
PYTHON
"To describe something as clever is NOT considered a compliment in the Python

culture." – Alex Martelli, Python Cookbook.

History:

 Python was invented by Guido van Rossum in the late 1980s. It was named after Monty

Python‟s Flying Circus. Its main influence was ABC, a learning language he was part of

designing in the 80s. It was aimed at being more similar to Unix “without being Unix-bound.”

Besides ABC, it was heavily influenced by the Modula-3 language. It also borrowed some of

C‟s “least controversial features.”

 Python uses indentation as a syntactic feature. This was borrowed from ABC because

van Rossum liked how it improved uniform program style and made it easier to read someone

else‟s code. Van Rossum wanted Python to encourage modularity and reuse of code. One of the

many ways in which it achieves this goal is by limiting the ways a given task can be

accomplished. One of the main nineteen philosophical credos python holds is: “There should be

one-- and preferably only one --obvious way to do it.” This means that code with similar

function will look like other code like it and easy to understand. Without unnecessary variability

it is also easier to maintain code because other programmers can modify it easily. It also caters

to many different styles of programming. According the Wiki about Python it is meant to be

“multi-paradigm,” working in Object Oriented, Structured, and Functional styles equally easily.

 Python‟s philosophy has earned itself quite a following. It is easy to learn and is

especially comfortable for programmers who have already learned another language. Because it

is designed for ease of use it maintains that “Correctness and clarity [come] before speed.” And

that is one of the biggest criticisms of python. The core libraries are written in a very

straightforward style: the developers are not worried about speed and have made choices that

have hurt performance in order to preserve the readability and maintainability of the code.

[References: www.python.org/dev/culture, http://python-history.blogspot.com,

http://www.python.org/dev/peps/pep-0020/, for an easy to reach version of the last reference run

your Python interpreter and enter: “import this”]

Basic Concepts:

Dynamic Typing

 The most important feature of Python to grasp is its Dynamic Typing. What this means,

is that you don‟t have to declare a variable. When you need one, you just use it. For example:

 A = 15

creates a variable named “A” and loads it with the value 15. Using the notion of a variable as a

four tuple, the following tuple is created: [A] - [int] - [<memory location> [15]]. It is now an

integer until you make it otherwise by a legitimate assignment statement. Python is strongly

http://www.python.org/dev/culture
http://python-history.blogspot.com/
http://www.python.org/dev/peps/pep-0020/

typed, however, which means that string operations cannot be applied to integers (so no

automatic concatenation between int and str objects).

 A consequence of dynamic typing is that most python programs will load just fine as long

as there are no obvious syntax errors. Until a line is executed, the interpreter has no way of

knowing whether a semantic error is present, so testing must be done on a line-by-line basis.

Simple Syntax

 Python enthusiasts pride their language for its simple to learn syntax and its ability to

enforce the production of readable code. It uses white space as an important syntactic element.

In place of curly braces, code of the same indentation is considered “blocked” together, so

compound statements in “if,” “while,” “for,” and “try/catch” blocks are indented (typically 4

spaces, NOT a TAB character) more than their conditional statements are. Even more

intuitively, colons “:” are used to mark the end of a condition for “if” “while” and “for” blocks.

Interpreted

 Python is an “interpreted” language. This is related to it being a dynamic language, in

that it means that each line of code is converted to machine code as the program is running, each

time a new line is encountered. This means that when an error occurs in a python program you

are privy to a detailed look at the code which violated a rule. It also means that you can run the

programming language in interpreter mode: you just enter the code you want run and the code

gets executed.

This means that testing is easy because you can import a file you‟ve been working on and

run methods or create instances of classes you‟ve been creating and then look at the variables as

you mess with the instances.

Another consequence of the interpreted nature of Python is that there are some

“introspective” functions especially useful to you in interpreted mode: dir() lists all objects in

existence and all global functions or variables available to you. dir() with an object as a

parameter lists all the methods and variables of that parameter. help() with an object as a

parameter functions similarly to the man file in Linux, giving usage information and

documentation.

Object Orientation

 Python claims to be completely object oriented, and in many ways does behave much like

an object oriented language. Everything is an object in Python, from integers to sockets. But

Python does not support Encapsulation.

Program Organization

 Python is designed to be easy to modularize. Each file can contain as much or little as

you want as long as it‟s syntactically correct. Files that contain other files (called packages) can

be used to pull together multiple files and objects into a package. When you import the file or

package, any un-indented lines in the code get executed.

