
CPS211 Lecture: Class Diagrams in UML

Last revised July 24, 2008
Objectives:
1. To introduce UML Class Diagrams
2. To explain the association relationship between objects, adornments possible on

such relationships, and ways of using these relationships
3. To introduce aggregation and composition associations
4. To introduce the dependency relationship between classes
5. To review the inheritance relationship between classes, and consider how to use

inheritance in design
6. To introduce the realization relationship between a class and an interface

 Materials:
1. Handout of class diagram for ATM Example
2. Handout of class/object diagram symbols

I. Introduction

A. As we pointed out at the start of the course, there are many different
processes that can be followed in software development (e.g. waterfall life
cycle, RUP, etc).

B. Regardless of what process is followed, however, certain tasks will need to
be done as part of the development process per se - whether all at once,
iteratively, or incrementally. In fact, activities like these will be part of
any situation in which one uses his/her professional skills to help solve
someone else’s problem - not just when creating software or even in a
computer field.

1. Establishing Requirements: The goal of this is to spell out what
constitutes a satisfactory solution to the problem.

2. Analysis. The goal of this is to understand the problem. The key
question is “What?”.

3. Design. The goal of this is to develop the overall structure of a solution
to the problem in terms of individual, buildable components and their
relationships to one another. The key question is “How?”.

4. Implementation. The goal of this task is to actually build the system
as designed.

5. Installation / Maintenance / Retirement

1

All of these must be done in a context of commitment to Quality
Assurance - ensuring that the individual components and the system
as a whole do what they are supposed to do (which may involve
identifying their shortcomings and fixing them.)

C. Last class dealt with initial identification of the key classes comprising a
system - an analysis task. At this point, we begin to construct a class
diagram, which continues to be refined as system development proceeds.

1. In the spirit of “seamless development” that characterizes OO, the
initial development of a class diagram is an analysis task, which is
refined as part of design.

2. Ultimately, the complete class diagram for a system will contain three
general types of classes:

a) During analysis, the classes discovered will typically be entity classes
which represent “things” in the domain that the system must work
with to fulfill its requirements.

(1) The book suggests two general approaches to discovering these
classes

(a) One can consider what objects are involved in realizing a
given use case.
Quick check question b (p. 118)
When all the objects appearing in each collaboration are
combined, the result will be an overall class diagram for the
system. (Note: there will typically be objects that appear in
more than one collaboration)

(b) One can seek to develop a model of the general domain

(c) Either approach should result in the same overall model

(2) The book suggests several broad categories to look for
Quick-Check question d (p 119)

(a) People

(b) Organizations

(c) Physical things

2

(d) Conceptual things

Examples from Wheels

ASK

Customers
Bicycles
The hiring of a bicycle

b) As one moves into the design stage, one typically begins dealing
with the other types of classes

Quick check question a (p 118)

I prefer to use a slightly different way to categorize these

(1) Boundary classes whose objects serve as means by which actors
interact with the system - i.e. conceptually they sit on the
boundary drawn during use case analysis.

(a) These may include one or more GUIs

(b) These may include interfaces to other systems via a network

(2) Controller classes whose objects are responsible for controlling
the operation of the system. Typically each use case will be
assigned to a controller object - though one controller may be
responsible for multiple use cases.

3. Ultimately, the class diagram will contain quite a bit of information

a) The classes themselves

b) The attributes of each class

c) The operations of each class

d) Relationships between classes

4. The book suggests an overall process for developing a class diagram

Quick check question c (p. 118)

3

D. For the next few sessions, we want to look at the UML Class Diagram,
which can represent a lot of information. In particular, we will focus on
various relationships between classes.

1. What these mean

2. How they are represented

E. At the outset, we note that there are two different sorts of relationship,
that we handle similarly but need to keep distinct in our thinking.

