
CS112 Lecture: Streams

Last Revised April 17, 2008
Objectives:

1. To introduce the abstract notion of a “stream”
2. To introduce the java File, Input/OutputStream, and Reader/Writer abstractions
3. To show how to read and write primitive types and strings as either binary or text

data
4. To show how to serialize/deserialize objects
5. To discuss exceptions in the context of input-output
6. To discuss extension of these basic ideas to communication over a network

 Materials:

1. Punched card and magnetic tape to show
2. Projectable showing binary and text representations of data, and different kinds of

text representations
3. Handout of diagram showing layered structure of major java.io classes, plus version

to project.
4. Demo programs: BinaryFileMaker.java, BinaryFileAccessor.java,

TextFileMaker.java, TextFileAccessor.java, RandomFileAccessor.java
5. Projectable code for encryption lab illustrating networking

I. Introduction to Streams

A. Computer programs generally don’t exist in isolation, but rather as part of
complete software systems (e.g. a payroll system; a web-based order taking
system, etc). Moreover, it is quite common for a complete system to involve
programs running on multiple computers communicating with one another
over a newtwork.

Such systems must work with three basic types of data:

1. Permanent data - data that the system must maintain over a long period of
time - e.g.

a) Payroll system: data on employees (names, SSN’s, pay rates, year-to-
date pay and withholding, etc.)

b) Web-based order system: data on customers (name, address, credit card
number, etc.) and available goods (description, price, etc.)

This data typically resides on disk

1

2. Transient data - data that is exists outside of any particular program, but
which is needed only for a brief period of time (hours, or days)

a) Payroll system: weekly “timecard” information for employees who
worked during a given pay period (typically keyed into the computer
by a payroll clerk, perhaps from written time sheets)

b) Web-based order system: individual customer orders (typically sent
over the Internet from the customer’s browser).

This data may reside on a variety of media: historically: punched cards;
now often on disk or as packets transmitted over the Internet.

3. Temporary data - data that is only in existence when a given program is
running. The variables that we have been using to store and manipulate
data fall into this category. They reside in the computer’s RAM only
during the time the program of which they are a part is running.

4. In addition, many programs are responsible for producing different kinds
of printed reports.

B. In the case of disk files used for permanent or transient data, and also in the
case of commuication streams between systems, some further distinctions are
important:

1. The distinction between pure binary data and text data.

a) In pure binary data, information is stored as a sequence of bits identical
to the internal binary representation of the entity being stored.
EXAMPLE: ints are stored as 32 bits, grouped into four 8-bit bytes.
The int 42 has binary representation
00000000 00000000 00000000 00101010 PROJECT

b) Text data is represented in binary as well, but with two important
distinctions:

(1) In text data, information is stored as the binary representation of a
series of characters that constitute the printed representation of the
value - typically one character per byte. (Most disk files use ASCII,
not Unicode) For example, the int 42 has textual representation
00110100 00110010 PROJECT
(In this case, the text representation is more compact. That is not
the case in general - binary encoding can store values up to 2 billion
in four bytes; these would require 10 characters.)

2

(2) The data is typically stored as a series of lines, with the lines marked
in one of several ways (depending on the platform being used).

(a) Some platforms have used a “count + data” format for lines,
where each line is represented by a pure binary integer encoding
the number of characters in the line, followed by the individual
characters, each encoded in a form such as ASCII.

(b) Most platforms represent a line by a sequence of characters
followed by a special “line-end” marker - which varies from
platform to platform.

i) On Unix-based platforms (including Mac OS X): \n

ii) On Windows platforms: \r \n

iii) On older (Classic) Macs: \r
Example: if a line consisted of the word "Hello", its binary
representation would be one of the following:

c) Note that for either binary data or text data the data on disk is a bit
pattern; but you have to know which way it is represented to interpret
it properly - e.g. if the binary representation for 42 were interpreted as
if it were text, it would be interpreted as ‘*’; and if the text
representation for 42 were interpreted as if it were binary, it would be
interpreted as 13362.

d) Frequently, permanent data is stored in binary files. Transient data is
often stored in text files, so that it can be easily manipulated by utility
programs that work with text files such as text editors. (Transient data
may be sent over a network in either form.) Internally, temporary data
is generally represented in binary, unless it is textual - e.g. the Java
primitive types (int, boolean, double, etc) are represented in binary, but
Strings are text data.

