
CS112 Lecture: Searching and Sorting
Revised 4/29/08

Objectives:

1. To introduce the linear search algorithm.
2. To introduce the binary search algorithm.
3. To show superiority of O(log n) vs O(n)
4. To take note of sorting methods discussed in book (selection, insertion, merge) and

“preview coming attractions”..

I. Introduction/Motivation

A. Many computer applications require the ability to search a list of items to find
some particular item.

EXAMPLES:

1. When students register for courses, the software used by the registrar
must locate the appropriate course record (identified by course ID) and
then the appropriate student record (identified by student ID) to ensure tht
there is room in the course and then to record that the student is
registered in these courses.

2. Entering a URL in a web browser results in several searches - e.g.:

a) One or more name servers perform searches to translate the server’s
name into an IP number

b) One or more routers perform searches to find a physical path from the
requesting computer to the server.

c) The server performs one or more searches in various directories to
locate the file containing the requested page.

3. Others ?
ASK

B. Likewise, many computer applications require the ability to sort a list of items
into some order.

1. We shall see shortly that one motivation for this is improved search
performance - it is faster to search for an item in an appropriately-ordered
list than in a list that is not ordered.

1

Example: Which is easier - to look up a person in a conventional phone
book given their last name, or to look up a person in a conventional phone
book given their street address? Why?
ASK

2. A second motivation is human convenience - in many cases, humans
prefer information to be presented in some rational order.
Example: The course schedule booklets used at registration time contains
two lists of courses:
a) One sorted by course ID (department + number)
b) One sorted by time

3. A third motivation for sorting is that there are some operations which
depend on working with sorted lists - e.g. computer matching.

a) Consider the process used by state tax authorities to match information
you supply on your state tax return with information supplied on your
federal return. Basically what they do is sort the information they get
from taxpayers by social security number, and likewise sort the
information they get on Massachusetts residents from the federal
government by social security number. Now they repeat the following
process as long as the lists are not empty.
(1) If the first entry on both lists has the same ssn, they compare the

information for consistency and move on the the next item on both
lists.

(2) If the first entry on the federal list has a smaller ssn, then some
Massachusetts taxpayer may not have filed a state tax return. (In
this case, they take appropriate action and then move on to the next
item on the federal list, keeping the same item on the state list.)

(3) If the first entry on the state list has a smaller ssn, then some
Massachusetts taxpayer may not have filed a federal tax return. (In
this case, they take appropriate action and then move on to the next
item on the state list, keeping the same item on the federal list.)

b) While people who pay their taxes conscientiously should appreciate the
use of matching in this case as a tool for catching people who fail to
carry their fair share of the load, matching can also be used in less
socially-desirable ways - e.g. to match (say) a list of subscribers to some
“subversive” periodical against a list of employees in a company that
doesn’t want their employees reading such material.

2

II. Searching Algorithms
A. The simplest and most generally applicable search strategy is a strategy called

linear or sequential search.
1. Basic algorithm:

Start searching with the first item
while there are still items to search and we
 haven’t found the one we want
 move on to the next item
if we have found what we want
 return it
else
 return some failure code (e.g. null or -1)

2. Example: Do a sequential search of the class as seated for a person with a
particular name.

3. Time complexity: takes time proportional to the number of items in the
list. We call this O(n). Note that average case for item found examines
half the items in the list; item not found or worst case for item found
examines all of them.

B. An alternative, and much better, searching strategy becomes possible if the
entries are kept in order on the key we are searching for - e.g. here
alphabetical order of name. This strategy is called binary search.
1. Demo using searching for a page in a book
2. Basic algorithm

lo = index of start of list (e.g. 0);
hi = index of last item (e.g. length - 1);
Calculate position of middle item: mid = (lo+hi)/2;
while (lo <= hi && middle item is not what we want)
 if middle item is bigger than what we want
 hi = mid - 1;
 else
 lo = mid + 1;
 mid = (lo + hi) / 2;
if (lo > hi)
 item we want is not in list;
else
 item at position mid is what we want;