 Other organizational features of python include functions, classes, methods of classes,

and lambda functions. All these help to organize and break down a program. It is part of its

“multi-paradigm nature.

 Indentation is an important part of the organization of code on a lower level. This leads

to an important fact: All lines of code must be on one line unless the „\‟ character is used to

indicate that it will be continued on the next line. When that character is used, indentation for

the remainder of the line is ignored.

Identifiers

 Python identifiers are case sensitive and unlimited in length.

 Identifiers must:

 -Start with a letter or underscore (Good: level, _counter. Bad: 4level,

^counter)

 -Contain only letters, digits, or underscores

 The “_” identifier is reserved for use in the interpreter.

 Names beginning and ending with “__” (double underscore) are reserved by convention

for the Python interpreter and standard library functions.

 Names beginning with “__” are “mangled” and treated as private variables of a class.

[References: http://docs.python.org/reference/lexical_analysis.html]

Random Picture before a table

because word formats things weird.

http://docs.python.org/reference/lexical_analysis.html

Reserved Words (The following assumes a degree of familiarity with Java. For more

detailed explanations of each reserved word see the Python documentation):

and Short circuit Boolean “and” operator, like Java

“&&”

as Used in importing modules to allow module

aliasing

assert Raises an error when the condition given is

false with the message given:

assert <condition>, <message>

break Same as java “break” statement

class Use to define a class:

def class <class name>:

 <statement list>

continue Same as java continue statement

def Used for defining functions and classes (the

following defines a function):

def <function name>:

 <statement list>

del Used to remove an element from a collection,

also used to “remove the binding of that name

from the local or global namespace.” Can

delete portions or the entirety of a list without

error

elif Same as java “else if”

else Same as java “else”

except Same as java “catch”

exec Allows for dynamic library code execution:

takes a string (of correct python code), an open

file, or a filename and executes the code

finally Same as java “finally”

for Similar to java “for” except closer to “foreach”

in C# or C++. Iterates over each element of a

collection or each element in a range:

for i in range(0, 100):

 <statement list>

from Used in import statements:

from <module name> import (<the functions

or objects you want> | *)

global Used to explicitly refer to something in the

global namespace, especially needed when

assigning to something global while you are in

a tighter scope (which would usually just

create a new variable)

if Same as java “if”

import Import keyword for importing modules

in Membership test, to see if an element is in the

collection in question:

<object> in <collection> #returns true if the

 #object is in the collection

is Determines if the objects you‟re comparing are

the same object (object identity test).

lambda Defines an anonymous function, much like you

can in Lisp.

not Same as java “!”

or Short circuit Boolean “or” statement, like java

“||”

pass A “no-op” line of code. Useful where syntax

demands a legitimate line of code, like an

empty class definition (can be used like a

struct). Also allows for busy wait:

Globally defined Keywords:

none: Similar to “null” in C++, C#, or Java, etc.

The “none” keyword cannot be overwritten, although it is not considered a reserved word.

True: the value “true”

False: the value “false”

These variables are globally defined, and while you can use them as you would any other

legitimate variable name you should NOT do so.

[References: Explore www.python.org for details.]

while true:

 pass

print Like C++‟s “cout” or “System.out.println()” in

Java, but requires no parentheses.

Concatenation of different types is done with

commas:

Print <expression>, <diff-type-expr>, value,

etc….

Print can take formatting instructions like

FORTRAN‟s

raise Same as java “throw”

return Same as java “return”

try Same as java “try”

while Same as java “while”

with Used in controlling objects which require

special setup and tear down (see

documentation for details)

yield Very complicated keyword, used for making

functions have memory, allowing them to

behave like a collection so you can use the

function in a for loop. Vaguely related to the

return statement. Don‟t hurt your brain doing

this.

http://www.python.org/

Data Types and Variables:

Basics

Because of dynamic typing, variables themselves do not have a type, the value has a type.