1. There are relationships between individual objects. Such a relationship
describes how a particular object of one class relates to a particular
object of another class.

a) Among humans, the relationship known as marriage is such a
relationship. It relates one individual to another specific individual.
You may know many married people, but each has a different
spouse.

b) In the OO world, the link along which a message is sent from an
object to one of its collaborators is such a relationship - a particular
sender sends a message to a particular receiver. (That is, the
Collaborators column of a CRC card is documenting associations.)

c) In this case, then, each individual object participates in the
relationship (or doesn’t participate in the relationship, as the case
may be) with its own particular partner or partners.

d) Where things get a bit confusing is that when we identify an
individual relationship between objects, we are also identifying a
relationship between the corresponding classes. The fact that an
object of class Book is related to one or more objects of class
Author implies that there is a relationship between the classes Book
and Author such that a member of the one class can participate in
this relationship with a member of the other class.

2. There are relationships between classes. Such a relationship describes
how one whole class of objects is related to another class.
a) Among humans, the fact that all CS majors are also students is such

a relationship.

b) In the OO world, generalization, or inheritance, is such a
relationship.

4

c) In the case of a class relationship, all the objects that belong to a
given class participate in the relationship in the same way.

3. In drawing a class diagram, we can depict all kinds of relationships -
even those that are actually relationships between individual objects.
(Indeed, the class diagram is the more frequently used type of diagram
in UML in general.).

F. In this series of lectures and the next, we will discuss four kinds of
relationships (three of which are exemplified in the ATM class diagram
handed out.). We will consider object relationships (the first kind) first, and
class relationships (the next three) later.

HANDOUT: Diagram symbols

1. Association - a relationship between objects.
EXAMPLES FROM CLASS DIAGRAM; SYMBOLS HANDOUT

a) In a class diagram, this kind of relationship is represented by a solid
line, possibly with a plain arrow head on one end. There can
multiplicities at both ends.
When there is an association between two classes, it means that an
object belonging to one class can be related in this way to an object
belonging to another class.

Master

Pet

1
*

Human

LivingCreature

b) There are two special kinds of associations, which we have already
looked at briefly, and will say more about later

5

(1) Aggregation - an association representing a whole-part
relationship

(2) Composition - a strong form of aggregation

2. Dependency - a relationship between classes. In a UML diagram, this
is represented by a dashed line with an arrowhead on one end.
EXAMPLES FROM DIAGRAM; SYMBOLS HANDOUT

3. Generalization (inheritance) - a relationship between classes. In a UML
diagram, this is represented by a solid line with a triangle on one end.
EXAMPLES FROM DIAGRAM; SYMBOLS HANDOUT

4. Realization - a relationship between a class and an interface. In a
UML diagram, this is represented by a dashed line with a triangle on
one end. (Note that the symbol is similar to that for generalization,
because realization is similar to inheritance.)
NO EXAMPLES IN CLASS DIAGRAM - WILL DISCUSS BELOW;
SYMBOLS HANDOUT

6

II. Relationships Between Objects: Associations

A. Relationships between individual objects are called associations in UML.
They are depicted by a solid line on a class diagram, or an object diagram.

B. Technically, the fact that an object of class A can be associated with an
object of class B is called an association and the corresponding connection
between a specific object of class A and a specific object of class B is called
a link. That is, an association is conceptually a set of links.

C. In the simplest case, an association may simply be drawn as line. But
often, the line has one or more adornments that provide further
information about the association. [Note: for clarity, as we talk about
each type of adornment we will omit others that might otherwise belong
in the diagram]

1. Navigability (directionality):

a) Ordinarily, associations are conceived of as being bidirectional - e.g.
in the diagram showing the association between a Book and its
Author(s), we probably intend for it to be possible to go from a
Book object to its Author object(s), and likewise to go from an
Author object to the Book(s) it is the author of.

b) Sometimes, though, an association is conceptually unidirectional -
e.g. if were to try to depict the relationship between a Server
system and a Client system that uses it, we might draw it this way:

Server

Client

The arrow says that the Client must know about the Server, but the
Server does not need to know about the Client (except briefly,
during the time it is responding to a message received from the
Client.)

7

c) Why would we want to identify an association as being
unidirectional where this is appropriate is? The presence of an
association in the class diagram implies that the implementation will
need to maintain information about this association. Keeping
information about a bidirectional association means that both objects
will have to maintain information about the association. If this is not
necessary, maintaining the association in only one direction will
simplify the implementation.

