The Relational Model &
Relational Algebra

CPS 352: Database Systems

Simon Miner
Gordon College
Last Revised: 9/6/12

Agenda

Check-1n

The Relational Model

Design Project Requirements Presentations
Relational Algebra

Homework 1

Check-1n

The Relational Model

Historical Background

Hierarchical and network databases came first

First relational databases pioneered in 1970s
* Simpler than earlier models (easier for programmers)

* Based on mathematical theory of relations (expressed via
relational algebra).

- Had performance 1ssues which helped other models to persist
for a time

» Extensive research (i.e. on indexing strategies) helped
overcome performance bottlenecks

Today, the relational model is dominant in the database
world

* Though other approaches are often used in tandem with 1t —
polyglot persistence

Entities and Relationships

» All database models must implement the following
two concepts

* Entity — real or abstract “things”
* Relationships between entities

* Relational model represents both entities and
relationships via tables.

* Table attributes (columns) must be atomic and single
valued

Mathematical Terminology

Relational database — a collection of relations

Relation — a set of tuples of some arity
* Tuple -- a record in the set

* Arity — number of component attributes in a tuple
* Tuples in any given relation have the same arity
* Order of attributes in tuples is important
* Order of tuples in relation 1s not important

Attribute — numbered or named component of a tuple
* Drawn from a specific domain or set of possible values

Relation scheme — structure of tuples in a relation

Instance — a specific relation on some scheme
+ Subset of the Cartesian product of the domains of its attributes

Alternative Terminology

Mathematical

Relation
Tuple
Attribute

Relation scheme

Alternate

Table
Row
Column

Sometimes represented by
column headings

Keys

The tuples comprising a relation must be unique
* No duplicates because the relation is a set

Superkey — Set of attributes which distinguish any tuple in
the relation from all others

Candidate key — a superkey with no proper subset of
attributes that is also a superkey

Primary key — a candidate key chosen to be the basis for
uniquely 1dentifying tuples

Foreign key — column(s) in one table that comprise the
primary key of another table

- Represent relationships in a relational database

Nulls

Special value NULL assigned to a field when the
attribute’s value 1s unknown or does not exist

NULL is not the same as:

 String of spaces (“)

* Empty string (')

« Zero (0)

- NULL (NULL = NULL even returns false)

Databases can specify not null constraints on columns
which must have values

* 1.e. Candidate, primary, and foreign key columns

Schemas and Instances

* Schema — the logical design of a database

- Database schema comprised of tables (relations) and their
relationships with one another

» Instance — a snapshot of the actual data (relations) in the
database at a given point in time

* Schema diagram — depicts entities and relationships in a
database schema

* Primary keys shaded or underlined

+ Foreign keys represented by arrows between related tables

University Schema Diagram

takes

ID
course_id

sec_id

semester

section

course_id
sec_id
semester
year
building
room_no
time_slot_id

year
grade

student

ID

name
dept_name
tot_cred

course

A A A A

time_slot

course_id

title
dept_name
credits

department

classroom

building
room_no
capacity

time_slot_id

day
start_time

end_time

dept_name
building
budget

prereq

course_id
prereq_id

teaches

ID
course_id
sec_id
semester

year

advisor

s_id
i_id

nstructor

1D
name
dept_name

salary

Design Project
Requirements
Presentations

Library Schema Diagram

borrower checked-out book

borrower-id borrower-id call-number
call-number
last-name title

first-name date-due author

employee

reserve-book
ssn

call-number
last-name

first-name
salary
supervisor-ssn

course-id

Simplifying assumptions for this example:

1) author of a book is single-valued

2) there is only one copy of a book with a given call number
3) a given book can only be on reserve for a single course
4) course-id is presumably a foreign key in a table not shown

Example Library Instance

borrower(borrower id, last_name, first_name)

12345 aardvark anthony
20147 cat charlene
89754 dog donna
60984 fox frederick
54872 zebra zelda

book(call number, title, author)

QA76.093 Wenham Zoo Guide elephant
RZ12.905 Fire Hydrants I Have Known dog
LM925.04 21 Ways to Cook a Cat dog
AB123.40 Karate koala

checked_out(borrower id, call number, date_due)

89754 RZ12.905 2002-11-10

89754 LM925.04 2002-11-10
20147 AB123.40 2002-11-15

reserve_book(call number, course_id)

QA76.093 BY123
AB123.40 PEO075

employee(ssn, last_name, first_name, salary, supervisor_ssn)
123-45-6789 aardvark anthony 40000 null
567-89-1234 buffalo boris 30000 123-45-6789
890-12-3456 elephant emily 50000 123-45-6789
111-11-1111 fox frederick 45000 567-89-1234

Example Queries Against the
Library Database

Who is the borrower whose
borrower 1d 1s 123457

List the names of all borrowers.