2. The distinction between sequential and direct-access files on disk.

a) Historically, the earliest media used for long-term storage of data only
supported reading and writing data sequentially, beginning at the start
of the medium.

3

VAX: 00000000 00000101 01001000 01100101 01101100 01101100 01101111
Unix/OSX: 01001000 01100101 01101100 01101100 01101111 00001010
Windows: 01001000 01100101 01101100 01101100 01101111 00001101 00001010
Mac Classic: 01001000 01100101 01101100 01101100 01101111 00001101

EXAMPLES: Punched cards, magnetic tape

Though punched cards are no longer used today, magnetic tapes still
are.

Also, some sorts of data come in an inherently sequential form - e.g.
data typed on a keyboard, or packets arriving over the Internet.

b) Disks allow direct access to data anywhere on the disk in fairly short
time.
A technical note on terminology: Disk files are direct access but not
random access. The difference is that random access implies that the
time to access a given item of data is independent of where it is located.
On a disk, it is possible to access any location directly, but a location
that is physically closer to the last one accessed can be accessed more
quickly.

c) Frequently, transient data is stored in sequential files. Often, permanent
data is stored in direct access files to permit direct access to the desired
information on demand. (E.g. a web order system would exhibit
unacceptable performance if it had to read through all the customer
information from the beginning to find the desired customer when a
new order arrived.!)

d) The chapter in the text used the term “stream” as its title and
throughout. That’s because it focussed on sequential files - which will
be where we put our focus as well.

C. In the overall structure of a computer system, a program is directly
responsible for managing its own variables, but all other kinds of data (disk
files, network packets, printed documents) are managed by the operating
system.

1. The portion of the operating system that deals with these issues is called
the input-output system - or IO system for short.
(Note the use of the terms BIOS = basic input output system and DOS =
disk operating system in the PC world)

2. Indeed, this was one of the original motivations for developing operating
systems in the first place.

a) To avoid burdening each program with detailed knowledge of the
particular physical IO devices.

4

b) To make it easy to change the specific device used for input-output
without requiring massive overhaul of the program.

c) To provide a measure of security for data, so that an erroneous (or
malicious) program cannot easily destroy important data.

3. Although the file system portion of the operating system was designed to
work with disk files, it generally allows access to other kinds of input
output devices by treating them as if they were disk files. This includes
devices such as the keyboard, as well as the network.

D. When a program needs to access a file, it typically does this through an
abstraction called a stream - which represents a connection to a file (or some
other medium).

II. Input-Output in Java

A. The designers of Java faced an important challenge. The input-output system
is part of the operating system, and there are significant differences between
the input output systems between various operating systems.
Example: file specification syntax
1. On Unix systems, the names of disks and directories appearing in the full

path specification for a file are separated by slashes (e.g. your Project 3
files on our server are actually stored in the directory
/home/your-login-name/Project 3/).

2. On Wintel systems, a backslash (\) is used instead.
3. On older (OS 9 and before) Macintoshes, a colon (:) was used.

B. Since Java is meant to be platform-independent, it was necessary to develop a
Java IO system with its own set of conventions that can be implemented on
top of each operating systems own mechanisms.

C. The Java IO system is housed in the package java.io. This package
implements a hierarchy of fundamental abstractions, implemented by objects
that use other, lower-level objects. There are quite a few classes in this
package. We will look at only a few.

1. This structure is based on a fundamental notion in computer science - the
notion of a layered system in which a complex task is broken down into a
series of layers, with each layer using the services of the layer immediately
below it. Note: We will not discuss all the methods at each layer - only
the most critical ones in terms of establishing the functionality of each
layer.