2. Multiplicity: Some associations are conceptually one to one - one object
of a given type relates to one object of another type. Others allow one
object of a given type to be related to many objects of another type.
Here are some different situations that often arise, and the
corresponding UML representation:

a) One-to-one. Example: marriage (at least as intended!)
Husband Wife

1 1

b) One-to-many: Example: the relationship between a book and the
individual chapters that are part of it.

Book Chapter
1 *

c) Many-to-many: Example: students and courses
Course Student

* *

d) Often, the multiplicities will be expressed as ranges, rather than as
simple values
(1) Example: the marriage relationship above was shown as 1 to 1

between the classes Man and Woman. If it were shown as a
association between class Male and Female, the multiplicities
would need to be expressed as ranges. (One cannot be a
Husband or Wife without being married, but one can be a Male
or Female without being married, so either can be associated
wiht 0 or 1 of the other!)

8

Male Female
0..1 0..1

(2) Example: a person has exactly two birth parents. A parent has
at least one child, but can have any number:

Parent Child
2 1..*

(3) Example: the annual volleyball competition between the Math
and CS wings of our department involves up to 5 games. In
each game, at least 12 but no more than 30 students can
participate.

Game Player
0..5 12..30

(This one’s a bit contrived to illustrate a point, I admit :-).

(4) The symbol * we have previously used means “0 or more” -
hence it is equivalent to 0..*

e) If the lower limit on the multiplicity of a certain relationship is 0, we
say that the relationship is optional. If the lower limit is greater
than 0, we say that the relationship is mandatory. Note that the
same relationship may be optional in one direction, and mandatory
in the other.

(1) Example: the relationship between a customer and the orders
he/she has placed with a company. Assuming a person can
register as a customer before placing an order, we have the
following scenario:

Customer Order
1 *

9

The relationship from an order to a customer is mandatory -
every order must be associated with a customer. The
relationship from customers to orders is optional - a customer
does not need to have any orders.

(2) It’s certainly possible to have a relationship that’s optional both
ways - e.g. the relationship between a library patron and books.
he/she currently has checked out. A patron does not have to
have any books checked out at a given time, nor does any
particular book have to be checked out at a given time.

Patron Book
0..1 *

(3) Recall that the notation “*” is short for “0..*”, and so stands for
a relationship that is inherently optional. If the relationship is
mandatory, but of unlimited multiplicity, we must use the form
“1..*”.

(4) Also note that some writers use the notation “n” instead of * in
a range - so * (= 0..*) is written as “0..n” and 1..* is written as
“1..n”.

f) Note: Often in the literature the term “cardinality” is used for what
we have called “multiplicity”. The authors of the UML reference
point out that - technically - cardinality refers to the properties of a
particular instance of an association, while multiplicity refers to the
overall properties of the association itself.
E.g. if there are 22 students enrolled in a given course, then the
cardinality of the relationship between the object representing that
course and the students in it is 22; but the multiplicity of the
relationship between the class Course and the class Students might
be, say 0..200 - assuming a course might have no students in it but
cannot have more than 200.
We’ll use the term “multiplicity” here - but understand that you
will often see the term “cardinality” used to mean the same thing

3. Name: Often, the meaning of the association is implicit in the classes
that are related, but sometimes an association will be given a name to
make its meaning explicit.

a) EXAMPLE:

10

Course Student* *
EnrolledIn

(Note the arrow on the name, which indicates how it is to be read:
“a student is enrolled in a course”. It has nothing to do with
navigability of the association itself, which is bidirectional in this
case.)

b) Giving a name to an association is especially important in cases
where there are two different relationships between the same pair of
classes.

EXAMPLE

Department Student
MajorsIn

MinorsIn

*

*

1..*

*

(Note that a student must have at least one major, but can have
zero or more minors)

c) Note that association names typically begin with an upper-case
letter, denoting that they are “class like”. In fact, in some cases an
association may need to be represented by an Association Class.
This is particularly true when there are one or more attributes that
are attributes of the association itself, rather than of the participating
object.
Example calling for an association class - the association between a
student and a course, which has a grade attribute that is a property
of the association - not of the student (who has individual grades for
each course) or of the course (since there are individual grades for
each student.)

Course Student* *

EnrolledIn

grade: Grade

(Note the use of the three sets of lines in the box representing the
association class, to make it crystal clear that this is a class.)

