
CS211 Lecture: Identifying Responsibilities;
CRC Cards

last revised September 17, 2007
Objectives:

1. To show how to use CRC cards to identify objects and find responsibilities

 Materials:
1. ATM System example on the web.
2. Session Use Case flow of events handout
3. Supply of 3x5 cards for CRC cards

I. Introduction

A. Preliminary notes:

1. We will not go over the two quick-check questions in class
2. Turn in class diagram questions in writing

B. As we pointed out at the start of the course, there are many
different processes that can be followed in software development
(e.g. waterfall life cycle, RUP, etc).

C. Regardless of what process is followed, however, certain tasks will
need to be done as part of the development process per se -
whether all at once, iteratively, or incrementally. In fact, activities
like these will be part of any situation in which one uses his/her
professional skills to help solve someone else’s problem - not just
when creating software or even in a computer field.

1. Establishing Requirements: The goal of this is to spell out what
constitutes a satisfactory solution to the problem.

2. Analysis. The goal of this is to understand the problem.

3. Design. The goal of this is to develop the overall structure of a
solution to the problem in terms of individual, buildable
components and their relationships to one another.

4. Implementation. The goal of this task is to actually build the
system as designed.

5. Installation / Maintenance / Retirement

1

D. The approach that we are taking to design is called a use-case driven
approach , because we use the use cases identified during analysis to drive
the design process. Our approach is as follows

1. Develop the class structure for the system

a) Identify the classes that need to be part of the system - a topic we
dealt with some time ago. We saw then that there are two things
we can consider when seeking to identify classes

(1) The problem domain
(2) Key nouns that occur in the use cases

b) Identify the relationships between various classes - a topic we have
been dealing with.

c) Assign responsibilities to each class. Each responsibility that must
be fulfilled to accomplish the use cases must be assigned to some
class. This will be the focus of this set of lectures.

2. In a subsequent set of lectures, we will deal with the process of detailed
design of the various classes

3. Since large systems may include hundreds or thousands of classes,
some partitioning of classes into subsystems (packages) is often
necessary. This is a portion of the design process we will not discuss
until later, though.

E. As we do the design, we will often discover the need for additional objects
and classes, to facilitate the implementation of the objects we discovered
during analysis. (Booch et. al. observe that there may be a 5:1 ratio
between classes discovered at analysis time and classes ultimately needed
to implement a system.)

II. Assigning Responsibilities to Classes: CRC Cards

A. Once we have some notion of the key classes that the objects comprising
the system will belong to, we can begin determining what responsibilities
each class will fulfill.

B. One tool that we can use to help us do this is called CRC Cards (CLASS,
RESPONSIBILITY, COLLABORATOR). CRC cards are not a formal
part of UML, but are commonly used as a vehicle for doing design that is
then documented using UML diagrams.

2

1. A CRC card is a card (generally about 3 x 5) containing at the top the
name of a class, followed by two parallel lists.

a) The list on the left hand side lists the responsibilities of the class.

b) The list on the right hand side lists the other classes (if any) with
which this class must collaborate to carry out each task.

2. To get started, we can create a CRC card for each of the classes we
discovered during the analysis phase. As we discover the need for
additional classes, we can create additional CRC cards.
EXAMPLE: We will develop a partial set of CRC cards for the ATM
example in class. For the portion we are doing, we will need cards for
the following classes:

a) ATM
b) Session
c) Transaction
d) CardReader
e) CustomerConsole
f) Card

DRAW CARDS ON BOARD

3. A typical way to use CRC cards is to "walk through" the various use
cases, identifying tasks that need to be performed and assigning the
responsibility for each to an appropriate class, by recording it in the
“responsibility” column of the appropriate card.

a) The use case itself is made a responsibility of some class.

b) The classes that are called upon to perform specific responsibilities
as part of the use case become collaborators, noted in the
“Collaborators” column of the card for the class that is responsible
for the use case.

c) In addition, each collaborator class gets one or more responsibilities
listed in the “Responsibilities” column of its card - which may in
turn, lead to identifying further collaborators it needs, etc.

4. The key question to ask for each operation we find in the use cases is
"what class should be responsible for this?" Often there will be more
than one possible answer, so the different alternatives need to be
examined carefully before a choice is made.

3

5. This process lends itself particularly well to a group of people working
together, with individual members of the group role-playing various
classes. (Remember, in an OO system the basic computational model
is one of different objects sending messages to each other. We
represent this by having the person who is role playing a class that
needs some task perform asking the representative of an appropriate
collaborating class to perform it.)

C. We will do an example of this process shortly. Before doing so, let’s do
an exercise from the book to become familiar with what a CRC card looks
like.

Do Exercise 6.1

1. Small groups

2. Discuss as class

3. What additional classes would get responsibilities on their CRC cards as
a result of assigning collaborators on “Mother”?

ASK

D. EXAMPLE: Walk through session use case.

Ask several students to role play the various classes. Fill in CRC cards
on board as classes get responsibilities or collaborators.

NOTE AT OUTSET: There is no one best way to make the responsibility
assignments. I made certain choices in developing the example, and we
will work with those so that everything hangs together.

