
CPS211 Lecture: Course Intro; Introduction to Software Engineering

last revised July 23, 2008
Objectives:
1. To introduce the course requirements and procedures.
2. To set programming in the larger context of software development/engineering.
3. To introduce the Software Engineering Code of Ethics
4. To introduce basic terms/concepts of SE
5. To introduce the software lifecycle

 Materials: 
1. Syllabus
2. Software Engineering Code of Ethics (online)
3. Projectable of “Tree Swing” 
4. Projectable of text page 305
5. Projectable of requirements for AddressBook and ATM example systems
6. Term project requirements (Handout)

I. Preliminaries - About this Course

A. Writing exercise - When you purchase a product - any product, software 
or otherwise - how do you evaluate the quality of what you have 
purchased - i.e. what do you look for, in general, as marks of quality?
Discuss class answers

B. Distribute, go over syllabus. 

C. This course is a continuation of CPS112; but it will differ from CPS112 in 
some important ways.

1. In CS112, a great deal of your mental energy was invested in learning 
about programming, and more specifically in learning how to program 
in Java.

2. While programming in Java is part of the content of this course too, we 
want to step back from programming per se to set it in the broader 
context of problem solving.

a) It turns out that much the same issues arise in any sort of problem 
solving - whether it be the creation of a piece of software, or the 
creation of some other engineered artifact, or the design of a 
curriculum in education, or the development of a business plan, or 
...
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b) In this course, we are specifically concerned with software 
development - an entire process of which programming is just one 
part.  Software development is the process of producing a software 
product that will fulfill some real need for someone.  

c) However, since the basic process is similar whenever one is 
involved in designing a quality solution to a problem someone has - 
software or otherwise, the basic approach we will take is broadly 
applicable to any sort of problem solving.  

3. Some of you may wind up developing software professionally, while 
others will not.  However, an understanding of the issues involved in 
software development is not just important for practicioners.  It is 
perhaps useful at this point to think a bit about the spectrum of things 
people with a CS background actually do.

a) Some, of course, do develop software in a variety of settings - 
whether embedded systems (e.g. the software that controls many of 
the systems in a modern car) or moderate sized systems (like web 
sites) or huge systems (like those that control the telelphone 
network etc.)

b) Others are involved in research.  Often, this research finds practical 
application in software systems.

c) There is a growing recognition of the need to develop people with 
cross-disciplinary understanding - i.e. people who understand not 
only computing, but also some field where computing is important.  
In fact, whole new cross-disciplinary areas like this are emerging - 
e.g. bioinformatics.

d) Even a person who simply uses software - or helps others do so - 
can benefit from some understanding of what goes into producing 
software.

4. The guiding principle in the content of this course comes from the title 
of a talk I heard at the OOPSLA Educator’s Symposium in 1999: 
“Teaching Design: the rest is SMOP”  
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II. Fundamental Issues; The Idea of Software Engineering

A. Developing quality software is not easy.

1. Software systems are among the most complex systems ever 
attempted by humanity.  There is still much to be learned about how to 
do this well.

2. Most large-scale software projects exhibit one or more of the following 
problems to an unacceptable degree:

a) The software is delivered late.

b) The budget is exceeded.

c) The software contains undetected errors.  (Note: these are 
commonly called "bugs".  Edgar Dijkstra has pointed out that 
calling them bugs rather than errors is a way of avoiding taking 
responsibility for them.)

d) The software is difficult to maintain/modify - fixing one error often 
introduces two more.

e) The software does not really meet the user's needs.

f) The software is hard or confusing to use.

3. While quality is an issue with any product of human design, it is a 
particular issue with software.  We do not expect bridges or buildings 
to collapse - but we are not surprised when a piece of software 
“crashes”.  We would be unhappy if we had to shut off and restart our 
car in the middle of an interstate, but we get used to the idea of 
periodically rebooting a computer ... 