11

4. Qualified Association: Sometimes, a given object can be associated with
many objects of some other class, but there is some qualifier such that,
for any given value of the qualifier, the object is associated with at most
one other object.
EXAMPLE:
A college is associated with many students; but for any given student
id, there is at most one associated student (or possibly none). We say
that the association between the college and students is a qualified
association, with student id as the qualifier. This can be depicted as
follows:

Student
id

0..11College

(Note how the effect of the qualification is to reduce the multiplicity
from 1 : n to 1 : 0..1 - for any given id value, there is at most one
matching student)

5. Role: Often, the specific roles played by the two objects in a
relationship is implicit in the classes to which they belong; but
sometimes the roles are named explicitly: This is especially necessary
in cases where an association connects objects of the same class to each
other.
EXAMPLE:

Employee

supervisor supervisee
1 *

Supervises

Note: Care must be used in drawing a diagram to distinguish between
the name of an association and role names. The latter should be drawn
near the end of the association line; the former far enough from the
ends to be clear that it is not a role.

6. Aggregation/Composition: Sometimes, an association is stronger than
an ordinary association, in that one of the objects can be thought of as
being part of the other - i.e. the relationship is one between a whole
and its constituent parts. We call such an association aggregation.

12

a) Aggregation is appropriate when we can meaningfully use the
phrase “is a part of” to describe the relationship between the part
and the whole, or “has a” to describe the relationship between the
whole and the part.
EXAMPLES:

(1) In the ATM system, the CardReader, CustomerConsole, etc.
objects are parts of the ATM object. This is a stronger
connection than most of the examples of associations we have
considered thus far.

(2) The relationship between a course and its students might also be
thought of as an aggregation, though this is perhaps a bit more
debatable. (Perhaps most appropriate in a situation were we are
modeling student registrations in a course.)

b) Aggregation is denoted in a UML diagram by putting a diamond on
the “whole” part of the relation.

c) Aggregation actually comes in two forms: simple aggregation, and a
stronger form, called composition.

(1) Composition has the additional characteristic that the “part” has
no existence independent of the “whole”. This leads to two
additional characteristics:

(a) Each “part” can belong to only one whole.

(b) The “whole” is responsible for creating and destroying the
“parts”. Thus, the “parts” come into existence when the
“whole” comes into existence; and if the “whole” is
destroyed, the “parts” are destroyed too.

(c) Composition is denoted by using a filled-in diamond;
whereas simple aggregation uses a hollow diamond.

(d) Of the two examples we have considered:
i) The relationship between the ATM and its component

parts is composition. One cannot imagine a component
like a CardReader having an independent existence apart
from an ATM (at least as far as the software is
concerned), nor can a CardReader belong to two different
ATM’s.

13

ii) On the other hand, the relationship between courses and
students is simple aggregation: students exist apart from
their courses, and a given student can be - and typically is
- a part of more than one course as the same time.

d) In the case of composition, there is an alternative representation
possible in UML. That is to put the box representing the “part”
class inside the box representing the “whole” class.
EXAMPLE: Consider the relationship between chapters of a book
and the book itself. Clearly, each chapter is a part of one and only
one book, and its existence is directly tied to the book of which it is
a part. Thus, the association between a book and its chapters is a
composition. Either of the following UML representations can be
used:

Book

Chapter

*

1 Book

Chapteror

The latter representation might be particularly appropriate if the
Chapter objects are accessible to the outside world only by going
through a Book object - i.e. if they don’t enter into any relationships
with outside objects on their own.

D. Almost all associations (including all the examples we have considered) are
binary associations.
1. A binary association is one that has the following properties:

a) Two classes are involved (or one class is involved in two ways)
b) Each instance of the association links exactly two objects

2. It is also possible to have an n-way association that associates more
than 2 classes. We will look at just one example: the relationship
between a child and his/her two parents (a 3-way association): [Any
multi-way association can be converted to use only binary associations;
in practice, this is almost always done]

14

Father

Mother

Child

E. Associations are used for three general purposes:
1. We have already seen that associations can be used to represent a

situation in which an object of one class uses the services of an object
of another object, or they mutually use each others services - i.e. one
object sends messages to the other, or they send messages back and
forth. (In the former case, the navigability can be monodirectional; in
the latter case it must be bidirectional.)

