
CS211 Lecture: Architectural Design; Packages; Layered Systems

October 18, 2007
Objectives:

1. To introduce architectural design
2. To introduce UML diagrams relevant to architectural design - component

diagram, deployment diagram
3. To discuss additional architectural patterns (in addition to MVC): Layered,

Client-Server, Pipe and Filter, Transaction Processing

 Materials:
1. Projectable of example component diagram
2. Projectable of Java layered architecture
3. Projectable of alternative client-server architectures
4. Projectable of pipe-and-filter architecture
5. Projectable of pipe-and-filter structure of a compiler
6. Projectable of transaction-processing architecture

I. Introduction

A. There are many kinds of design that go into developing a software system.

Examples?

ASK

1. Architectural design

2. Class design

3. User interface design

4. Database design

We talked about detailed design of classes recently, and we will talk
about user interface design and database design later in the course.
Today we focus on architectural design.

B. The highest level of design is sometimes called architectural design.

1. We can speak of system architecture, which deals with the overall
structure of the system in terms of its subsystems and major
components.

1

For example, consider the anti-lock brake system of a car. The
purpose of such a system is to prevent hard braking from locking the
wheels, which produces skidding.

Such a system consists of speed sensors for each wheel, hydraulic
valves that can be used to reduce braking pressure when one or more
wheels lock up, and a software controller that senses when one or
more wheels is rotating considerably slower than the others, indicating
that it is about to lock up. In such a situation, the ABS controller
signals the hydraulic valves to reduce braking pressure, thus allowing
the wheel that is about to lock up to turn again.

The major components of this system, then, are 4 wheel sensors, some
number of hydraulic valves, a microprocessor and software that runs
on the microprocessor.

2. We can also speak of the architecture of an individual software
component.

C. In any sort of design, one key thing we need to do is to partition a larger
problem into smaller pieces. (The divide and conquer principle). At the
system architectural level, the pieces go by different names, depending on
what is actually involved:

1. A component is a piece of an overall system that has a clear role, can
be isolated, and can, in principle, be replaced with a different
component that provides the same functionality. A component may be
software, hardware, or both.

Examples:

a) A hardware device like a computer’s monitor is a component.

b) A web-browser is a component.

c) In designing software, a key concept is the notion of a re-usable
component, which is simply a component that can be “plugged in”
to different problems

Thus, in our ABS example, the components are the wheel speed
sensors, the hydraulic valves, and the software running on the ABS
Controller system.

2

2. Sometimes the term module is used for a component that is
implemented in a programming language

Thus, in our ABS example, the software running on the ABS
Controller system is a module.

3. A system is a collection of components that work together to do some
job. Complex systems are often composed of definable subsystems,
which have internal structure of their own.

(Sometimes the term “system” is limited to just hardware and
software, but other times the term is used more broadly to encompass
people, processes, organizational structures etc.)

In our ABS Controller example, it is likely the case that the wheel
sensors and hyrdraulic valves are subsystems which might themselves
be further analyzed.

4. When a system is geographically distributed, the subsystem at a
particular location is often called a node.

D. UML has two kinds of diagrams that are useful at this level.

1. A component diagram shows the major software components of a
system and their relationships.

a) Figure 9.7 in the book is an example of a component diagram.

b) Another example: A typical structure for an e-commerce site is as
follows: the web server houses a database of information about the
company’s products. When a customer request is received, it
generates a dynamic web page which it sends to the customer’s
browser, based on a template stored on the server. (E.g. if the
customer submits a search request, the server software searches the
database and creates an appropriate search results page based on a
template for such pages.) This can be depicted as follows (using
UML 1 notation, which is the notation used in the book - UML 2 is
different)

PROJECT

3

Web
Page
Template

Server
Software

Database
Web
Page
Template

Web
Page
Template

Dynamic
Web
Page

2. A deployment diagram shows the major hardware components of a
system and their relationships. It is particularly useful for use with
distributed systems, in which the hardware components are located at
different places.

a) Figure 9.8 in the book is an example of a deployment diagram

b) We will look at these more fully when we consider distributed
systems later in the course.

II. Architectural Patterns

A. It turns out that there are a variety of architectural design patterns that are
appropriate for different situations.

B. We have talked about one extensively, which is primarily useful for
analyzing the architecture of software components.

ASK

Model view controller

C. The book talked about another such pattern, which can be used both for
hardware/software systems and for understanding purely software
systems.