3

3. Time complexity:
ASK
a) At each time through the loop, we cut the number of items under

consideration in half. Thus, after k iterations on a list starting with n
items, we are still considering n / 2k . If we get down to the last item,
we are done in any case - thus the maximum number of comparisons
before this time is given by n / 2k = 1, or 2k = n, or
k = log2 (n). Total comparisons is 1 more (for last item).

b) “3 AM phone call fact”. Note, too, that computer scientists almost
always mean base 2 when talking about the log of n.

c) How much better is this than sequential search? For small n,
somewhat better - for large n vastly better:
n Sequential search Binary search

Average Worst (both)
8 4 8 4

16 8 16 5
32 16 32 6

...
1024 512 1024 11

...
1000000 500000 1000000 21

...
1000000000 500000000 1000000000 31

4. Note that binary search only works if the list is ordered on the key we are
using for the search. (E.g. if a list of people were in alphabetical order of
name, we wouldn’t be able to use binary search to look up a person by
zip code.). In all other cases, we still have to use sequential search.

5. The need to maintain the list in order has a performance price tag of its
own, of course, which we will consider shortly.

C. We won’t discuss these now, but it should be noted that there are searching
strategies other than sequential or binary search available to us, which depend
on other strategies for ordering the list.

1. One such strategy - which is the one used by the class
java.util.HashMap - potentially yields O(1) performance (time
independent of list size) in the average case, but can degenerate to O(n) -
the same as sequential search - in the worst case. You will consider this
strategy further in CS212.

4

2. Another strategy which is the one used by the class java.util.TreeMap
- makes use of a structure called a balanced binary tree which allows
searches in O(log n) time (as with binary search) but also allows the tree
structure to be maintained in O(log n) time. Again, you will consider this
strategy further in CS212.

III. Sorting

A. We said earlier that there are a number of reasons why we might find it
desirable to keep a series of entries in some kind of order.

1. We have just considered one - vastly improved search performance.

2. Another motivation, of perhaps even greater importance, is user
convenience.

3. There are other operations whose performance is also improved by
keeping one or more lists in order - e.g. computer matching.

B. For a variety of reasons, then, we are interested in algorithms that can be
used to sort a list of items.

1. Terminology:

a) Sort key - the value that is used to establish the ordering. (Can be
composite - e.g. sort by last name, and by first name within the same
last name.).

b) The key must be capable of being compared by a “<” operation,
which must be transitive (A < B and B < C implies A < C)

(1) In Java, primitive types (ints etc.) have a < operator which meets
this requirement.

(2) In Java, < cannot be used with objects. However, many classes (e.g.
String) define an appropriate compareTo() method that can be used
to compare two objects of that class - e.g. if s and t are strings, we
can ask if s alphabetically precedes t as follows:
if (s.compareTo(t) < 0) ...

(3) For our discussion now, we will simply use the < operator
generically - i.e. to stand for “<” or “compareTo(...) < 0” as
appropriate.

5

c) A list is said to be sorted if, for all i: 0 <= i < list length - 1

the key of item [i] <= the key of item [i + 1]

d) The task of sorting is to find a sorted permutation of the original list.
Note that, if no two entries have the same key, the sorting of a given
list is unique.

2. Over the years, many sorting algorithms have been developed. We will
consider these in detail in CS212. For now, note that the book discussed
three:

ASK - THEN DEMO EACH BY SORTING THE CLASS

a) Selection sort [select alphabetically first, then put in place,
alphabetically second, then put in place ...]

b) Insertion sort [build sorted sublists of length 1, 2 ...]

c) Merge sort [Break class in half, recursively sort, merge]

3. The first two have performance that is O(n2). The third is O(n log2 n),
which is as good as one can do except in some very unusual cases. Note
that both costs are very high - e.g. sorting a list of a million items using an
O(n2) sort will take on the order of 1 trillion comparisons, though most
algorithms can cut that by a factor of 2 to only 500 billion!. (The same
list, using an O(n log2 n) algorithm, can be sorted in only about 20 million
comparisons!)

4. The book gave code for each of these sorts. We will not discuss this here -
this is a topic in CS212

6