What is the title of the book whose
call number 1s QA76.093?

List the titles of all books that are
currently checked out.

List the names of all borrowers
having one or more books
overdue.

List the names of all employees
who earn more than their
SUpervisor.

List the names of all people
connected with the library -

whether borrowers, employees, or
both.

List the names of all borrowers
who are not employees.

List all books needed as course
reserves that are currently checked
out to someone.

List the names of employees
together with their supervisor’s
name.

List the call numbers of all overdue
books, together with the number of
days they are overdue.

What is the average salary of all
employees?

Print a list of borrower id's and the
number of books each has out

List the titles of all books, together
with the borrower id of the person
(if any) who has the book out.

Query Languages

All DBMS’s support at least one query language which
allow for the following

* Interactive usage
* Embedded within applications in programming languages

Classifications

» Formal query language — uses mathematical notation and
concepts useful for research (i.e. proving theorems)

* Relational algebra

* Commercial languages — built on top of mathematical
language principles for easier usage

 SQL

Relational Algebra

Relational Algebra Operations

Involve either on one or two relations
* Unary and binary operations

Each operation returns a new relation

* Enables composing or “chaining” of relations

Operation Types
* Primitive Operations
» Composite Operations

 Built with primitive operations, but common enough to
warrant their own operations

- Extended Relational Algebra

Primitive Operations

Selection

Projection

Join — a.k.a. Cartesian Product or Simple Join
Rename

Union

Difference

Selection

Select rows/tuples from a table/relation which meet
certain criteria

Denoted by lowercase Greek letter sigma -- 6

Example: Who is the borrower whose borrower 1d is
123457

Y borrower_id = 12345 borrower

Returns: 12345, aardvark, anthony
* A subset of rows/tuples in a table/relation

Multiple criteria can be specified by logical operators
- A - and
-V -or

* —-negation (not)

Projection

Choose only specific columns/attributes from all
rows/tuples in a table/relation

Denoted by the lowercase Greek letter p1 - &
Example: List the names of all borrowers

n last_name, first_name borrower

Returns the following rows/tuples
aardvark, anthony
cat, charlene
dog, donna
fox, frederick
zebra, zelda

Composing Operations

Relational algebra operations can be combined

Example: What is the title of the book whose call
number 1s QA76.0937

T title O call_number = QA76,093 POOK

Returns: Wenham Zoo Guide

Projection and Duplicate
Results

A projection could produce duplicate rows by suppressing
the column(s)/attribute(s) which distinguish rows.

Example: List authors of books

T author book
* This is a problem

Duplicates eliminated because relations are sets

Returns the following
* dog

* elephant

* koala

Cartesian Product /
Simple Join

* Select every combination of rows/tuples from two
tables relations

* Result has as many rows as the product of of the
number of rows/tuples in the two tables/relations
being joined

* Result has as many columns/attributes as the sum of
the columns in each table/relation involved in the join

* Denoted by a capital X

Requires an initial Cartesian product

checked_out X book

Borrower call

id

89754
89754
89754
89754
89754
89754
89754
89754
20147
20147
20147
20147

RZ12.905
RZ12.905
RZ12.905
RZ12.905
LM925.04
LM925.04
LM925.04
LM925.04
AB123.40
AB123.40
AB123.40
AB123.40

date-due

11-10-02
11-10-02
11-10-02
11-10-02
11-10-02
11-10-02
11-10-02
11-10-02
11-15-02
11-15-02
11-15-02
11-15-02

call

QA76.093
RZ12.905
LM925.04
AB123.40
QA76.093
RZ12.905
LM925.04
AB123.40
QA76.093
RZ12.905
LM925.04
AB123.40

title

Wenham Zoo Guide

Fire Hydrants | Have Known
21 Ways to Cook a Cat
Karate

Wenham Zoo Guide

Fire Hydrants | Have Known
21 Ways to Cook a Cat
Karate

Wenham Zoo Guide

Fire Hydrants | Have Known
21 Ways to Cook a Cat
Karate

Cartesian Product Example

« Example: List the titles of all books that are
currently checked out

author

elephant

koala
elephant

koala
elephant

koala

Cartesian Product Example
(continued)

* Apply selection to limit results to meaningful rows/tuples
(checked_out X book)

9 checked out.call number = book.call number

* Yields the following:

