
CS211 Lecture: Requirements Engineering
last revised August 15, 2008

Objectives:
1. To understand the importance of Requirements Analysis in the overall software

development process
2. To understand the distinction between functional and non-functional

requirements
Materials:
1. Projectable of book figures 2-4, 2-5
2. Projectable of book figure 2-6.

I. Introduction

A. As we pointed out at the start of the course, there are many different
processes that can be followed in software development (e.g. waterfall life
cycle, RUP, etc).

B. Regardless of what process is followed, however, certain tasks will need to
be done as part of the development process per se - whether all at once,
iteratively, or incrementally. In fact, activities like these will be part of
any situation in which one uses his/her professional skills to help solve
someone else’s problem - not just when creating software or even in a
computer field.

1. Establishing Requirements: The goal of this is to spell out what
constitutes a satisfactory solution to the problem.

2. Analysis. The goal of this is to understand the problem. The key
question is “What?”.

3. Design. The goal of this is to develop the overall structure of a solution
to the problem in terms of individual, buildable components and their
relationships to one another. The key question is “How?”.

4. Implementation. The goal of this task is to actually build the system
as designed.

5. Installation / Maintenance / Retirement
All of these must be done in a context of commitment to Quality
Assurance - ensuring that the individual components and the system
as a whole do what they are supposed to do (which may involve
identifying their shortcomings and fixing them.)

1

C. Today’s focus is the first of these: establishing requirements - sometimes
called requirements engineering. The question that is answered is “how
will I know that I have found a satisfactory solution to the problem - i.e.
what must characterize an acceptable solution? Though we will discuss
the specific context of software development, establishing requirements is
part of any design process.

Example: Gordon recently built a new science building. The design of the
building was based on input garnered from science division faculty and
others affected by the building (e.g. the registrar had some input regarding
classroom space). A suitable building would have to incorporate space for
various purposes.

Example: Gordon recently adopted a revised core curriculum. One of the
early steps in the process was asking the question “what should a student
who has completed the core know and be able to do?” A suitable core
would have to develop certain knowledge and skills.

D. What were the specific stages of requirements engineering the book
discussed? (This is Quick Check Question a) What is the purpose of each
stage?

ASK

1. Requirements elicitation - gathering information

2. Requirements specification - putting the information into an ordered
form

3. Requrements validation - checking to be sure the requirements are
consistent and complete

2

II. Requirements Elicitation

A. Since the book discussed this extensively, we will spend only limited time
on it. What were some of the requirements elicitation techniques the book
discussed?
ASK

1. Interviews with key people. Who might this include? (Think back to
the notion of a stakeholder)
a) Potential users of the system
b) The client

2. Questionairres

3. Studying documents

4. Observing the existing system (if there is one)

B. Quick-Check Questions / Exercises

1. What documents should be produced by the developer before and after
an interview with a client or user of the system? (QC b)
ASK
a) Interview plan
b) An interview summary (reviewed with interviewee)

2. When are questionairres useful? (QC c)
ASK

3. What is a scenario? (QC d)
ASK
a) Examples in the book - figure 2-4, 2-5 (pages 30, 31)

PROJECT
b) Scenarios serve as a bridge to the development of use cases - our

next major topic

4. [As time permits] Exercises 2.1-2.2 (do as one exercise) p. 37

5. [As time permits] Exercise 2.5 p. 38

3

III. Requirements Specification

A. Having gathered general information about a particular project, it is
important to document the information.

B. Sometimes, this is done fairly informally.

1. This may take the form of a simple statement of the problem that is to
be solved - a problem definition. (This is true for any problem solving
process - not just with regard to software).

Example: For the “Wheels” case study in the book, a problem
definition appears as figure 2.6 (page 32) in the book.

PROJECT

Note: often, it is helpful to see if one can capture the gist of such a
statement in 1-2 sentences.

Exercise: do this for the “Wheels” system.

2. Quick check question e: What are the typical sections of a problem
definition?

ASK

cf figure 2.6 on page 32

C. Sometimes, a specification is more formal.

1. In contract projects, the requirements specification document often
becomes explicitly or implicitly a part of the formal contract between
the developer and the client - i.e. the developer gets paid for
developing a system that fulfills the specifications.

2. As part of a formal specification of requirements, it is common to give
each requirement a number. This is done to facilitate traceability: i.e.
checking that no requirements are inadvertently lost sight of during
development, and that capabilities which are not required do not
inadvertently creep into the system.

4

D. Whether specifications are informal or formal, one issue that needs to be
made very clear at this point is the scope of the system - i.e. what is part
of the system and what is not? (Again, this is part of identifying
requirements in general, not just with regard to software).
Example: the Video Store project you are working on this semester does
deal with keeping track of DVD’s and games owned by the store, but
does not deal with paying the store’s employees. That is, DVD/game
inventory is part of the scope of the system, but employee payroll is not.
Example: the new Science Building includes some classroom space in
addition to office and laboratory space for the sciences; but it does not
include administration office space (though such space is needed). That is,
science faculty office space, laboratories, and classroom space are part of
the scope of the project; adminstration office space is not.

1. Often, identifying the scope for a system can be done by listing all the
sorts of things the system might do, then narrowing the list -
recognizing that some areas rightly belong to a different project.

2. Often, the scope of a system is incorporated into the problem definition
statement we just discussed.

Example: Problem definition for “Wheels” system - Note how section
on scope explicitly states what is included and what is excluded.. (This
is also implicit in the rest of the statement).

3. Exercise: consider the development of a software system for use by a
car-rental agency.

a) What are some things that might be part of such a system?