5

HANDOUT DIAGRAM AND PROJECT IT

2. At the lowest level, the class File represents the full name of a physical file
or directory on a disk, which may or may not actually exist.

a) A File object supports basic operations such as inquiries about the file’s
existence and, if it exists, inquires about its size and last modification
date and operations like renaming or deleting the file.

b) A File object does not support transferring information to or from the
file. (I.e. it represents the name of a container for information, but
provides no way to actually access the information inside it.)

c) It would, perhaps, have been clearer if the designers of java had called
the class something other than File - e.g. FileName or FilePath.

3. At the next level up, there are three options, depending on whether the file
being accessed is a sequential binary file, a sequential text file, or a direct
access file. In each case, the object at this layer can be built on top of a
File object, or in some cases on top of some other facility (such as a
network connection).

a) For work with sequential binary files, the classes InputStream and
OutputStream are provided. These presume that the underlying
information is stored/transmitted in binary.

(1) An InputStream permits a program to read an individual byte, or a
series of bytes. It has methods:
int read() // Reads a single byte-returned as a value in
 // the range 0..255; or -1 if at end of file
int read(byte []) // Reads a series of bytes into an array -
 // returns number of bytes actually read -
 // -1 if at end of file

(2) An OutputStream permits a program to write an individual byte, or
a series of bytes. It has methods
void write(int) // Write a single byte
void write(byte []) // Write a series of bytes from an array

(3) The classes at this level only provide for manipulation of individual
bytes (in a binary file).

6

b) For work with text files, the classes Reader and Writer are provided.
These presume that the underlying information is stored/transmitted in
textual form (ASCII or Unicode).

(1) A Reader provides methods to read a single character or a series of
characters
int read() // Returns code for character read or -1 if
 // end of file
int read(char []) // Reads a series of characters into an array
 // Returns number of characters read; -1 if
 // eof

(2) A Writer provides methods to write a single character or series of
characters
void write(int) // Writes a single character given code
void write(char []) // Writes series of characters from array
void write(String) // Writes series of characters from string

(3) The classes at this level only provide for manipulation of individual
characters.

(4) One of the issues these classes must deal with is the fact that Java
represents characters internally using 16-bit Unicode, but many disk
files are 8-bit ASCII, and data transmitted over the network may
use an encoding known as UTF-8. (The latter is a scheme under
which characters that can be represented using 7 bit ASCII are
represented by a single byte, while all other characters are
represented using 2 or 3 bytes.)

(a) Conversion between these schemes is handled by Reader /
Writer objects. A Reader or Writer object “knows” what
representation is actually used for characters in a particular file
or network connection.

(b) Thus, Reader and Writer should always be used with text data -
the various forms of binary streams should never be used, since
they do not deal with this issue.

c) For work with direct access files, the class RandomAccessFile is
provided. This presumes that the underlying information is stored in
binary (there is no analogous structure for text or for information
transmitted over a network, because direct access is not really practical
in these cases due to varying-size data representation in text or
transmission-time issues over a network.)

7

A RandomAccessFile can support both reading and writing of data
from/to a direct access disk file. (Note that the name of the class is
really not well chosen - since disk files support direct access but not
true random access!) This class actually corresponds to both this layer
and the next layer up in the design, so we will mention some methods
now and discuss it again in conjunction with the next level up.
int read() // Reads a single byte-returned as a value in
 // the range 0..255; or -1 if at end of file
int read(byte []) // Reads a series of bytes into an array -
 // returns number of bytes actually read
void write(int) // Writes a single character specified by code
void write(char []) // Writes a series of characters from array
void seek(long) // Positions the file pointer so that next
 // read or write will occur at a specific
 // position in the file

A RandomAccessFile object supports both reading and writing data
with the same object. This is because it is common with permanent
data to read, modify, and update some value “in place” (e.g. the total
outstanding amount owed by a customer). A given file may be opened
in read-only mode, which would make the write operations fail on that
file.

4. The next level up again provides two options, depending on whether the
program wants to read/write a binary file or a text file. In each case, the
object at this layer is built on top of an object of the appropriate kind at
the next layer down. The class RandomAccess file also provides services at
this layer.

a) For work with sequential binary files, the classes DataInputStream and
DataOutputStream are provided.

