lab.

Option 1 (Maximum of 5 additional points when added to the minimal requirements)
Each clock should display the time both in digital form and in analog form. The digital time should
be displayed before the label, just below the clock. Refer back to the discussion of formatting
integers in class to be sure that times are correctly formatted - e.g. 1:03 should be displayed as 1:03,
not 1:3 or 01:03. This must be handled by the clock object - not separately by the applet.
(I.e. the clock object must display the digital time in its paint() method.) The following illustrates
what this might look like:

Option 2 (Maximum of 5 additional points when added to the minimal requirements - can be done
with or without Option 1)

Consider the task of drawing “hash marks” and time labels as in the example on page 1. This
could be done by a series of statements like:

graphics.drawString("1", calculated X position for 1:00 hour label,
 calculated Y position for 1:00 hour label);

graphics.drawLine(calculated start X for 1:00, calculated start Y for 1:00,
calculated finish X for 1:00, calculated finish Y for 1:00);

2

graphics.drawString("2", calculated X position for 2:00 hour label,
 calculated Y position for 2:00 hour label);

graphics.drawLine(calculated start X for 2:00, calculated start Y for 2:00,
calculated finish X for 2:00, calculated finish Y for 2:00);

...
graphics.drawString("12", calculated X position for 12:00 hour label,

 calculated Y position for 12:00 hour label);
graphics.drawLine(calculated start X for 12:00, calculated start Y for 12:00,

calculated finish X for 12:00, calculated finish Y for 12:00);

It would be much nicer, however, if this were done using a for loop:

for (int hour = 1; hour <= 12; hour ++)
{

calculate position for hour label and hash marks
graphics.drawString(""+hour, calculated X position, calculated Y position);
graphics.drawLine(calculated start X, calculated start Y,

calculated finish X, calculated finish Y);
}

Where the positions for each hour label and hash mark are calculated based on the hour and the
diameter of the clock. Implement both the drawing of 12 hash marks and 12 hour labels this way.
(Hint: it is easy to calculate the position for the center of each label. It will take a bit of “tweaking”
to get the label position to come out exactly right - especially the centering of the hour labels at 6:00
and 12:00, and the fact that the right hand side of the hour label is close to the clock for 7:00-11:00,
while the left hand side of the hour label is close to the clock for 1:00-5:00. See the Hello class
from Lab 5 for an example of how to center a label) The maximum of 5 points for this option will
be given for hour labels and hash marks positioned perfectly symmetrically and elegant code.

Option 3 (Maximum of 10 additional points when added to the minimal requirements - can be done
with or without Options 1 and/or 2)
North America encompasses a total of 8 time zones - listed here in order from east to west:
Newfoundland, Atlantic, Eastern, Central, Mountain, Pacific, Alaska, and Hawaii. Information on
converting times between these can be found at http://atm.geo.nsf.gov/ieis/time.html (all
but Newfoundland) and http://www.education.gov.nf.ca/liv_rel_time.htm
(Newfoundland Time). Modify your applet as follows:
• Instead of displaying one clock, display eight clocks - each showing the time in a different time

zone. The label below each clock should indicate its time zone.
• One clock (Eastern Standard or the time zone of your home) should be displayed noticeably

bigger than the other clocks (e.g. perhaps twice as big). The user will input the time in this zone,
and the 8 clocks will each be set to the corresponding time in their zone. (Be sure your labelling
of the input fields makes it clear to the user what zone the input is supposed to be in.). You don’t
need to worry about daylight savings time - after all, it’s still winter!

If you do this option, you’ll need to take into account issues like the fact that the time 1 hour before
1 is 12, and the fact that Newfoundland time differs from EST by 1 hours 30 minutes. Also, give
some time to making your overall screen layout aesthetically pleasing.

Implementation Notes:
1. To start the project, copy the Project2 folder from the common volume to your server volume.

This folder contains a BlueJ project and the applet class you will need to use
(Project2.java). This class can be used essentially as is (with some aesthetic adjustments,

3

perhaps) unless you do the multiple clocks. You will need to create the Clock class and an
html file to actually run the applet. Of course, you wouldn’t forget to add appropriate
comments to the Project2.java file as well!