ASK

b) Now let’s narrow the scope

ASK

E. At this point, it is also useful to recognize that requirements fall into two
broad categories:

1. Functional requirements are concerned with what functionality that
system must provide - i.e. what a user of the software must be able to
do.

2. Non-functional requirements are other requirements that a satisfactory

5

solution must satisfy. These can be just as important as functional
requirements; for this reason, sometimes this category is fleshed out as

a) Quality requirements.

(1) Speed: For software, two measures of speed can be important:

(a) Response time - the time needed to respond to an individual
request.

(b) Throughput - the volume of requests that can be handled in a
unit of time.

Example: for a web system, response time is measured in
terms of the time between a user clicking on a link and the
user seeing the actual page; throughput is measured in terms
of how many users can be accessing the site at the same
time. (Note that inadequate throughput capacity can show
up as a response time problem under heavy load).

(2) Security - often a major issue with software systems:

(a) Transmission of information over a network (e.g. the use of
encryption; https vs http)

(b) But also handling information stored by the system (c.f. the
TJ Maxx security breach of November, 2006)

(3) Reliability - often measured in terms of mean time between
failures (MTBF) - where “failure” is not limited to a system
crash, but includes anything which interferes with a user getting
work done.

(4) Recovery time after a failure - e.g. if a failure typically
necessitates at system reboot that takes 10 minutes, then the
recovery time is 10 minutes.

(5) Availability - a related issue. It is measured in terms of the
percentage of the time a system is available for use, after
recovering from failures and anything else that makes the
system unavailable.

Example: suppose a certain system has a MTBF of 100 hours;
that recovery from a failure (involving a reboot) takes on the
average ten minutes, and that one hour every week the system
must be taken off line for backup. Then availability is

6

5990 minutes / 6000 (ten minutes lost to reboot every 100
hours) - one hour / 168 hours = 99.83 % - .6% = 99.2%

(6) Resource utilization -
(a) Historically, storage requirements (RAM and/or disk) have

been important considerations. As prices for memory and
mass storage have plummeted, storage utilization has become
a minor issue for many systems; however, it can still be a
major issue for embedded systems.

(b) For embedded systems and devices like PDA’s and Cell
phones, power consumption has become a very important
issue. While one tends to thing of power consumption as a
hardware issue, software has an impact as well - e.g. systems
consume more power when they are actively computing or
accessing disk; interestingly, even GUI features such as
scrollbars can impact power consumption!

(7) Provision for maintenance and/or re-use

b) Platform requirements - having to do with the environment in
which the software can operate (computing platform, peripheral
devices, etc.)

c) Process requirements - including cost and delivery date as well as
development process.

3. In addition to thinking about functional requirements and various kinds
of non-functional requirements, one must also be aware of the
possibility of spurious requirements - e.g. things that shouldn’t be
considered a requirement at all, since they do not help to determine
what constitutes an acceptable solution to a problem.

Often, spurious requirements deal with matters of how the problem is
solved, rather than what a solution must be.

Example: in most cases, a statement like “the software must be written
in C++” would be a spurious requirement (unless there were some
compelling reason why this requirement is necessary).

7

4. Exercise: consider the following requirements from various systems.
Classify each as functional, quality, platform, process, or spurious:
a) The system must use 128-bit encryption for all transactions.
b) If the alarm is ringing, then the elevators will proceed to the ground

floor, open the doors, and suspend operation.
c) The student information system will provide output from

commands within one second.
d) The system will be able to print to a Hewlett-Packard 5000 series

printer.
e) The system will use an array of Invoice objects to store the invoices.
f) The system will be able to read images in JPEG, GIF, or BMP

formats.
g) The system must use no more than 100 MB of RAM.
h) The system will use the java.util.Date class for representing

dates.
i) The system must run on Linux, Mac OS X, and Windows

platforms.

F. Finally, it is important to recognize that cost considerations and/or
conflicts between requirements frequently result in a need to prioritize
requirements.

1. In general, it is often the case that not all of the requirements within
acceptable costs for the project.

a) Software projects always have a cost associated with them. Though
cost is not stated as a requirement, it is a very real factor
nonetheless.

(1) For custom software, this may be the actual amount that the
contractor bids for the project. [And if there are multiple
bidders and the bid is too high, someone else will win the bid.]

(2) For generic software, development cost impacts the final cost of
the product. [If a reasonable forecast of sales is N units, then
the development cost per unit is total cost / N, which must be an
acceptable fraction of anticipated revenue per unit]

(3) For software developed internally, there is an associated cost in
terms of personnel and other resources. Though this may not
be stated explicitly in dollar terms, it is still very real.

8

b) Of course, this is not unique to software - it is true of any project.
For example, in the case of the new science building, desirable
features had to be adjusted due to cost considerations.

2. Moreover, it is often the case that various requirements conflict with
one another, so it is not possible to have all of them. (We call these
conflicting requirements).

a) Occasionally, functional requirements conflict.

b) More often, there can be a conflict between certain functional
requirements and non-functional requirements.

c) Quite often, there are conflicts between non-functional requirements
that must be settled by deciding which are most important
Examples of (b) and/or (c)?
ASK
Provision for certain functionality versus speed, security and/or size.
Speed versus size
Speed versus security
Speed versus broad platform availability
...

IV. Requirements Validation

A. The final stage of requirements engineering - and an absolutely crucial one
- is requirements validation. Here we are concerned with three major
issues:

1. Completeness
2. Correctness
3. Consistency

(Note: some of the conflicts discussed above may actually be caught at
this point).

B. In reality, it is easy to miss requirements. Experience has shown,
however, that correcting missing or incorrect requirements becomes
increasingly expensive as development proceeds. So it is very important
to ensure that requirements are as complete, correct, and consistent as
possible from the outset.

9

