
The Entity Relationship

Model and Database

Design

CPS352: Database Systems

Simon Miner

Gordon College

Last Revised: 9/20/12

Agenda

• Check-in

• The Entity Relationship Model

• Group Exercise

• Database Design Principles

• Functional Dependencies

Check-in

The Entity Relationship

Model

Background

• Entity relationship model as a conceptual database

design tool

• Not a DBMS implementation

• No “entity relationship databases” available

• Entity relationship (E-R) diagrams help us think

about the structure of a data model

• Can be translated into relational schemas

• Which then can be implemented in a DBMS

• Analogous to use case or class diagrams in OO design

Entity Concepts

• Entity – an object being represented (along with its details)

• Entity set – the set of all objects of a given kind

• Attribute – individual fact about an entity

• Often simple (atomic) and single-valued

• Can be composite

• Sometimes multi-valued

• Can be derived from other attributes

• Not necessarily stored with the entity, but calculated when needed

• Domain – set of possible values for an attribute

• Keys – set of attributes that uniquely identifies an entity

• Superkeys, candidate keys, and primary key

Entities in E-R Diagrams

• Entity set represented by rectangular box containing name of entity

• Attributes represented by ellipses containing attribute names

• Primary key attribute(s) underlined

• Composite attributes displayed with a hierarchical structure

• Multivalued attributes enclosed in double ellipses

• Derived attributes enclosed in a dashed ellipse

• Attributes connected by lines to entity set

Relationship Concepts

• Relationship – the connection between two or more entities

• A relationship with more than two entities can always be
converted to a new entity plus relationships between the new
and original entities

• A relationship can be between an entity and itself

• Relationship set – set of all relationships of a given type

• A subset of the Cartesian product of the entity sets

• Degree of a relationship set is how many entities are involved in
it (i.e. binary, ternary, quadranary, etc.)

• Descriptive attribute – a property of a relationship that does
not apply to its associated entities

• When a relationship of more than two entities is converted into
a new entity, the original relationship’s descriptive attributes
become the new entity’s attributes

Relationships in E-R

Diagrams
• Relationship sets represented by diamonds

• Connected with associated entities by solid lines (potentially
doubled or decorated with arrows)

• Descriptive attributes depicted the same as entity attributes

• Converting a ternary+ relationship to a new entity



Mapping Constraints

• Restrictions as to what kind of subsets are possible
in a relationship set

• Mapping cardinalities – how many entities in each
entity set can participate in the relationship

• Participation constraints – when an entity in one
entity set must participate in a relationship

• Existence dependencies – when an entity in one
entity set of a relationship is dependent on the
existence of an entity in the other entity set

• Primary keys for relationship sets

Mapping Cardinalities

• One to one

• Any member of either entity set involved can participate in at most one
instance of the relationship set

• Often represented by arrow heads pointing to both entities arrow in E-R
diagrams

• One to many / Many to one

• Basically the same concept (just in opposite directions)

• Entities in the “one” entity set can participate in multiple relationships

• Entities in the “many” entity set can participate in at most one

• Often represented by an arrow head pointing to the “one” in E-R
diagrams

• Many to many

• Entities in either entity set can participate in multiple relationships

• Often represented by a solid line to all entities in the relationship (no
arrow heads)

Participation Constraints

• Total participation constraint

• When the underlying of a relationship dictates that

every entity in on entity set must participate in an

instance of the relationship

• Represented by a double line between the

relationship and the entity that must participate

• Example: every borrower must have a category

Existence Dependencies

• Weak entity set – an entity set in which each entity

is dependent on the existence of an entity from

another entity set

• Has a partial key or discriminator which must be

combined with attributes from the strong entity to

uniquely identify it (no superkey)

