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Part 1: Do-at-the-board problems
An individual from each team will work out an integral
problem at the board.
Team members will come to the board in order; decide
on the the order for your team before we start.
At each turn an integral (indefinite or definite) will be
displayed and the contestant will have 60 seconds to
evaluate it.
The first contestant to correctly finish the problem will
earn 2 points for their team.
Warning: Calling out to help your teammate may cause
your team to lose points!
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Ready...

Here we go...
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∫
e−3t dt

= −1

3
e−3t + C
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∫
x2 + 4

x
dx

=
x2

2
+ 4 ln |x |+ C

(Gordon College) MAT122 Exam 1 Review Bee February 13, 2019 6 / 27



∫
x2 + 4

x
dx

=
x2

2
+ 4 ln |x |+ C

(Gordon College) MAT122 Exam 1 Review Bee February 13, 2019 6 / 27



∫
2 sin 4x dx

= −1

2
cos 4x + C

(Let u = 4x so du = 4dx .)
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∫ (
4

x
+

5

x2

)
dx

= 4 ln |x | − 5

x
+ C
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∫
x

x2 + 4
dx

=
1

2
ln |x2 + 4|+ C

(Let u = x2 + 4 so du = 2xdx .)
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∫
4x sec x2 tan x2 dx

= 2 sec x2 + C

(Let u = x2 so du = 2xdx .)

(Gordon College) MAT122 Exam 1 Review Bee February 13, 2019 10 / 27



∫
4x sec x2 tan x2 dx

= 2 sec x2 + C

(Let u = x2 so du = 2xdx .)

(Gordon College) MAT122 Exam 1 Review Bee February 13, 2019 10 / 27



∫
e1/x

x2
dx

= −e1/x + C

(Let u = 1/x so du = −1
x2 dx .)
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∫ 2

0

(x2 − 2) dx

=

[
x3

3
− 2x

]2
0

=
8

3
− 4

= −4

3
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∫ 2

1

lnx

x
dx

Let u = ln x then du = (1/x)dx .
u(1) = 0, u(2) = ln 2.∫ ln 2

0

u du =
u2

2

∣∣∣∣ln 2
0

=
(ln2)2

2
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∫ 1

−1
(x3 − 2x) dx

= 0

(Integrand is an odd function; integral of an odd function
over an interval symmetric about the y -axis is always

zero.)
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∫ 2

1

x
√

x2 + 1 dx

Let u = x2 + 1. Then du = 2xdx .
u(1) = 2, u(2) = 5.

1

2

∫ 5

2

u1/2 du =
1

3

[
53/2 − 23/2

]
=

5
√

5− 2
√

2

3
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End of Part 1

That’s all!
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Part 2: Work-as-a-team problems
When a question is displayed, work with your team to
determine the complete correct answer.
Raise your hand when you have your answer.
The first team to finish each problem will send a
team-member to the board to write their solution.
If correct, the team gets 2 points. If incorrect the team
loses a point.
If a team is incorrect, the second team to finish can
send someone to the board – if their solution is correct
they will get one point.
No team member may return to the board until all
team members have been up.
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Ready...

Here we go...
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Suppose y = f (x) is given by

x 0 1 2 3 4 5 6
y 2.1 2.5 2.7 3 3.1 2.5 2.2

Use the Midpoint Rule with n = 3 to estimate the
value of

∫ 6

0 f (x) dx .

With n = 3 we have ∆x = (6− 0)/3 = 2.∫ 6

0

f (x) dx ≈ [2.5 + 3 + 2.5] (2) = 16
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Find the area between the
curves y = x3 and
y = 2x2 − x .

0.5 1

0.5

1

1.5

x

y

Slicing vertically we have

A =

∫ 1

0

(
x3 − (2x2 − x)

)
dx

=

∫ 1

0

(
x3 − 2x2 + x

)
dx

=
x4

4
− 2x3

3
+

x2

2

∣∣∣∣1
0

=
1

4
− 2

3
+

1

2
=

1

12
.
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Suppose y = f (x) is given by

x 0 1 2 3 4 5 6
y 2.1 2.5 2.7 3 3.1 2.5 2.2

Use the Trapezoid Rule with n = 3 to estimate the
value of

∫ 6

0 f (x) dx .

∫ 6

0

f (x) dx ≈ 6− 0

2 · 3
[2.1 + (2)(2.7) + (2)(3.1) + 2.2]

= 15.9
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Set up the integral that
computes the volume that
results when the region
bounded by y = x2 and
y = 2− x2 is revolved
about x = 2.

−1 1 2

1

2

x

y

Slicing vertically we have

V =

∫ 1

−1
2π(2− x)

[
(2− x2)− x2

]
dx

=

∫ 1

−1
2π(2− x)

(
2− 2x2

)
dx
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Set up the integral that
computes the volume that
results when the region
bounded by x = y 2 and
x = 2 + y is revolved about
(a) x = −1 (b) y = −1.

2 4
−1

1

2

x

y

(a)

V =

∫ 2

−1
π
[
((2 + y)− (−1))2 − (y 2 − (−1))2

]
dy

=

∫ 2

−1
π
[
(3 + y)2 − (y 2 + 1)2

]
dy
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Set up the integral that
computes the volume that
results when the region
bounded by x = y 2 and
x = 2 + y is revolved about
(a) x = −1 (b) y = −1.

2 4
−1

1

2

x

y

(b)

V =

∫ 2

−1
2π(y − (−1))((2 + y)− y 2) dy

=

∫ 2

−1
2π(y + 1)(2 + y − y 2) dy
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Set up the integral that
computes the volume that
results when the region
bounded by y = cos x and
y = 1 on [0, 2π] is rotated
about
(a) x = 0 (b) y = 2.

2 4 6
−1

1

2

x

y

(a)

V =

∫ 2π

0

2πx(1− cos x) dx
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Set up the integral that
computes the volume that
results when the region
bounded by y = cos x and
y = 1 on [0, 2π] is rotated
about
(a) x = 0 (b) y = 2.

2 4 6
−1

1

2

x

y

(b)

V =

∫ 2π

0

π
[
(2− cos x)2 − (2− 1)2

]
dx

=

∫ 2π

0

π
[
(2− cos x)2 − 1

]
dx
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Suppose y = f (x) is given by

x 0 1 2 3 4 5 6
y 2.1 2.5 2.7 3 3.1 2.5 2.2

Use Simpson’s Rule with n = 6 to estimate the value
of
∫ 6

0 f (x) dx .

∫ 6

0

f (x) dx ≈ 6− 0

3 · 6
[2.1 + (4)(2.5) + (2)(2.7)

+(4)(3) + (2)(3.1) + (4)(2.5) + 2.2]

= 15.967
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