
CS211 Lecture: Identifying Responsibilities; 
CRC Cards

last revised September 17, 2007
Objectives:

1. To show how to use CRC cards to identify objects and find responsibilities

 Materials:
1. ATM System example on the web.
2. Session Use Case flow of events handout
3. Supply of 3x5 cards for CRC cards

I. Introduction

A. Preliminary notes:

1. We will not go over the two quick-check questions in class
2. Turn in class diagram questions in writing

B. As we pointed out at the start of the course, there are many 
different processes that can be followed in software development 
(e.g. waterfall life cycle, RUP, etc).

C. Regardless of what process is followed, however, certain tasks will 
need to be done as part of the development process per se - 
whether all at once, iteratively, or incrementally.   In fact, activities 
like these will be part of any situation in which one uses his/her 
professional skills to help solve someone else’s problem - not just 
when creating software or even in a computer field.

1. Establishing Requirements: The goal of this is to spell out what 
constitutes a satisfactory solution to the problem.

2. Analysis.  The goal of this is to understand the problem.

3. Design. The goal of this is to develop the overall structure of a 
solution to the problem in terms of individual, buildable 
components and their relationships to one another.

4. Implementation.  The goal of this task is to actually build  the 
system as designed.

5. Installation / Maintenance / Retirement
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D. The approach that we are taking to design is called a use-case driven 
approach , because we use the use cases identified during analysis to drive 
the design process.   Our approach is as follows

1. Develop the class structure for the system

a) Identify the classes that need to be part of the system - a topic we 
dealt with some time ago.  We saw then that there are two things 
we can consider when seeking to identify classes

(1) The problem domain
(2) Key nouns that occur in the use cases

b) Identify the relationships between various classes - a topic we have 
been dealing with.

c) Assign responsibilities to each class.  Each responsibility that must 
be fulfilled to accomplish the use cases must be assigned to some 
class.   This will be the focus of this set of lectures.

2. In a subsequent set of lectures, we will deal with the process of detailed 
design of the various classes

3. Since large systems may include hundreds or thousands of classes, 
some partitioning of classes into subsystems (packages) is often  
necessary.  This is a portion of the design process we will not discuss 
until later, though.

E. As we do the design, we will often discover the need for additional objects 
and classes, to facilitate the implementation of the objects we discovered 
during analysis.  (Booch et. al. observe that there may be a 5:1 ratio 
between classes discovered at analysis time and classes ultimately needed 
to implement a system.)

II. Assigning Responsibilities to Classes: CRC Cards

A. Once we have some notion of the key classes that the objects comprising 
the system will belong to, we can begin determining what responsibilities 
each class will fulfill.

B. One tool that we can use to help us do this is called CRC Cards (CLASS, 
RESPONSIBILITY, COLLABORATOR).  CRC cards are not a formal 
part of UML, but are commonly used as a vehicle for doing design that is 
then documented using UML diagrams.
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1. A CRC card is a card (generally about 3 x 5) containing at the top the 
name of a class, followed by two parallel lists.

a) The list on the left hand side lists the responsibilities of the class.

b) The list on the right hand side lists the other classes (if any) with 
which this class must collaborate  to carry out each task.

2. To get started, we can create a CRC card for each of the classes we 
discovered during the analysis phase.   As we discover the need for 
additional classes, we can create additional CRC cards.
EXAMPLE: We will develop a partial set of CRC cards for the ATM 
example in class.  For the portion we are doing, we will need cards for 
the following classes:

a) ATM
b) Session
c) Transaction
d) CardReader
e) CustomerConsole
f) Card

DRAW CARDS ON BOARD

3. A typical way to use CRC cards is to "walk through" the various use 
cases, identifying tasks that need to be performed and assigning the 
responsibility for each to an appropriate class, by recording it in the 
“responsibility” column of the appropriate card.

a) The use case itself is made a responsibility of some class.

b) The classes that are called upon to perform specific responsibilities 
as part of the use case become collaborators, noted in the 
“Collaborators” column of the card for the class that is responsible 
for the use case.

c) In addition, each collaborator class gets one or more responsibilities 
listed in the “Responsibilities” column of its  card - which may in 
turn, lead to identifying further collaborators it needs, etc.

4. The key question to ask for each operation we find in the use cases is 
"what class should be responsible for this?"  Often there will be more 
than one possible answer, so the different alternatives need to be 
examined carefully before a choice is made.
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5. This process lends itself particularly well to a group of people working 
together, with individual members of the group role-playing various 
classes.  (Remember, in an OO system the basic computational model 
is one of different objects sending messages to each other.  We 
represent this by having the person who is role playing a class that 
needs some task perform asking the representative of an appropriate 
collaborating class to perform it.)

C. We will do an example of this process shortly.  Before doing so, let’s do 
an exercise from the book to become familiar with what a CRC card looks 
like.

Do Exercise 6.1

1. Small groups

2. Discuss as class

3. What additional classes would get responsibilities on their CRC cards as 
a result of assigning collaborators on “Mother”?

ASK

D. EXAMPLE: Walk through session use case.

Ask several students to role play the various classes.  Fill in CRC cards 
on board as classes get responsibilities or collaborators.  

NOTE AT OUTSET: There is no one best way to make the responsibility 
assignments.  I made certain choices in developing the example, and we 
will work with those so that everything hangs together.