2. If you do the multiple clocks option, you will need to add a considerable amount of additional
code to Project2.java to handle the extra clocks. This will require
• adding instance variables for each clock
• changing the comment “Create the clock” to “Create the clocks” and adding code to create,
 add, and position each clock to this section.
• arranging to call setTime() for each clock when the user enters a new value.
• possibly changing the setBounds() calls for the hours and minutes labels and hoursIn
 and minutesIn text fields to change their position on the overall screen.

3. If you do the multiple clocks option, each clock should be set to show the correct initial time
relative to 12:45 in your primary time zone (EST or a different zone you have chosen). (I.e. if
your Eastern time zone clock shows 12:45 initially, your Atlantic time zone clock should show
1:45, your Central time zone clock should show 11:45, Mountain 10:45, etc.) When the user
updates the time, all clocks should be set to show the correct time relative to the new time the
user entered in the primary time zone.
Hint: This is most easily handled by adding two instance variables (say deltaHours and
deltaMinutes) to each clock, which record the amount of time by which the clock’s time zone
differs from the primary time zone - e.g. if the primary time zone is Eastern, deltaHours for
Atlantic would be 1, while deltaMinutes would be 0; for Newfoundland, deltaHours would
be 1 and deltaMinutes would be 30. Include this information as two additional parameters to
the constructor and specify the correct values for each clock as it is constructed. Use each
clock’s setTime() method to set it to its equivalent to 12:45 Eastern at startup.

4. A demonstration of the functionality you are expected to achieve if you do all options is
accessible from the course web page. Please note that this example does not use color or other
features to produce good aesthetics - it simply behaves correctly. (Maximal credit requires more
than this), For maximal credit, your project should be both functional and aesthetic. (But a
beautiful program that does not work correctly is not a beautiful thing!)

Turn in the following, neatly stapled in the order listed:

1. Project Coversheet (attached)
2. Documentation including Problem Statement and Design Document. (Note: you did similar

documents in Lab 5, but the ones you turn in with the project should reflect the requirements of
this project, not the lab.)

3. Printout of the java sources for the classes you created, and of your html file. Note that you are
just to turn in a single program, reflecting the highest option you did. However, you will
probably find it wise to attempt options successively, and to save a copy of an option before
moving on to the next in the case of catastrophic error. Be sure you have deleted unnecessary
“boilerplate” code creaetd by BlueJ.

Leave on server:
The BlueJ project folder containing an executable form of your classes. Also, drag the Project2
folder - with its name changed to your username2 to the CS112 Drop Box, following the
procedure that will be demonstrated in class. (Note: you may not make any changes to the files in
the folder after you have turned the project in! However, you may change the submitted version in
the Drop Box prior to the due date by replacing it with a new version.

4

CS112 - INTRODUCTION TO PROGRAMMING - PROJECT TWO

Option(s) attempted-check all that apply: ❏ 1 ❏ 2 ❏ 3 Author __________________________

I. Correct Operation / Neat and Aesthetically-Pleasing Output

Points _____

II. Methodology

1.External documentation exhibits clear understanding of the problem and demonstrates good
planning for solving it.

Definitely 3 Mostly 2 Partially 1 Not at all 0

2.Prologue comments for files, classes and methods make the purpose of each item clear.

Definitely 3 Mostly 2 Partially 1 Not at all 0

3.Identifiers (class, method, and variable names) clearly describe the item they name and follow
OO naming conventions.

Definitely 3 Mostly 2 Partially 1 Not at all 0

4.Features of the Java language and class library are used appropriately and efficiently.

Definitely 3 Mostly 2 Partially 1 Not at all 0

5.Whitespace (indentation and blank lines) follows a consistent convention and makes the overall
structure of the program clear by enhancing its readability.

Definitely 3 Mostly 2 Partially 1 Not at all 0

6.Overall methodology results in a program that is easily understandable and obviously correct

Definitely 5 Mostly 3 Partially or not at all 0
Points _____

III. Quiz
Points _____

OVERALL TOTAL (Max 100) Points _____

5