• If the dominant strong entity is deleted, the subordinate

weak entity ceases to exist

• Example: Fines owed by borrowers

Weak Entities in E-R

Diagrams

• Weak entity set represented by a double box

• Existence dependency relationship represented by a

double diamond

• Partial key attributes underlined using a dashed line

Primary Keys for Relationship

Sets

Mapping Cardinality Key

Many to many Union of key attributes in all

involved entities

One to many

Many to one

Primary key of the “many” entity

One to one Primary key of either of the entities

Converting to the Relational

Model

• Any database scheme consisting of entities and

relationships can be represented by a series of tables

• One for each entity set

• One for each relationship set

• Except when the relationship can be “folded” into an

entity

Converting Entities to Tables

• Strong entity set

• One row for each entity

• One column for each attribute

• Weak entity set

• One row for each entity

• One column for each attribute

• Add column(s) for the primary key of the strong entity

on which the weak entity depends

Converting Relationships to

Tables

• Relationship set

• One row for each relationship

• One column for each descriptive attribute

• Column(s) for primary key attributes of each participating

entity set

• “Folding” in one to one and one to many relationships

• Into the many entity by including the foreign key of the

“one” entity and any attributes

• These will be null for an entity that is not in any relationship

Generalized and Specialized

Entities

• An entity set may contain multiple groups of similar

entities with common and distinct attributes

• Example: different kinds of borrowers for students,

faculty/staff, and community members

• Converting generalized/specialized entities to tables

• One big table

• One table per group

• One generalized table with common attributes and one

specialized table per group

Group Exercise

Complete Practice Exercise 7.1

On page 315 of Database System Concepts

Database Design

Introduction

• Terminology review

• Relation scheme – set of attributes for some relation (R, R1, R2)

• Relation – the actual data stored in some relation scheme (r, r1, r2)

• Tuple – a single actual row in the relation (t, t1, t2)

• Changes to the library database schema

• We make the following updates for this discussion

• Add the following attributes to the book relation

• copy_number – a library can have multiple copies of a book

• accession_number – unique number (ID) assigned to a copy of a book when
the library acquires it

• New book and checked_out relation scheme

• Book(catalog_number, copy_number, accession_number, title, author)

• Checked_out(borrower_id, catalog_number, copy_number, date_due)

Database Design Issues

• Designing a database is a balancing act

• One the one extreme, you can have a universal relation (in which all

attributes reside within a single relation scheme)

• Everything

 borrower_id, last_name, first_name, // from borrower

 call_number, copy_number,

 accession_number, title, author // from book

 date_due // from checked_out

)

• Leads to numerous anomalies with changing data in the database

Decomposition

• Decomposition is the process of breaking up an original
scheme into two or more schemes

• Each attribute of the original scheme appears in at least one
of the new schemes

• But this can be taken too far

• Borrower(borrower_id, last_name, first_name)

• Book(call_number, copy_number, accession_number, title,
author)

• Checked_out(date_due)

• Leads to lossy-join problems

Lossless-Join

• Part of the middle ground in the balancing act

• Allows decomposition of the Everything relation

• Preserves connections between the tuples of the participating
relations

• So that the natural join of the new relations = the original
relation

• Formal definition

• For some relation scheme R decomposed into two or more
schemes (R1, R2, … Rn)

• Where R = R1 ∪ R2 ∪ … ∪ Rn

• A lossless-join decomposition means that for every legal instance
r of R decomposed into r1, r2, … rn of R1, R2, and Rn

• r = r1 |X| r2 |X| … |X| rn

Database Design Goal

• Decide whether a particular relation R is in “good”
form.

• In the case that a relation R is not in “good” form,
decompose it into a set of relations {R1, R2, ..., Rn} such
that

• each relation is in good form

• the decomposition is a lossless-join decomposition

• Our theory is based on:

• functional dependencies

• multivalued dependencies

Functional Dependency (FD)

• When the value of a certain set of attributes uniquely

determines the value for another set of attributes

• Generalization of the notion of a key

• A way to find “good” relations

• A → B (read: A determines B)

• Formal definition

• For some relation scheme R and attribute sets A (A  R) and

B (B  R)

• A → B if for any legal relation on R

• If there are two tuples t1 and t2 such that t1(A) = t2(A)

• It must be the case that t2(A) = t2(B)

Finding Functional

Dependencies

• From keys of an entity

• From relationships between entities

• Implied functional dependencies

FDs from Entity Keys

A → BC

FDs from One to Many /

Many to One Relationships

A → BC

W → XY

A → BCMWXY

FDs from One to One

Relationships

A → BC
W → XY
A → BCMWXY
W → XYMABC

FDs from Many to Many

Relationships

A → BC

W → XY

AW → M

Implied Functional

Dependencies

• Initial set of FDs logically implies other FDs

• If A → B and B → C, then B → C

• Closure

• If F is the set of functional dependencies we develop

from the logic of the underlying reality

• Then F+ (the transitive closure of F) is the set consisting

of all the dependencies of F, plus all the dependencies

they imply

Rules for Computing F+

• We can find F+, the closure of F, by repeatedly applying
Armstrong’s Axioms:

• if   , then    (reflexivity)

• Trivial dependency

• if   , then      (augmentation)

• if   , and   , then    (transitivity)

• Additional rules (inferred from Armstrong’s Axioms)

• If    and   , then     (union)

• If    , then    and    (decomposition)

• If    and    , then     (pseudotransitivity)