B. The discipline that arose to address these problems in a systematic way has 
come to be called software engineering.  Its goals are to:

1. Produce software that meets the needs of users

2. Produce correct software on time and on budget.

3. Produce software that can be maintained and modified to keep abreast 
of changing needs.  For software that is used over a period of years, 
the cost of keeping it current in the face of changing needs often 
exceeds the cost of originally developing it.
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Meeting these goals is not easy, and probably never will be, because 
the complexity of modern software makes its development one of the 
greatest intellectual challenges ever faced by humanity.  However, 
applying known principles can help.

C. Software Engineering compared/contrasted with more traditional 
engineering professions.

1. Software is certainly not like physical engineered artifacts.  

How? (ASK CLASS)

a) For most physical artifacts, the bulk of the cost is in the 
manufacturing, not the design.  For example, if one builds a bridge 
and then attempts to build another just like it, the second bridge 
costs almost as much to build as the first.  However, 
“manufacturing” software is cheap - the cost of producing a new 
copy (say on a CD) is miniscule.

b) Most physical artifacts are costly to change once they have been 
produced; but making changes to a piece of software is often a 
matter of editing and recompiling.  (Of course, making correct 
changes is not necessarily easy!).

c) Physical artifacts wear out and need to be maintained or ultimately 
replaced - but software never wears out.

d) It is often possible to tell, by looking closely at a physical artifact, 
that it is defective.  Faults in software are often much less obvious 
until they manifest themselves in some sort of error.

e) A key difference is reflected in the existence of the “open source” 
movement.  Open source software is software whose source code is 
made publicly available; in general, one who acquires open source 
software is free to modify it to suit his/her own purposes (often with 
the proviso that he/she share these modifications with the wider 
community.)

(1) For example, Linux is an open-source operating system, and 
much of the software designed for Linux platforms is open 
source.  The same is true of the kernel of  Mac OS X (Darwin).

(2) OTOH, companies like Microsoft have been leading opponents 
of open source software.
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(3) It’s hard to imagine an equivalent to open source in the more 
traditional engineering disciplines - the last thing anyone would 
want is thousands of people making individual modifications to a 
bridge!  However, proponents of open source point out that 
such software is often more reliable, because may eyes looking 
at the code find more of the problems.  (Linux is a much better 
operating system for servers than Windows products, IMO)

f) A profound - and subtle difference - has to do with mathematical 
foundations.

(1) Continuous mathematics - the calculus - is the mathematical 
foundation of traditional engineering.

(2) However, discrete mathematics is really the foundation of 
“software engineering”.

(3) In this distinction lies a profound difference between failure 
modes of the two entities.  Physical systems often have slight 
errors; catastrophic failure is relatively rare.  Software systems 
are prone to crashes, or total failures.

2. Despite the differences, there is much to be learned from other 
engineering disciplines about the process of producing quality software 
- though I would resist the notion that software engineering is just 
another form of engineering.

D. One key characteristic of any profession is the expectation that its 
practitioners will perform their work in accordance with ethical 
expectations appropriate to the profession.  In the case of Software 
Engineering, those ethical expectations were formalized about ten years 
ago in a document developed jointly by the ACM and the IEEE/CS, 
entitled “Software Engineering Code of Ethics and Professional Practice”.

1. Show online (link from course web site)

2. Read through short version

Comments/Questions?

ASK
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3. The fact that this document is fairly recent (1998) is evidence of the 
relative youthfulness of software engineering as a profession like the 
other engineering disciplines, or professions like law or medicine.

4. In considering the ethical ramifications of a decision, one crucial 
concept is the notion of a stakeholder.  A stakeholder is someone who 
has a legitimate stake in the outcome of the project.  

a) There are four broad types of stakeholders connected with any 
software project. 

(1) Users - those who will eventually use the software.

(2) Clients - those who decide to have the software developed, and 
pay for doing so.