Primitives

Boolean – evaluates either true or false

bool: Boolean operators: „or‟ „and‟ „not‟ – „or‟ , „and‟ both short-circuit

Numeric:

int – 32 bit precision. Ex: 1, -234

long – integer with unlimited length/precision.

float – real number, precision determined by system. Ex: 4.0

complex: a tuple of doubles. Each one has the field, “re” and “im” for access. Ex: 4+5

String – str() can be denoted either with single („) or double (“) quotes. Ex:

„foo‟, “hello”

Comparison

The comparison operators are usable on all objects:

< - strictly less than

<= - less than or equal

> - strictly greater than

>= - greater than or equal

== - equal to

!= - not equal to

is - tests object identity

is not - negated object identity

Structured Data

tuple – immutable sequence of an arbitrary number of objects (can be different types). Items

can be identified by position.

 x = (1, “String”, 2)

 x[1] = “String”

 x[0:1] # returns (1, “String”)

list – mutable sequence of an arbitrary number of objects (can be different types), separated

by commas and enclosed in square brackets. Items can be identified by position.

 x = [1,2,3]

 x[1] = 2

dict – mutable map of objects; groups keys and values, enclosed in brackets. Ex:

{„Hello‟: 1, „World‟: 2}

set - unordered object that contains an arbitrary number of objects (can be different types), with

no duplicates. Ex:

{1,4.0, 2}

frozenset – same as a set, but immutable

Assignment Statements:

Simple Assignment

Assignment is done using the “=” operator like in Java. No type needs to be assigned to

the variable because Python will automatically assign each variable a type when you assign a

value to the type. Examples:

A = 15

TempMethod = lambda(…) #For more on Lambda Functions see below…

local_list = [1, 2, 3, 6, 4, 18]

B = “Hello my friends!”

Lambda Functions

 Lambda functions can be created on the fly and used wherever a method is expected.

They are “syntactically restricted to a single expression,” although this has not prevented creative

Python programmers from finding ways around this. One of their most useful functions is in

filters, maps, and reducing functions.

 The filter() function acts on each element of the list or string it is applied to and

returns a list without the elements that fail whatever method you hand it as its first parameter.

map() takes a collection and returns a new list with each element mapped to whatever the

function returns when given that element of the list as a parameter. reduce() works like a

summation or production: it takes a function with a binary parameter list and applies it to the first

two elements, and then to the result of that function and the next element until the end of the list.

 Lambda functions are very useful for defining such actions because instead of defining an

entire method for the sole purpose of using it once, you can simply define the function right in

the parameter list. The structure is:

lambda_form ::= “lambda” [parameter_list]: expression

You can assign them to variables and use them that way, or you can simply use them

within the parameter list of a function requiring a function name in place of a standard method

name. Examples:

#The following creates an incrementor

incrementor = lambda x: x + 1

#The following uses a lambda function to filter a list of strings of all names containing „2‟ or „3‟:

list_of_strings = [„Anthony‟, „Chris‟, „R2-D2‟, „Neal‟,

„William‟, „C3PO‟]

filter(lambda x: (x.find(„2‟) > -1 or x.find(„3‟) > -1),

list_of_strings)

[References: http://www.secnetix.de/olli/Python/lambda_functions.hawk,

http://docs.python.org/tutorial/controlflow.html#lambda-forms,

http://docs.python.org/tutorial/datastructures.html]

Control Statements:

Conditional Statements

Example of the basic “If”:

 if x<5:

 x = 5

 else:

 x = 0

Example of a more complicated “If”:

 if (x<5 and y<5):

 x = 5

 elif (x>=5 or y>=5):

 y = 5

 else:

 x = 0

 y = 0

http://www.secnetix.de/olli/Python/lambda_functions.hawk
http://docs.python.org/tutorial/controlflow.html#lambda-forms
http://docs.python.org/tutorial/datastructures.html

Indefinite Looping

Example of the basic “While”:

 while x < 5:

 x + 1

Another example:
 while condition == true:

 #Do the following

 …

 condition = false.

Infinite “While” Loop:

 while 1:

 x + 1

 print x

Another Infinite “While” Loop:

 while True:

 x + 1

 print x

Definite Looping

 Python‟s “for” loops behave differently from loops seen in C in that they iterate over lists

instead of just incrementing integers.