2. We have also already seen that associations can be used to represent
aggregation or composition - where objects of one class are wholes that
are composed of objects of the other class as parts. In this case, a uses
relationship is implicitly present - the whole makes use of its parts to do
its job, and the parts may also need to make use of the whole.

3. As a third possibility, associations can also be used to represent a
situation in which objects are related, even though they don’t exchange
messages. This typically happens when at least one of the objects is
basically used to store information - e.g. in the AddressBook problem
we did in CS112, this is the relationship between the AddressBook
object and the various Person objects it stores. (The AddressBook
doesn’t directly send messages to Persons, though it can be used to
retrieve a Person that some other object can then send a message to.)
(Some writers call this a weak relationship. This is not a standard
UML term, however.)

F. ON HANDOUT: Discuss the various associations in the ATM example
class diagram.
Note that the relationship between the ATM and its component parts
could have been expressed by using the “box within box” representation.

15

III. Generalization

A. We saw earlier that there are two different sorts of relationship, that we
handle similarly but need to keep distinct in our thinking.

1. There are relationships between individual objects. Such a relationship
describes how a particular object of one class relates to a particular
object of another class.

2. There are relationships between classes. Such a relationship describes
how one whole class of objects is related to another class.

B. We have been studying associations, which are relationships between
objects. We now turn to the study of relationships between classes, of
which UML class diagrams recognize three.

C. Probably the most prominent sort of relationship between classes is
inheritance, which UML calls “Generalization”.

1. Generalization relationships are denoted in UML by using a solid line
with a triangle on the base class end.
NOTE IN HANDOUT

2. Actually, as noted in the book, inheritance can arise in two closely
related ways:
a) Generalization: a base class is created that embodies the common

characteristics of a number of similar subclasses.
We may discover an opportunity for generalization during design
when we notice that two or more classes have a number of
characteristics in common, which can be put into a common base
class so that they don’t have to be duplicated in each class.
EXAMPLE: Suppose we are developing a system for maintaining
course registration information, and create classes “Student” and
“Professor”. As we develop these classes, we realize they have a
lot in common (name, address, phone number, date of birth, etc.)
and so create a generalized class Person that each inherits from.

b) Specialization: a class is created that is similar to its base class, but
with certain special characteristics.
We may discover an opportunity for specialization during design
when we notice that a class we need to create is very similar to an
existing class, with a few variations. Rather than starting from
class, we reuse the existing class by inheriting from it and only
implementing the things which are different.

16

EXAMPLE: We did this from the very beginning of our work with
Karel J. Robot last semester. The various kinds of robot classes we
created were created by specializing the class Robot - or in some
cases by specializing one of its specializations.

D. We have already discussed the meaning and mechanics inheritance both in
CS112 and in this course. Our focus now will be on using inheritance as
part of the design process. When do we use it, and how?

1. Inheritance can be a very powerful and useful tool, saving a great deal
of redundant effort.

2. Unfortunately, inheritance can be - and often is - misused. So we will
want to consider both how to use inheritance and how not to use it.

3. A cardinal rule for using inheritance well is the rule of substitution.
ASK
If a class B inherits from a class A, then it must be legitimate to use a B
anywhere an A is expected. That is, it must be legitimately possible to
say “a B isa A”.

E. Actually, there are a variety of reasons for using inheritance in the design
of a software system - including some not so good ones! One writer,
Bertrand Meyer, has written a classic article in which he identified twelve!
Some of the uses identified in Meyer’s article are fairly sophisticated. I
will draw on his work here, but in simplified form. Broadly speaking,
Meyer classifies places where inheritance can be used as:

1. Model inheritance - when the inheritance structure in the software
mirrors a hierarchical classification structure in the reality being
modeled by the software.

a) One key feature of human knowledge is that many fields of learning
have classification systems:

(1) The taxonomic system of biology

(2) The Dewey Decimal and Library of Congress systems used in
libraries.