(3) Developers - those who actually produce the software.

(4) Development managers - those who oversee the work of the 
developers.

b) For different kinds of software projects, there may be different 
relationships between these categories of stakeholders - e.g.

(1) The users of the software may be the same as the clients - or 
may be employees of the client.  (E.g. in the case of the software 
Gordon  uses for registration, billing etc. Gordon is the client, 
but faculty and staff are users.)

(2) The users of the software may be customers of the client - e.g. if 
a firm uses an e-commerce web site, it is the client and its 
customers are the users.

(3) The developers may be part of the client organization, or may be 
contracted by the client to produce the software for them, or the 
client may purchase “off the shelf” software that the developers 
have produced for a market they believe exists.

(4) In some cases, one individual may be user, client, developer, and 
development manager for a project - e.g. if you or I write 
software for our own personal use. 
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E. This course is not simply about software development, but about a 
particular approach to software development called object-oriented 
softwaer development.  We will have more to say about this later, but for 
now I want to note one emphasis that will occur quite a bit in this course - 
the use of a formalism called the Unified Modeling Language (UML).

1. UML is a set of diagramming conventions that allow one to represent a 
software system by a collection of models.  The first version of UML 
was adopted by the Object Management Group (OMG) - a consortium 
of companies - in 1997.  The current version (UML 2.0) was adopted 
in 2004.  

2. UML is a graphical language - that is, its vocabulary is composed of 
graphical symbols.  In this respect, it is international in scope.  
(Example: my experience at OOPSLA design fest).

3. UML is called the unified modeling language for historical reasons.  
Prior to UML, there were a number of different graphical notations 
that were in wide use.  UML represents a unification of these notations 
in a single system that is now widely used.

4. As you.can see from the schedule in the syllabus, we will make 
extensive use of UML in this course.

F. There are two key sets of terms used to describe different kinds of 
software projects.  COVER AS TIME PERMITS IN FIRST SESSION

1. Software can be classified into three broad categories. 

a) Custom software is developed to meet the requirements of a specific 
user.   Normally, a given piece of custom software is used only by 
one company.  (Example: the software that manages the financial 
records of a corporation.)

b) Generic software is developed to meet the perceived needs of a 
market, and is sold to many users.  (Example: a particular word-
processor or spreadsheet package or game).  Sometimes this is 
called COTS, which stands for Commercial Off-the-Shelf Software.

c) Embedded software is incorporated into some other product, and 
everyone who purchases the product also ends up using the 
software, though probably without being aware of it.  (Example: a 
DVD player or the ABS system on a car)
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2. Another classification is to classify software as:

a) Data-processing software is used to support the various business 
functions of a company.  This includes systems like payroll systems, 
customer order systems, airline reservation systems, etc. etc.   
Often, some or all of the processing can be done without direct 
interaction with a human user, so response time is not critical.

b) Interactive systems involve direct interaction  with a human user 
(e.g. computer games, word-processors, etc.)

c) Real-time systems control mechanical systems, and must respond to 
events within tight time constraints.  (E.g. you would be very 
unhappy if your car took 5 seconds to start to accelerate after you 
press the gas pedal.).
(Note: sometimes these are called hard real time systems, and the 
term soft real time systems is used for interactive systems where the 
time constraints aren’t as inflexible.)

3. Software projects can also be classified into one of several categories:

a) “greenfield” projects - Those that involve starting to develop a 
system from scratch.

b) evolutionary projects - Those that involve modifying an existing 
system.

c) framework projects. - Those that involve building most of a new 
system from existing components, while developing any missing 
details.