1. The use case flow of events for this case begins “A session is started 
when a customer inserts an ATM card into the card reader slot of the 
machine  ..."

a) An obvious assignment of responsibilities is to have a Session object 
that is responsible for performing the Session use case.
(Note on card)

b) However, the Session object cannot be responsible for starting the 
session use case.   WHY? 
ASK
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A session object is not even created until the use case is begun.  
Thus, at the very beginning of the use case, there is no session 
object in existence as yet!

c) So what class should be responsible for starting a session when the 
card is inserted?
ASK - be sure to get both ATM and CardReader 

For our purposes, we will make the CardReader responsible to tell 
the ATM that a card has been inserted.  Then, the ATM will be  
responsible for actually creating the session.  

Put responsibility to inform ATM on CardReader card, with ATM 
as collaborator; and give ATM responsibility to start a session when 
card is inserted on ATM card.

d) What class(es) does ATM need as collaborators for this task?
ASK - be sure to get:

(1) Session (The Session constructor is used to actually create the 
Session object.)

(2) CustomerConsole (for message telling user to insert card)
Enter the above on card for ATM

(3) Note that CardReader is not made a collaborator of ATM, but 
rather the other way around - CardReader makes use of a 
service to ATM  (responding to insertion of the card.)

e) What other classes get responsibilities as a result of this?

ASK - NOTE ON CARDS

(1) Session has already been given the responsibility of performing 
the Session use case - otherwise, we would have to add that to 
its card now.

(2) CustomerConsole is made responsible for displaying a message 
to the customer.

2. At this point, we continue the flow of events in the use case, 
understanding that the newly-created Session object is now responsible 
for carrying the use case out, making use of other classes as needed.
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3. The first thing that must happen is that the card must actually be read.  
Continuing with the use case flow of events: “The ATM pulls the card 
into the machine and reads it.”

What collaborators does Session use to get this job done?

a) (class) Card - when we read the card, we create a Card object that 
contains information about it.
Card is added as a collaborator of Session, and gets a responsibility 
on its own CRC card - to represent information about a customer’s 
ATM card.

b) CardReader (to read actual information from the card).
Note: The flow of events says “the ATM pulls the card ...”; but in 
the design, we make this a responsibility of a component part of the 
ATM - the card reader - not of the ATM itself.  From the 
perspective of one using the system, it looks like the ATM is 
reading the card - but from the vantage point of design, the actual 
task is given to the card reader.

(1) This gives rise to CardReader being a collaborator of Session 
(add to card).

(2) This gives rise to a responsibility of CardReader (to actually read 
the card.).  For this responsibility, CardReader also makes use of 
Card as a collaborator.   (In fact, it creates the Card object which 
it then gives to the session.)

c) A design decision that I made in this system is to give the ATM 
object responsibility for providing access to its component parts 
when Sessions and Transactions need this access.  (e.g. a Session 
object asks the ATM object to give it a reference to the CardReader 
object).

(1) This makes ATM a collaborator of Session.  (Add to CRC)

(2) This gives ATM a responsibility - to provide access to 
component parts.  (Add to CRC)

4. What if the card proves to be unreadable?   The flow of events says 
three things must occur.  “(If the reader cannot read the card due to 
improper insertion or a damaged stripe, the card is ejected, an error 
screen is displayed, and the session is aborted.)”
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a) Who should be responsible for ejecting the bad card?
ASK - This one’s pretty clear - the CardReader!
Note this responsibility on its card. 

b) Who should be responsible for telling the user the card is bad?
ASK  - Again - obvious - the CustomerConsole
Since the customer console has already been given a responsibility 
for displaying messages to the customer, no new responsibility 
needs to be added here.

c) The aborting of the Session is easy: the relevant method just 
terminates.

5. Now the flow of events goes on to say “The customer is asked to 
enter his/her PIN”.

a) What class(es) does the Session need as collaborator(s)?
ASK
CustomerConsole

b) Add CustomerConsole as a collaborator for Session, and add 
responsibility to read a PIN as a responsibility of CustomerConsole. 

6. The flow of events continues by saying that the customer “is then 
allowed to perform one or more transactions, choosing from a menu of 
possible types of transaction in each case.”

a) What class should be responsible for offering the customer the list 
of choices?
ASK

(1) Could be the Session.

(2) Could be class Transaction.  We will go this route, since this puts 
knowledge about the possible types of transactions in this class 
(which needs to have it anyway) without burdening Session with 
this knowledge.
Add responsibility to Transaction.

b) What collaborators does Transaction need for this task?
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(a) CustomerConsole
(b) ATM (to provide access to console)
(c) Constructors of appropriate subclass: Withdrawal, Deposit, 

Transfer, Inquiry)

Note on card for Transaction.

Add accept choice from a menu as a responsibility of 
CustomerConsole.

c) Since performing a transaction use case has a separate flow of 
events, we will defer developing details until later, but will note this 
as a responsibility of Transaction now.

Add to CRC card

7. The flow of events continues: “After each transaction, the customer is 
asked whether he/she would like to perform another.”

We will fold this into the transaction use case responsibility.

8. The flow of events continues: “When the customer is through 
performing transactions, the card is ejected from the machine and the 
session ends.”

We have already made ejecting a card a responsibility of CardReader 

9. The flow of events ends by saying “If a transaction is aborted due to 
too many invalid PIN entries, the session is also aborted, with the card 
being retained in the machine.

This adds a “retain card” responsibility to CardReader.

E. SHOW ON THE WEB - my CRC cards for ATM system - GO OVER
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