(3) Other examples?
ASK

17

b) When the reality we are working with has such a natural hierarchy,
we may want to reflect that hierarchy in our software. However,
Meyer warns about what he calls “taxomania” - the tendency to go
overboard with classification hierarchies in software. In particular,
there is a danger of creating too many levels in a hierarchy, without
enough distinctions between classes at a level.

c) In general, we want to reflect a natural hierarchy in our software if
the different objects we are working with fall into classes that have
enough significant differences in attributes and behavior to make
classification worthwhile.

(1) EXAMPLE: In the video store problem, the items the store
rents can be categorized as movie tapes and game cartridges.
These probably have enough distinctions to warrant two classes
inheriting from a common “RentableItem” base class, because
the information we need to store about each is quite different:

(a) Movies: studio, actor(s), genre, rating, running time
(b) Games: system made for, rating (using a very different sort of

rating scale from that for movies)

(2) EXAMPLE: If the store rents both VHS tapes and DVD’s, we
may not to further classify movies into VHS and DVD, because
the kind of information we keep about each is the same.

2. A second broad type of inheritance is what Meyer calls software
inheritance. Here, the inheritance structure reflects a hierarchy that
does not exist in the reality being modeled, but is useful nonetheless in
the software.

a) Actually, as it turns out, what Meyer calls software inheritance
shows up in UML models in two places - here, and under
realization. We’ll discuss the latter case later.

b) The usages we made of inheritance when working with Karel J.
Robot really fall into this category. For example, at one point we
created the class RightTurnerRobot by extending Robot. It is,
however, unlikely that you would find separate catalog listings for
these two types of robot - rather, we created this hierarchy to make
software development easier.

c) One common motivation for this sort of inheritance is to facilitate
polymorphism. Suppose we want to create a collection class whose

18

elements are to be various sorts of objects - e.g. perhaps a home
inventory that lists the different items found in our home (useful
information in case of a fire or theft.) In order to place these
different items in the same polymorphic container, they would need
to all derive from a common base class, which is the class of things
the collection actually stores. (E.g. in this case, we might create a
class HomeAsset and make things like furniture, books, artwork,
electronic equipment etc. inherit from it.)
NOTE: In this case, the common base class will most likely be
abstract.
EXAMPLE: The Transaction class hierarchy in the ATM system
can be regarded as an example of this. The class Session needs to
be able to refer polymorphically to different types of Transaction,
which are made subclasses of a common abstract base class.

d) Another motivation for using software inheritance is to reuse work
already done. When we are designing a new class, it is worth
asking the question “is there any already existing class that does
most of what this class needs to do, which I can extend?”

(1) EXAMPLE: When we were working with Karel J. Robot in
CS112, we used a basic Robot class that had certain primitive
capabilities (move(), turnLeft(), etc.) which we could extend by
adding new capabilities (e.g. turnAround(), turnRight(), etc.)

(2) However, we need to proceed cautiously when we do this,
because this kind of inheritance can easily be abused. When
extending an existing class to create a new class, we should ask
questions like:

(a) Is the law of substitution satisfied?
If the law of substitution is not satisfied, then we are almost
certainly abusing inheritance.

(b) Are we mostly adding new attributes and methods to the
existing class, or changing existing methods to do something
entirely different? In the latter case, we are likely abusing
inheritance - extension means “adding to” an existing set of
capabilities.

(c) Are all (or at least most) of the existing methods of the base
class relevant to the new class? If not, it is again likely that
we are abusing inheritance.

19

(3) Note that, in cases like this, we generally do not have to create
the base class - instead, we use an existing class to help create a
new one.
(a) This is most likely to happen in cases where the base class has

been designed from the beginning to facilitate extension. (I.e.
we usually consider extending classes whose initial designer
created them with the intention that they be extended. For
example, the Robot class was designed this way.)

(b) A related idea is that, where appropriate, we should try to
design our classes in such a way as to facilitate later extension
in other applications. This may mean making a class more
general than in needs to be for a specific application, in order
to facilitate later reuse.

3. A third broad type of inheritance Meyer identifies is called variation
inheritance. Here, a class B inherits from a class A because it
represents some sort of variation of A. Meyer describes this sort of
inheritance this way: “Variation inheritance is applicable when an
existing class A, describing a certain abstraction, is already useful by
itself, but you discover the need to represent a similar though not
identical abstraction, which essentially has the same features, but with
different signatures or implementations.” (p. 829)
We will not discuss this type of inheritance further; its applications are a
bit more sophisticated than what we’re dealing with here.