89754 RZ12.905 11-10-02 RZ12.905 Fire Hydrants | Have Known dog
89754 LM925.04 11-10-02 LM925.04 21 Ways to Cook a Cat dog
20147 AB123.40 11-15-02 AB123.40 Karate

« Use a projection to return only book titles
(checked_out X book)

n title 9 checked_out.call number = book.call number

* Which in turn yields:
Fire Hydrants I Have Known
21 Ways to Cook a Cat
Karate

Rename

Renames a given table/relation and potentially its attributes as well
Denoted by the lowercase Greek letter rho — p

Useful in conjunction with joins
 Especially when joining a table with itself

Example: List the names of all employees who earn more than their
SUpervisor

n employee.last_name, employee.first_name
emploiree.supervisor_ssn = supervisor.slsn A employee.salary > supervisor.salary

c
(employee X employee

p supervisor

Returns
 elephant, emily
» fox, frederick

Union

Combine two tables/relations in the same scheme into one
- Eliminates duplicate rows/tuples

Denoted by U set algebra operator

Example: List the names of all people connected with the library -
whether borrowers, employees, or both

(n last_name, first_name bOI'I'OWCI') U (n last_name, first_name employee)

Preparing similar tables/relations for union operation
* Projecting columns/attributes common to both relations
* Renaming attributes

Difference

Takes rows/tuples from two tables/relations with
the same scheme, and returns only those rows
present in the first table, but not the second

Denoted by — set algebra operator

Example: List the names of all borrowers who are
not employees.

(n last_name, first_name borrower) - (n last_name, first_name
employee)

Composite Operators

e Intersection
 Natural Join

e Theta Join

Intersection

Returns rows/tuples from two tables/relations with the same
scheme which occur in both of them

Denoted by N set algebra operator

Example: List all books (call numbers only) needed as course
reserves that are currently checked out to someone

(T call number Y€S€rVE_book) N (m checked_out)

call number

Can be computed via primitive relational operations
* Given relations R and S:
 Intersection =R - (R -S)

Natural Join

Special join which returns only those rows/tuples from two
tables/relations which have the same values in one or more
columns/attributes in a selection

* Natural join removes duplicate join key values
Denoted by the | X | (bowtie) operator

Example: List all data for books that are checked out

L checked_out.call_number, borrower_id, date_due, title, author
Y checked_out.call_number = book.call_number (Ch€Ck€d_Out X book)

+ Similar to Cartesian product example, except for more data in projection

This could also be done as a natural join:
* checked cout | X| book

Theta Join (0-j01n)

Join allowing for any arithmetic comparison operator (<, <, =, >, or >), not
just strict equality of values of columns/attributes

* Natural join (which does an equality comparison is actually a subset of theta
join

Example: List the names of all employees together with their supervisor’s
name
* Can be done as follows:
» Cartesian product of the table against itself (renamed appropriately)
» Selection comparing the employee’s and supervisor’s SSN values
* Projection of the desired name data
° T

e.last_name, e.first_name, s.last_name, s.first_name

o _ s (P . employee X p . employee)

e.superv1sor_ssn

The selection can be “injected” into the Cartesian product as its join criteria

e.last_name, e, ll”St name, s.last_ name, S. ﬁl’St name employee

p emp Oyee X 0e. superv1sor SSn = S.Ssn p S employee)

Extended Relational Algebra

* Generalized Projection
» Aggregate Functions

 Quter Join

Generalized Projection

» Allow projections to include computations based on
column/ attribute values in addition to column
values themselves

* Example: List the call numbers of all overdue books,
together with the number of days they are overdue.

* T call_number, today — date_due© date due < today Ch€Ck€d_Out

Aggregate Functions

Allow the use of functions which return summary data from
a set of rows/tuples

° min, max, sum, average to a column/attribute
* count to an entire table/relation

Denoted by the fancy capital G

Example: What is the average salary of all employees?
© G average(salary) employee

Can produce summaries by groups

Example: Print a list of borrower i1d's and the number of
books each has out

. borrower_id G count(call_number) CheCked_OU—t

Outer Join

Variant of natural or theta join which will include rows/tuples in
one table/relation, even if there 1s no match in the other

* Includes a dummy relation of all nulls in the result row for the
unmatched relation

Variants

» Left outer join — denoted by < -- no match in right table OK
* Right outer join — denoted by > -- no match in left table OK

* Full outer join — denoted by < -- no match in either table OK

Example: List the titles of all books, together with the borrower 1d
of the person (if any) who has the book checked out.

T borrower_id, title bOOk > CheCked_Out

Homework 1