(1) A DataInputStream is always constructed on top of an InputStream.
It allows the program to read any of the primitive data types from a
binary file, by getting the appropriate number of bytes from the
underlying stream and converting them into the appropriate internal
type. It has methods
boolean readBoolean()
char readChar()
byte readByte()
short readShort()
int readInt()
long readLong()
float readFloat()
double readDouble()

8

There is no method to read a String. To read a String, the program
must do repeated readChar(). This is because there is no standard
way of marking the end of a string in a binary file.

(2) A DataOutputStream is always constructed on top of an
OutputStream. It allows the program to write any of the primitive
types to a binary file, by converting the internal type into a
sequence of bytes and then writing them to the underlying stream.
It has methods
void writeBoolean(boolean)
void writeChar(char)
void writeByte(byte)
void writeShort(short)
void writeInt(int)
void writeLong(long)
void writeFloat(float)
void writeDouble(double)

It also has a method void writeChars(String) - which simply does a
writeChar for each character in the string. (Not doing anything
special to specify the end of the string.)

(3) In the case of character data (char and String), data is read/written
as 16-bit Unicode values - which is not the standard representation
for character data on most platforms, of course. However, this sort
of stream is usually processed only by other programs written in
Java.

b) For work with text files, the classes BufferedReader and PrintWriter
are defined.

(1) A BufferedReader is always constructed on top of a Reader. It adds
one new method
String readLine() // Reads a line - returns null (not "") if
 // at end of file

(2) A PrintWriter is always constructed on top of a Writer. It allows
the program to write the textual representation of any primitive
type, with optional line termination after it, by converting the
internal type to a sequence of characters and then writing each
character in turn to the underlying stream.

void print/println(boolean)
void print/println(char)
void print/println(byte)
void print/println(short)

9

void print/println(int)
void print/println(long)
void print/println(float)
void print/println(double)
void println() // Just output newline - no data

(3) There is an asymmetry in the structure of the java library: there are
provisions for writing any primitive type in its textual form, but no
direct provision for reading the textual form of a primitive type.
(a) The principal reason for this is that reading requires some sort of

lookahead read - e.g. when reading the number 42 from a file,
you don’t know you’ve read all the digits until you see some
non-digit character such as a space. (If you’ve seen 4 and 2 thus
far, the next character could be a 3 in which case the number is
423.)

(b) To read data from a text file, one often does as we did in lab -
reads a line of characters from a BufferedReader, and then
converts it to binary form using various "parse" methods.

c) The class RandomAccessFile provides methods at this layer as well for
use with direct-access binary files:
boolean readBoolean()
char readChar()
byte readByte()
short readShort()
int readInt()
long readLong()
float readFloat()
double readDouble()
void writeBoolean(boolean)
void writeChar(char)
void writeByte(byte)
void writeShort(short)
void writeInt(int)
void writeLong(long)
void writeFloat(float)
void writeDouble(double)
void writeBytes(String) // Writes each character as 8 bits
void writeChars(String) // Writes each character as 16 bits

5. In addition to what we have discussed here, there are many other options -
e.g. a stream can be built on top of the console or a network connection
or a pipe or even an array of bytes; and a reader/writer can be built on top
of a stream (and hence anything a stream can be built on top of) or a
character string. (We will discuss the network aspect of this shortly.)

10

6. In addition to the operations we have discussed thus far, there are two
other very important operations on a file.

a) opening or creating the file - which initially establishes access to it. In
Java, this is taken care of by the constructor for the various classes that
provide access to a file. (But not by the class File per se, because it
doesn’t actually provide access to the content of a file.)

(1) The constructors for sequential input files (FileInputStream,
FileReader) require that the user specify an existing file to be
opened.

(2) The constructors for sequential output files (FileOutputStream,
FileWriter) normally create a new file. However, there is one form
of the constructor that allows specification of appending to an
existing file instead.