Though there are profound differences between these three types of 
projects, the same basic approach is used for each.
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III. Major Activities in Software Development; The Software Lifecycle. 
[START AT BEGINNING OF SECOND DAY ON TOPIC - AFTER 
STUDENTS HAVE DONE READING ] 

A. What were the major points in the reading in Chapter 1 of the book?
ASK
We will focus on two issues today: 

1. The things that must be done in developing a piece of software (or, 
indeed, in any problem-solving process that uses an engineering 
approach)

2. The notion of a systematic process for carrying them out.

3. It is important to keep the distinction between these two in mind.  
Certain things need to be done, though there might be vastly different 
frameworks for carrying them out.  
 

B. Discuss quick check questions a-b in the book.

C. The development of any piece of software involves a number of kinds of 
activity.  At one point, it was common to think of these as discrete steps in 
the software development process.  Though modern OO development 
approaches do not view them this way; it remains the case that there are 
certain things which need to be done.   Most of them were discussed in 
Table 1.2 on page 6 of the book.
ASK

1. Establishing Requirements - at some point in the process, it is vital is to 
spell out exactly what is needed.

a) It is very easy to get this part wrong.  Some of the worst software 
disasters that have occurred in the industry have resulted from 
misunderstanding of what is really needed.
PROJECT: “Tree Swing”

b) Often, requirements are formalized in terms of some sort of 
requirements document that explicitly lists the requirements.  
Sometimes this includes the creation of a specification for the 
software - which is a formal statement of what the software will do, 
and may serve as a legal contract between the software developer 
and the client.  (This is particularly the case with custom software; 
rarely true with generic software.)
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(1) One of the strengths of the textbook for this course is that it is 
built around a continuing example: a case study called “Wheels” 
based on software to support a bicycle-rental business.  An 
example of a (fairly informal) statement of requirements for this 
system is found on page 305 of the book
PROJECT text page 305 

(2) We will also be referring to two other online examples 
throughout the course.  One is a fairly simple system for 
maintaining a personal address book.
PROJECT  Requirements for AddressBook system

(3) The other online example is a bit more complex - software for 
controlling an ATM
PROJECT Requrements for ATM System

2. Analysis activities focus on understanding the need 

a) In object-oriented software development, probably the most 
important analysis activity is the identification of use cases, which 
are formal statements of how the software will actually be used, and 
which serve to drive the whole rest of development.

b) Industrial-strength analysis requires expertise both in software 
development and in the problem domain - e.g. doing analysis for a 
particular business domain requires business expertise in that area; 
doing analysis for software to be used to control laboratory 
instruments requires scientific expertise, etc.  We will discuss this 
some, but not at great length.

3. Design - here the goal is to determine how the requirements are going 
to be met.  Design is a broad area that encompasses a large number of 
issues, like:

a) System design is typically part of creating an embedded system  - 
the partitioning of functionality between hardware and software.  
(This is usually not an issue with custom or generic software.)

b) User interface design is typically part of creating custom or generic 
software - how will users interact with the software?   (This is 
usually not an issue with embedded software.)

c) Software structure (architecture) - how will the overall task be 
broken up into component parts?
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d) If the software uses a database, then the database will need to be 
designed.  (This is primarily an issue with data-processing software)

e) Design (called detailed design) is also a part of the next activity.  
Design will be a major emphasis of this course

4. Implementation refers to actually translating the design into reality.  In 
the case of software, this involves:

a) Detailed design of the individual components identified in the overall 
design phase (e.g. the individual classes in an object-oriented design)

b) Coding the design in a suitable language (e.g. Java).  
This was the focus of CS112, but more advanced programming 
concepts will also be considered in this course.

c) Testing each component as it is implemented

d) Integrating the various components together, and testing the result.

5. Installation and Maintenance

a) Installation includes everything needed to support the use of the 
software by the users, including documentation and training.

b) Once the software is delivered by the developer to the client, it is 
put into use by the users.  Frequently, this leads to the discovery of 
the need for changes.   Software maintenance refers to the activity 
of modifying an existing piece of software.  