F. A danger particularly with both software inheritance and variation
inheritance (but less so with model inheritance) is letting apparent
convenience lead to misuse of inheritance. For example, Meyer cites a
well-known software engineering text that develops the following scenario,
using multiple inheritance:

CarOwner

Person Car

20

Clearly, having CarOwner inherit from Person makes sense - a car owner
is a person - but making CarOwner inherit from Car is another story! The
justification is that Car has attributes like registration number and excise
taxes due that legitimately apply to a CarOwner as well - but we don’t
want to saddle a CarOwner with having to have a carburetor, four tires,
and brakes!

1. This example, and others like it, typically fail the fundamental law of
substitution test. A CarOwner simply cannot be substituted for a car.
(Try spending some time in a car wash!)

2. The mistake that is often made is confusing the “has a” relationship
(association) with the “isa” relationship (inheritance). A correct way to
represent the structure of the problem would be to use inheritance in
one case, and association in the other:

CarOwner

Person Car

1..*

1..*

(By the way, note that doing it this way lets us allow for the possibility
that an owner might have several cars, and that a car might have joint
owners.)

G. In Java, inheritance is specified by using the keyword extends.

1. The class being extended may be either abstract or concrete.

2. As you know, Java allows a class to only extend one other class - i.e. it
does not support multiple inheritance - something which many OO
languages do support - but which introduces some interesting
complexities we won’t get into now.

21

IV. Multiple Inheritance

A. Sometimes, it makes sense for a single class to generalize two (or more)
bases classes. We call such a situation multiple inheritance.

1. The following example is given by Meyer:

CompanyPlane

Airplane Asset

a) An airplane that is owned by a corporation (a company plane) is, at
the same time, both an airplane and a company asset (in terms of
bookkeeping)

b) As an airplane, it has properties like manufacturer, model, range,
capacity, runway length needed, etc.

c) As an asset, it has properties like cost, depreciation rate, current
value, book value etc.

2. Here’s another example:

Dog

Mammal Pet

22

3. However, multiple inheritance is easily misused. It is easy to create
questionable (or obviously bad) examples. For example, the following
is sometimes cited as an example of a place where multiple inheritance
is useful, but is really a fairly bad example:

Duck Decoy

Duck Wooden Decoy

B. Multiple inheritance can give rise to some interesting problems. We will
consider two - there are others.

1. Features with the same name in two different base classes.

Example: The company plane example. Suppose that the class
airplane had a field called rate (meaning speed), and the class asset had
a field called rate (meaning depreciation rate.) If we declared
CompanyPlane p;
what would p.rate mean?
(Arguably, this might not happen in this particular case - but it could.
If it did, we could avoid it by changing the name of the field in one of
the base classes - if we had access to the source, and if we could then
change all the uses of the old name in other software that used this
class - a nontrivial task.)

2. Repeated inheritance.
Example: Consider the following situation, which could arise if multiple
inheritance is used. (Perhaps in a research university) - and how the
objects in question would need to be laid out in memory.

23

TA

Student FacultyMember

Person

a) Student

Inherited
fields from
Person

Fields unique
to Student

b) FacultyMember

Inherited
fields from
Person

Fields unique
to Faculty
Member

24

c) ∴ TA

Inherited
fields from
Person

Fields unique
to Faculty
Member

Inherited
fields from
Person

Fields unique
to Student

Note that the straightforward layout of a TA object contains two
copies of the Person fields - leading to all sorts of potential
ambiguities.

C. Programming languages that support multiple inheritance have to deal
with these complexities in some way.

EXAMPLE: C++

1. The possibility of having the same field name (or method name) occur
in two different base classes is dealt with by allowing the use of a class
name as a qualifier.

e.g. Airplane::rate is the rate field inherited from class Airplane.

2. The possibility of repeated inheritance can be dealt with by something
called a virtual base class - which we won’t discuss! (Suffice it to say
it’s a tad messy!)