(3) The constructor for a random access file opens an existing file if one
of the specified name exists; otherwise it creates a new, empty file.
It allows the user to specify one of two modes: “r” - read only, or
“rw”, read and write/update.

b) closing the file - which terminates access to the file. All of the file
access classes provide a method
void close()

In the case of a file that you are writing data to, it is extremely
important to remember to close the file! The reason for this is that
data is transferred to/from a disk in units called blocks (typically some
multiple of 512 bytes.) When you write data to a file, it is accumulated
in memory until there is enough to make a complete block, and then
the whole block is physically written to the disk. This means that,
typically, when a program finishes writing to a file there will be a
partial block that has not yet been physically written to disk. One thing
the close() operation does is to flush this last partial block to the disk.
Failing to close a file when you are through writing to it can result in
loss of data.

7. As a final note: printers are considered input-output devices on most
computer systems, and most operating systems provide access to printers
through their file system. However, the Java support for access to a
printer is through the abstract windowing tool kit (awt) - in essence, one
can paint on a printer the way one paints in a window.

11

D. SHOW, DEMO

1. BinaryFileMaker.java

a) Use of JFileChooser

b) Use of constructors wrapped around constructors

c) Writing of various kinds of data to file

d) Show contents of file in BBEdit Lite - note how most of it is
unreadable

e) Show raw binary using od -t u1
f) Get file size - show how this follows from data written to it

1 byte for boolean, byte
2 bytes for char, short
4 bytes for int, float
8 bytes for long, double
4 bytes for length of string, plus 2 bytes per character

2. BinaryFileAccessor.java

a) Use of JFileChooser

b) Use of constructors wrapped around constructors

c) Reading of various kinds of data from file

3. TextFileMaker.java

a) Use of JFileChooser

b) Use of constructors wrapped around constructors

c) Writing of various kinds of data to file

d) Show contents of file in BBEdit Lite- note how all of it is readable

e) Also show binary using od -t u1, od -t c

12

4. TextFileAccessor.java

a) Use of JFileChooser

b) Use of constructors wrapped around constructors

c) Reading of various kinds of data from file

5. RandomFileAccessor.java

a) Use of JFileChooser

b) Use of constructors wrapped around constructors

c) Positioning using seek

d) Reading of various kinds of data from various positions in the file:

Position 0 - boolean is read correctly
Position 1 - char is read correctly
Position 3 - byte is read correctly
Position 4 - short is read correctly
Position 6 - int is read correctly
Position 10 - long is read correctly
Position 18 - float is read correctly
Position 22 - double is read correctly

III. Serialization

A. The various types of files we have discussed provide support for reading and
writing the various primitive types. What about reading and writing objects?

B. A solution used in many OO languages, and in the earliest version of Java,
was to require that the programmer create methods to read or write an object
that needs to be saved to disk by reading and writing its individual fields.

C. JDK 1.1 added support for object serialization, which allows objects to be
written and read in binary form just like primitive types.

1. The class ObjectInputStream builds on an InputStream, and supports a
method readObject() (as well as methods for reading primitive types)

2. The class ObjectOutput builds on an OutputStream, and supports a
method writeObject() (as well as methods for writing primitive types)

13

3. To be eligible to be read/written from/to a stream, an object’s class must
be declared as implementing Serializable. The Java language takes care of
creating the code necessary to actually read and write the object.

D. There is a lot more involved here than might first appear, because objects can
contain references to other objects.
Example: Suppose we stored registration information about courses using a
structure like this:

Student Course

That is, each Student object holds references to the Course objects for the
courses the student is enrolled in (perhaps an array or some other sort of
collection; and each Course object similarly holds references to the Student
objects for the students registered in it.
Now consider what happens if we try to save one Student object to disk:

1. That Student object needs to be saved

2. The Course objects for each course the student is in needs to be saved.

3. The Student objects for each student in each course needs to be saved -
which can result in saving more Course objects ...
It is not inconceivable that saving one Student object might result in
saving the entire database!

4. Of course, we only want to save each object once - e.g. if ten students in
this course are both enrolled in Calculus II, we only want to save the
Calculus II object once; and when we do, we don't want to save the
Student objects for these individuals again.

E. This is all taken care of by object serialization, which was used in Project 3 (in
code you didn't actually have to write!)

14

IV. Exceptions

A. IO operations are inherently prone to possible failure for a variety of reasons

1. Attempting to perform an operation that is inherently impossible:

a) Attempting to open a non-existent file

b) to create a file or write on a read-only device (e.g. a CDROM) or a
device that has no room available.

c) Attempting to read past the end of a file.