(1) Maintenance is of three general types:
(a) Corrective maintenance - fixing errors that were not caught 

before the software was delivered - i.e. to make the software 
fulfill its original requirements.  
Example: The program crashes or freezes when a certain 
feature is used in a particular way, or the result produced by 
a certain operation is incorrect or incomplete

(b) Adaptive maintenance - dealing with changing requirements.  
As a piece of software is used over time, external changes in 
the environment in which it is being used may change the 
tasks the software is required to perform
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Example: Tax return preparation software must undergo 
adaptive maintenance whenever the tax code changes (i.e. 
most election years!)

(c) Perfective maintenance - adding new features not part of the 
original release, or improving the user interface.

(2) Note that software maintenance is quite different from hardware 
maintenance.

(a) Software doesn't wear out.  (There is no such thing as “bit 
rot”).

(b) The purpose of maintenance of a mechanical device such as a 
car is to bring it back to its original condition when delivered.  
Software maintenance involves improving the condition of 
the software in some way.

c) The table in the book book referred to this stage simply as 
“installation” because significant maintenance often gives rise to a 
whole new project.

6. Though not generally regarded as a separate stage, we also need to 
consider Quality Assurance - also known as Verification and validation 
- ensuring that the resulting software is built correctly (verification) and 
does the right thing (validation).

a) Sometimes there is an activity at the end of development called 
“testing”.  While testing is a major means of doing verification and 
validation, it is not (and should not be) the only means of doing 
verification and validation.

b) The fundamental concepts of quality assurance should pervade the 
entirety of a project - not confined to a burst of testing at the end of 
development.

7. Though not properly a stage in the creation of software, we should 
note that there is an end of life for any given piece of software, 
commonly called retirement or obsolescence, when a particular piece 
of software is no longer maintained and stops being used.  This occurs 
when either

a) The original need for the software no longer exists

b) It is expedient to develop a whole new piece of software rather than 
continuing to maintain an old piece of software.
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D. We also need to consider the notion of process, which has to do with how 
we organize the various things that need to be done.  

1. One approach is referred to - somewhat tongue-in-cheek - as “build 
and fix”.  

a) This is a totally non-systematic approach.

(1) One begins work on writing code almost right away.  Some 
analysis and design may be done as needed, but it is not 
uncommon for someone to write code without really 
understanding what he/she is doing.

(2) Once a draft of the code exists, it is tested.  Problems are 
identified and fixed - which in turn gives rise to new problems ...

(3) The process is continued until the product is judged satisfactory.

(4) The dominant attitude is epitomized by the words of a project 
manager who was cited in a talk I heard - “We’re going to have 
a lot of debugging to do on this project, so we’d better get 
started coding as soon as possible”

b) Problems with this approach?
ASK

c) Can you identify with this approach in terms of your prior 
experience with programming projects in CS112?
ASK
Note that, while build and fix may be an appropriate model for 
introductory programming projects, it quickly becomes a very bad 
idea for projects of any size - whether school projects or in “the real 
world”

2. At the other extreme, one alternative is to follow a fairly strict 
sequence: first requirements are identified, then analysis and design are 
done, then the design is implemented, and then the finished product is 
tested (though testing is done throughout the process as well).  

a) In this model, the various things that need to be done are regarded 
as sequential steps.  Each is done to completion before we move on 
to the next activity; and once we move on, we avoid going 
backward if at all possible.  This approach is often called the 
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waterfall model, because just as water goes down a waterfall but 
never goes back up, so the process aims to carry out each stage and 
then move on.

b) Though this approach can be very efficient, it runs into some 
serious problems of its own.   What are they?

ASK.

(1) It is often very hard to fully understand the requirements for a 
piece of software early in its development.  Missed requirements 
are quite common, even when an effort is made to do a 
thorough job of requirements analysis before moving on to the 
next phase.

(2) It is not possible, in practice, to carry out a significant software 
development process with a totally one-way flow of activity.  
Sometimes later work necessitates clarification of issues 
considered earlier.