1. The use case flow of events for this case begins “A session is started
when a customer inserts an ATM card into the card reader slot of the
machine ..."

a) An obvious assignment of responsibilities is to have a Session object
that is responsible for performing the Session use case.
(Note on card)

b) However, the Session object cannot be responsible for starting the
session use case. WHY?
ASK

4

A session object is not even created until the use case is begun.
Thus, at the very beginning of the use case, there is no session
object in existence as yet!

c) So what class should be responsible for starting a session when the
card is inserted?
ASK - be sure to get both ATM and CardReader

For our purposes, we will make the CardReader responsible to tell
the ATM that a card has been inserted. Then, the ATM will be
responsible for actually creating the session.

Put responsibility to inform ATM on CardReader card, with ATM
as collaborator; and give ATM responsibility to start a session when
card is inserted on ATM card.

d) What class(es) does ATM need as collaborators for this task?
ASK - be sure to get:

(1) Session (The Session constructor is used to actually create the
Session object.)

(2) CustomerConsole (for message telling user to insert card)
Enter the above on card for ATM

(3) Note that CardReader is not made a collaborator of ATM, but
rather the other way around - CardReader makes use of a
service to ATM (responding to insertion of the card.)

e) What other classes get responsibilities as a result of this?

ASK - NOTE ON CARDS

(1) Session has already been given the responsibility of performing
the Session use case - otherwise, we would have to add that to
its card now.

(2) CustomerConsole is made responsible for displaying a message
to the customer.

2. At this point, we continue the flow of events in the use case,
understanding that the newly-created Session object is now responsible
for carrying the use case out, making use of other classes as needed.

5

3. The first thing that must happen is that the card must actually be read.
Continuing with the use case flow of events: “The ATM pulls the card
into the machine and reads it.”

What collaborators does Session use to get this job done?

a) (class) Card - when we read the card, we create a Card object that
contains information about it.
Card is added as a collaborator of Session, and gets a responsibility
on its own CRC card - to represent information about a customer’s
ATM card.

b) CardReader (to read actual information from the card).
Note: The flow of events says “the ATM pulls the card ...”; but in
the design, we make this a responsibility of a component part of the
ATM - the card reader - not of the ATM itself. From the
perspective of one using the system, it looks like the ATM is
reading the card - but from the vantage point of design, the actual
task is given to the card reader.

(1) This gives rise to CardReader being a collaborator of Session
(add to card).

(2) This gives rise to a responsibility of CardReader (to actually read
the card.). For this responsibility, CardReader also makes use of
Card as a collaborator. (In fact, it creates the Card object which
it then gives to the session.)

c) A design decision that I made in this system is to give the ATM
object responsibility for providing access to its component parts
when Sessions and Transactions need this access. (e.g. a Session
object asks the ATM object to give it a reference to the CardReader
object).

(1) This makes ATM a collaborator of Session. (Add to CRC)

(2) This gives ATM a responsibility - to provide access to
component parts. (Add to CRC)

4. What if the card proves to be unreadable? The flow of events says
three things must occur. “(If the reader cannot read the card due to
improper insertion or a damaged stripe, the card is ejected, an error
screen is displayed, and the session is aborted.)”

6

a) Who should be responsible for ejecting the bad card?
ASK - This one’s pretty clear - the CardReader!
Note this responsibility on its card.

b) Who should be responsible for telling the user the card is bad?
ASK - Again - obvious - the CustomerConsole
Since the customer console has already been given a responsibility
for displaying messages to the customer, no new responsibility
needs to be added here.

c) The aborting of the Session is easy: the relevant method just
terminates.

5. Now the flow of events goes on to say “The customer is asked to
enter his/her PIN”.

a) What class(es) does the Session need as collaborator(s)?
ASK
CustomerConsole

b) Add CustomerConsole as a collaborator for Session, and add
responsibility to read a PIN as a responsibility of CustomerConsole.

6. The flow of events continues by saying that the customer “is then
allowed to perform one or more transactions, choosing from a menu of
possible types of transaction in each case.”

a) What class should be responsible for offering the customer the list
of choices?
ASK

(1) Could be the Session.

(2) Could be class Transaction. We will go this route, since this puts
knowledge about the possible types of transactions in this class
(which needs to have it anyway) without burdening Session with
this knowledge.
Add responsibility to Transaction.

b) What collaborators does Transaction need for this task?

7

(a) CustomerConsole
(b) ATM (to provide access to console)
(c) Constructors of appropriate subclass: Withdrawal, Deposit,

Transfer, Inquiry)

Note on card for Transaction.

Add accept choice from a menu as a responsibility of
CustomerConsole.

c) Since performing a transaction use case has a separate flow of
events, we will defer developing details until later, but will note this
as a responsibility of Transaction now.

Add to CRC card

7. The flow of events continues: “After each transaction, the customer is
asked whether he/she would like to perform another.”

We will fold this into the transaction use case responsibility.

8. The flow of events continues: “When the customer is through
performing transactions, the card is ejected from the machine and the
session ends.”

We have already made ejecting a card a responsibility of CardReader

9. The flow of events ends by saying “If a transaction is aborted due to
too many invalid PIN entries, the session is also aborted, with the card
being retained in the machine.

This adds a “retain card” responsibility to CardReader.

E. SHOW ON THE WEB - my CRC cards for ATM system - GO OVER

8