2. Many operating systems have a file permission mechanism that allows the
owner of a file to control what users may access it. An attempt to access
a file in violation of these permissions is not allowed. (The existence of a
reasonably fine-grained protection system is a significant security
advantage for why Unix/linus file servers over servers that lack such a
mechanism.)

3. IO systems can have hardware problems such as

a) Disk errors due to defects in the disk

b) Network errors due to another system that one is communicating with
going down or communications problems

4. Data format problems when reading data from a text file - e.g.
encountering a letter when trying to read a number. - etc.

B. We have already met the general mechanism Java uses for dealing with issues
like this - the exception mechanism. Exception-handling is particularly
prominent when dealing with IO operations.

1. The package java.io defines a general exception category known as
IOException with many subclasses - e.g. (briefly explain each)
a) EOFException
b) FileNotFoundException
c) InterruptedIOException
d) etc., etc.
e) Specific implementations may also create specific subclasses of
IOException to deal with varioius specialized problems.

15

Most of the io methods are declared as throwers (or propagators) for
IOException.

2. In addition, if you are reading input as character strings to be parsed as
numbers, you also need to be prepared to deal with exceptions such as
NumberFormatException.

V. Communicating over a Network

A. The examples we have considered thus far have focussed on performing IO
operations on disk files. Often, though, programs communicate with other
programs over a network connection.

B. For network communication, the fundamental abstraction is called a sockets,
which serves as an endpoint for communication to another computer.

1. When two computers are communicating, there exists a socket on each
which is connected over the network to the corresponding socket on the
other machine. Thus, sockets normally come in pairs - one on each
machine.

2. Associated with each socket is an input stream and an output stream.
Whatever is written to the output stream on one computer becomes
available to be read from the input stream on the other computer, and vice
versa.

That is, a pair of connected sockets behaves like a “tin-can” telephone.

3. Of course, this creates the question of how a socket pair gets created in
the first place. To make this possible, there is a special kind of socket
called a server socket which isn’t actually connected to any other socket.
Rather, it waits for a connection attempt from some other computer and
then creates a socket connected to the socket that attempted the
connection.

C. The Encryption lab we did earlier is an illustration of this. Here are some
excerpts from the code you were given for this lab. In this lab, a socket pair
is created for each individual message, and then destroyed as soon as the
message is sent:

16

1. Excerpts from code executed on sender PROJECT

Socket socket = new Socket(destinationAddress, port);
PrintWriter writer = new PrintWriter(socket.getOutputStream(), true);
writer.println(encryptedMessage);
socket.close();

a) The constructor for the Socket class specifies the IP of the destination
system and the port on which to contact it. When it is created, it
attempts to establish a connection to the destination (and throws an
exception if it cannot).

b) The socket supplies an output stream which the sender then writes into
to actually send the message. (It could also supply an input stream to
read from, but that is not used in this case.)

c) Note how the constructor for PrintWriter is “wrapped” around the
stream furnished by the socket. The stream is a pure binary stream;
the PrintWriter knows how to convert characters into a suitable form.

2. Excerpts from code executed on receiver: (connectionSocket is created by
the server socket that received the initial connection attempt) PROJECT
BufferedReader input = new BufferedReader(new

InputStreamReader(connectionSocket.getInputStream()));
String message = input.readLine();
messageField.setText(message);
connectionSocket.close();

a) In this case, the socket supplies an input stream which the receiver
reads from to get the message. (The message read will be the one that
the sender wrote).

b) Note how the constructor for InputStreamReader is “wrapped” around
the stream furnished by the socket. The stream is a pure binary
stream; the InputStreamReader knows how to convert binary data into
characters.

c) Then, as a further step, the constructor for a BufferedReader is
“wrapped” around the reader. The BufferedReader knows how to
convert individual characters from the InputStreamReader into lines. In
this program, messages were only one line long; but the system could
easily be extended to handle multi-line messages. In this case, each
time the BufferedReader's readLine() method is called, it would deliver
one line that the sender wrote using the println() method of its
PrintWriter.

17