(3) Nothing is available for use until the end of the process, which 
can one or more years from start to finish.  This can be years!

(4) Changes in the external environment can result in changes to the 
requirements for a piece of software.  (Example: years ago I 
developed a software system for one aspect of the work of the 
registrar’s office which, among other things, had to keep track 
of student grades.  While I was working on the project, the 
faculty voted to change from straight letter grades (A, B ...) to 
plus-minus grading (e.g. A, A-, B+, B ...)

c) The waterfall model is sometimes called the “traditional waterfall 
model”, because there was a time when this model was strongly 
advocated as the right way to produce quality software.  It was, at 
the time it was introduced, a major advance over the prevalent 
“build and fix” approach.

3. Recognizing the difficulty of fully capturing requirements, many 
projects are done now using iterative, incremental development.  This 
is not a single model, but rather a family of models.  

a) In incremental models, after some initial analysis and design, a 
subset of the complete functionality is implemented, and then 
additional capabilities are added incrementally.  (Indeed, in many 
cases the earlier version can be used even as it is being extended.)  
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These models are called incremental because they grow the 
software by increments, rather than trying to implement everything 
at once; and they are called iterative, because they repeat the basic 
life-cycle activities for each increment.

b) An incremental approach has at least three major advantages:

(1) The client gets to begin making some use of the software fairly 
early, rather than having to wait for everything to be completed.

(2) Experience with using the first part of the software implemented 
can help to refine the requirements for subsequent parts.

(3) A significant disadvantage is that an incremental model can 
degenerate to build and fix or an opportunistic approach if the 
developer is not careful.  The key lies in planning what features 
are to be developed for each increment.

4. Carrying this futher leads to a family of approaches known as agile 
approaches.

a) These approaches are sometimes referred to as “low ceremony” 
approaches, because there is little emphasis on any sort of formal 
documentation.

b) Agile approaches have been very successful for projects 
characterized by changing or hard to pin down requirements.

c) Agile approaches are generally not used with large scale projects, or 
ones that are life-critical, though.

d) A significant danger with agile approaches is that they can 
degenerate to build and fix.

5. As the book points out, Object-Oriented projects tend to decouple the 
schedule of a project from specific tasks. In the OO world, it is 
common to talk about project phases: inception, elaboration, 
construction, and transition.  Although no effort is made to limit 
specific activities to specific phases, it is common to find that early 
phases (inception and elaboration) tend to mostly focus on 
requirements and analysis (with some design), while construction tends 
to focus on design, implementation and testing and transition focusses 
on installation activities.

Discuss quick-check questions e-i from the book
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E. To give you practive with these activities, you will do a single, semester-
long project.  
DISTRIBUTE, GO OVER PROJECT HANDOUT
This semester project will involve you in activities of all these kinds

1. A fair amount of the requirements work has already been done for you 
- there is a quite detailed statement of the system requirements in the 
project document.  (In a real project, requirements elicitation would be 
a major activity early in the project.) 

2. Use case development (milestones 1-1, 2-1) is an analysis activity.

3. Design activities:

a) The development of a class diagram (milestone 1-2)
b) You will do some user interface design for milestone 1-3.
c) CRC cards (milestones 1-2, 2-1) 
d) Sequence diagrams (milestones 1-3, 2-1)

4. Coding (milestones 1-4, 2-2, and 3-2) is an implementation activity.

5. Though you won’t deal with installation issues per se, iteration 3 will 
give you experience with a key issue involved in maintaining someone 
else’s work - namely figuring it out!

6. Test plan creation and execution (milestones 2-3, and 3-2) are 
verification and validation activities.

7. Your software will no doubt be retired to a hallowed spot on your 
server volume when the end of December rolls around.  (I don’t 
actually have a contract to sell your projects to a local video store and 
get enough money to go to Bermuda for Christmas break :-) )  

8. What model are we using for the course project?

ASK
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