ASK

4

Layered architecture

1. In a system using a layered architecture, the system is organized into
layers.

a) A given layer may only directly depend on the services provided by
the layer immediately below it.

b) Each layer defines an interface representing services it makes
available to the next layer up.

2. Example: Java implementations typically use a layered architecture that
looks like this:
PROJECT

Java Bytecodes (.class files)

 Java API

JVM Implementation and
native classes

Platform
(Native Operating System

and Physical CPU)

a) A JVM implementation is specific to a particular platform. It
depends on the facilities of the native operating system, and is
capable of executing any standard java class file.

b) The bytecodes produced by the javac compiler (and the API
routines in the java. and javax. packages in the system library)
depend only on the standard java class file format Thus, the same
class files will run on any java implementation, regardless of the
platform.

3. Layered architectures are not confined to software. Layering is also
used in systems comprised of software and hardware - e.g. there is a
model for understanding computer networks called the ISO/OSI model
which has seven distinct layers - several of which involve both software
and hardware.

5

The lowest layer is the physical layer- the physical means by which bits
are transmitted from one place to another. A physical link can be
something like ethernet, or fiber optics, or wireless. Higher layers
should be unaffected by what choice is made at this layer, though. One
manifestation of this is that a computer that is connected to a network
via a wired connection can be seamlessly shifted to a wireless
connection.

D. Another pattern is the client-server architecture - a pattern that occurs
over and over in Internet applications.

1. In the simplest case, a client-server system consists of a server system
and (one or more) client subsystems. For example, a web browser
relates as a client to a web server; the mail program running on a
personal computer acts as client to a mail server, etc.

2. More complex systems can be understood in terms of a layered model:
a user-interface layer, a business-logic layer, and a database layer. For
example, many e-commerce systems are set up this way: the user
interface layer is a web page (perhaps with embedded javascript)
viewed by a web browser; the business-logic layer is the software that
provides information in response to user requests and processes orders,
and the database layer stores information about the products and
records user orders. There are three different ways these might be
distributed:
PROJECT
a) An approach often used by e-commerce systems (the so-called

“thin client” approach)

Client System(s)

Server System

User-interface layer

Business-logic layer

Database layer

6

b) The so-called “thick client” approach, used when it is desirable to
install the business logic software on the client system (This
wouldn’t work for e-commerce, of course, but is sometimes used
for specialized applications)

Client System(s)

Server System

User-interface layer

Business-logic layer

Database layer

c) A three-layer approach that can also be used as an alternative to the
thin client approach. (Note that the client would never see any
difference between this approach and the thin-client approach; in
fact, many e-commerce systems are in fact built this way)

Client System(s)

“Visible”
Server System

User-interface layer

Business-logic layer

Database layer

Database
Server System
(Invisible to
clients)

7

3. While the client-server architecture is most commonly seen in
distributed systems, it can also be used for software systems running on
a single computer - e.g. a program that uses a relational database is
often structured as a client relating to a separate database server
program running on the same computer. (In fact, a database server
program running on a computer may simultaneously be serving several
different clients on that same machine.)

E. An alternative architecture for distributed systems is a Peer-to-Peer
architecture in which there is no designated server as such. Instead, each
participating system can function either as a client, or as a server to some
other system.

F. Another architectural pattern is the “Pipe and Filter” Pattern. In this
approach, a system is organized as a collection of subsystems called filters.
The overall input to the system flows into the first filter, which performs
some transformation on it and sends the transformed data to the second
filter, which performs a further transformation on it and sends it to the
third filter ...

PROJECT

1. One place where this architecture is often used is compilers. Thus, a
simple compiler might be organized like this:

PROJECT

(More sophisticated compilers include various code-improvement (so-
called “optimization”) steps which may be inserted either between the
parser and the code generator, or after the code generator - or often
both)

8

Filter 1 Filter 2 Filter 3 Filter n•••Raw
Input

Final
Output

Tokenizer Parser Code
Generator

Source
Program
(stream of
characters)

Stream of
Tokens

Parse
Tree Object

Program

2. Another place where pipe and filter architecture is often used is in
systems that process signals such as sounds (e.g. speech recognition
systems.) In fact, the term “filter” really comes from the world of
hardware signal-processing systems.

G. The Transaction-processing architecture. This is appropriate when the
system basically exists to process discrete transactions of various types.

1. PROJECT

Dispatcher

Handler

Handler

Handler

Handler

•••

Incoming
Transaction

2. Note that this pattern is used in the ATM system, though the
transactions are handled in the context of a session which the system
also manages.

9