Example of a basic “For” loop:

 for item in list:

 doSomething(item)

Here are two example loops, first in C then in Python:

C example of a for loop:

 for(int i = 1; i < test.length; i++)

 {

 #statements using “i”

 }

Python example of the same loop:

 for x in range(0, test.length):

 #statements using “x”

Program Flow Modification

Python, like C/C++ uses “pass,” “continue,” and “break”:

Example use of “continue”:

 for x in range(0, 100):

 if x < test.length

 continue

 # doSomething to x

Example use of “break”:

 while 1:

 if x = 0:

 break

 else:

 print x

 x – 1

Example use of “pass”:

 while 1:

 if x < 10:

 pass

 elif x = 10:

 # do something with x

 else:

 # do something else with x

Case Structures in Python

 In order to have a case structure set up like in C/C++, you must use the if, elif, and else

statements. No direct equivalent exists, although the following structure will behave identically

to a switch statement.

Example of case structure in python:

 number = raw_input(“Enter a number: “)

 if number < 10:

 #do something

 elif (number >= 10 and number <100):

 # do something else

 else:

 # perform the default case

Modularity:

Modules

Python supports the creation of different modules. A module has a distinct namespace,

and any number of classes and functions. A user-defined module resides in its own file,

something like modulename.py and may be imported by entering “import modulename” into the

interpreter. Classes and functions in the module may then be accessed through the module

namespace: modulename.ClassName. Module namespaces can be reassigned on import by use of

the reserved word “as.” “import modulename as m” allows “m.ClassName” instead of the

original approach. In addition, module elements may be added to the current namespace by using

the reserved word from. For instance, entering “from modulename import *” allows access to all

the elements of modulename in the current namespace. You can import particular elements by

replacing * with the desired element.

Callable objects

The specification for Python states that “A call calls a callable object (e.g., a function)

with a possibly empty series of arguments” Python supports callable user-defined functions, built

in functions, class objects, class instance methods, and class instances. A call to a callable object

always raises some value which includes the value None unless the call raises an exception.

User-defined functions follow the syntax:

def function_name(argumentlist):

{executable statements}

{return statement}

Classes follow the syntax:

class ClassName:

{Class method declarations}

where method declarations look exactly like those for user-defined functions with one addition:

the first argument must be “self.” When calling class methods however, the self argument is

supplied by the object itself, and is thus not explicitly stated.

Consider the following examples:

User-Defined functions follow the syntax:

def demo_function(message):

print message

return 1

Classes follow the syntax:

class MyClass:

 def __init__(self, width):

 self.width = width

 self.inputExpected = True

def to_string(self):

 return “Input is expected “ + str(inputExpected)

All calls in python work by using a parameter list. The parameters are copied for use by

the code before the first statement of the code body is executed. Python supports default

parameters as well as keyword parameters. Default parameters are calculated once, when the

callable is defined. For this reason mutable objects such as lists and dictionaries should not be

used for default parameter values. A Python call may be used anywhere where an expression is

expected.

IO Functionality:

Console I/O

Input from the console is done through the raw_input function. raw_input takes a prompt

as its parameter, and returns whatever the user types before pressing enter.

 Output from the console is produced using the print keyword or the print function.

Print accepts an arbitrary number of arguments. A new line is written after the last argument

unless the print statement ends with a comma.

The following is a very simple echo program:

def echo:

data = raw_input(“Please enter something: “)

print data

File I/O

File objects are opened using the open function. open has two parameters, the first is

the filename of the file to open, and the second is the mode. „r‟ opens the file for reading, „w‟ for

writing, „a‟ for appending, „r+‟ for both reading and writing. b may be appended to each of the

modes to specify binary mode on windows machines. It does not hurt to add the b on Unix

systems, and ensures the portability of your project.

File objects support the operations read, readline, readlines, write, tell,

seek, and close. read takes an optional size parameter which specifies the number of bytes

to read. When the end of file is reached, “” is returned.

readline reads a single line from the file and the new line character is left on all lines

except the last line of the file.

readlines returns a list containing all the lines in the file. An optional parameter

sizehint causes the method to read that many bytes and enough more to finish off a line.

write takes a string parameter and returns None.

tell returns the file objects current position in the file measured in bytes from the

beginning of the file.

seek changes the file objects current position. seek has two parameters, offset and

from_what. The new position is computed by adding the offset to the choice indicated by

from_what using 0 as the file beginning, 1 as the current file position, and 2 as the file end.

close releases any system resources being used by the file object. Any attempts to use

the file object after calling close will automatically fail. You should always close a file when you

are done with it.

Please consider the following example:

filename = raw_input(“File to open: “)

infile = open(filename, r+)

lines = infile.readlines()

infile.close()

for line in lines:

 print line