D. Java, as you know, does not support multiple inheritance. Since multiple
inheritance is not often really needed, this is not a major issue. If it is
needed, there are two ways to get the job done in Java:

1. If only the interface needs to be inherited, but not the implementation,
then Java interfaces can be used.

25

a) A Java class can implement any number of interfaces
b) Example (one we’ve used more than once)

class ___________ extends Frame
implements ActionListener, WindowEventListener

{
...

c) We’ll discuss realization of interfaces shortly.

2. We can use containment.
Example: the CompanyPlane class in Java

a) implement as

CompanyPlane

Airplane

Asset

(or)

CompanyPlane

Asset

Airplane

26

b) Then use “forwarding” of methods - example (first case)
class CompanyPlane extends Asset
{

Airplane myInnerPlane;

public int getCapacity()
{

return myInnerPlane.getCapacity();
}

...

V. Realization

A. The next sort of relationship between classes we want to consider is called
realization in UML.

1. In many ways, it is similar to inheritance - in fact, in some languages
this relationship is represented the same way as ordinary inheritance.

2. Its uses a notation similar to that for generalization, except using a
dashed, rather than solid line.

B. In ordinary inheritance, if B inherits from A, then B inherits both A’s
interface (specification) and A’s implementation. Realization (or what is
sometimes called interface inheritance) occurs when we want to specify
that a class must provide certain behaviors, without specifying how these
behaviors are provided.

We have seen a couple of examples of this in the Java libraries.

1. The ActionListener interface used with Buttons and MenuItems
specifies that an ActionListener object must have a method with
signature actionPerformed(ActionEvent), which is called when the
Button is clicked or the MenuItem is chosen. However, different
ActionListeners may do very different things.

2. In the Collections facility we considered earlier, List, Map, and Set are
interfaces, which can be implemented in a variety of different ways. (In
fact, each is implemented in at least two different ways in the Java
library, and other implementations could be created by a user.)

C. The standard Java mechanism for realization is to have a class declare that
it implements an interface. (Thus, both the realizing class and the interface
it realizes are declared in a special way.)

27

1. Java actually provides another mechanisms that can be used for
specifying an inheritable interface: an abstract class. However, when
the realization relationship is intended, implementing an interface is the
appropriate facility to use.

2. Sometimes, in Java, we will use the “implementing an interface”
mechanism for inheritance as well as realization. This may be needed
because Java does not support multiple inheritance. If we need
multiple inheritance to model a particular reality, and one of the classes
being inherited is there just for behavior, then implementing it as an
interface may let us do what we need to do.

NOTE: In this case, the UML relationship we are modeling is actually
generalization, not realization.

VI. Dependency

A. The final kind of relationship between classes we will consider is
dependency.

1. Dependency is denoted in UML by a dashed line with an arrow head
from the dependent class to the class it depends upon.

2. We say that class A depends on class B if a change to class B’s
interface could necessitate a change to A. (I.e. A’s implementation
depends on facilities made available by B.)

B. Dependencies are of various kinds. We will consider only one: usage
dependencies - where the dependent class uses the class it depends upon
as part of its implementation.

C. A usage dependency relationship arises when one or more of the following
holds:

1. The dependent class has a method that takes an object of the class it
depends on as a parameter, and uses that object in some way in
implementing the method.

2. The dependent class has a method that returns as its value an object of
the class it depends on.

3. The dependent class creates an object of the class it depends on, but
only uses it within one method (doesn’t keep a reference to it as an
instance variable - if it did, we would have an association.)

28

4. In Java, usage dependencies typically show up in the signatures of
methods - as the type of a parameter or a return value - but the object
in question is not stored as an instance variable.

D. We take note of dependencies in a UML diagram because they serve to
alert us to the fact that whenever we change a class, we need to make sure
that we don’t need to also change classes that depend upon it.

1. In particular, any time we use an object of a class A as a parameter or
a return value of a method of class B, we generally create a
dependency from B to A which we should take note of. (No
dependency is created if the value is just “passed through” to some
other class.)

2. Of course, any time we have an association between objects, we have a
dependency between their classes - but we don’t take separate note of
this - association implies dependency.

3. Likewise, any time we have a generalization or realization relationship,
we also have an implicit dependency, which again does not need to be
noted separately.

4. We only take note of a dependency when it is present and the classes
seem otherwise unrelated to each other.

E. GO OVER EXAMPLES ON HANDOUT

29

