
CPS211 Lecture: Representing Associations in Java; Collection

Last revised July 24, 2008
Objectives:

1. To show how associations can be represented by references
2. To show how associations can be represented by collections

I. Implementing Associations using Java References

A. Of course, the associations that are identified during the design
phase will eventually have to be implemented in the Java code
implementing the various classes. This typically takes the following
form:

1. For each different association that relates objects of a given class
to other objects, there will be a field in each object containing a
link to the appropriate object(s).

a) If the association is bidirectional, each participating class will
need such a field.

b) If the association is unidirectional, only the class whose
objects need to know about their partner(s) will have such a
field.

EXAMPLE:

Consider two cases that we looked at earlier:

Book

Author

In the first case, each Book object will need a field linking to
the associated Author object(s), and each Author object will
need a field linking to the associated Book object(s).

1

In the second each Client object will need a field linking to
the associated Server object(s), but not vice-versa.
(This reduction in information that needs to be maintained is
why we consider the possibility of unidirectional associations.)

2. Frequently, the field name will be derived from the name of the
association, or from the role names, if such are present. If not,
the name will often come from the name of the class at the other
end.

EXAMPLE: A Book object may contain a field called authors,
and an Author object may contain a field called books.
EXAMPLE: A Client object may contain a field called server.
The Server object, however, would not contain a field called
client.
EXAMPLE: Consider two cases we looked at earlier

Department Student
MajorsIn

MinorsIn

*

*

1..*

*

Employee

supervisor supervisee
1 *

Supervises

In the first case, a Student object might have fields called majors
and minors. A Department object might likewise have fields
called majors and minors. Or the fields might be named
majorsIn/minorsIn in the Student and still probably majors and
minors in the Course.
In the second case, an Employee object might have fields called
supervisor and supervisees. (Note the plural in the case of the
latter name - the role is supervisee, but one supervisor can
supervise multiple people.) Or the fields might be named
supervises and supervisedBy.

2

B. There are a variety of different implementation approaches that can
be used to actually realize the links.

1. If a given object can relate to only one other object in a given
association (there is a “1” at the other end of the link), the
easiest approach is to use a Java reference to the other object.

2. If the multiplicity is “0..1”, the same strategy can be used, with
the reference being null if there is no related object for this
association.

3. If the multiplicity is some fixed, small integer, or is limited by
some small fixed integer, then multiple fields can be used, or a
field whose value is an array.
EXAMPLE: Suppose we assume that a given student can have
at most three majors and at most two minors. Then we might
include fields like the following in a Student object:

Department major1, major2, major3;
Department minor1, minor2;

or
Department [] major;
Department [] minor;

(Of course, there are dangers if you cannot be sure that the
upper limit is definite. However, three majors is probably
enough for anyone!)

4. When (the upper end of) the multiplicity range is “*” (or some
large integer), the first approach won’t work, and the second is
tricky unless you know when the object is created how many
other objects it will be related to (since arrays in Java are created
with a fixed size). A more flexible approach results from using
Collections, which we will discuss next.

3

II. Collections

A. The Collections facility was added to Java as a part of JDK 1.2

1. A Collection is a group of objects that supports operations like:

a) Adding objects to the Collection.

b) Removing an object from the Collection.

c) Accessing individual objects in the Collection.
(Note that an array can be thought of as a very simple and
limited form of Collection, but doesn’t offer the full elegance
of the Collections facility in the Java library)

2. Java Collections are of three basic types:

a) Sequences are collections in which the contents are regarded
as having some sequential order. (Note: the Java library calls
these “Lists”)

(1) If a collection is a sequence, it is legitimate to ask
questions like “what is the first object in the sequence?”
or “what is the last object?” or “what is the ith object?”.
(Provided the collection is non-empty, in the first two
cases - or has at least i+1 elements, in the last case - since
elements are numbered starting at 0 - so to get, say, item
2 the collection must contain at least three elements.)

(2) It is also legitimate to make requests like “add this object
at the very front” or “add this object at the very end” or
“add this object in position i”. (Provided the collection
has at least i elements in the last case.)

(3) Finally, it is legitimate to make requests like “remove the
first object” or “remove the last object” or “remove the
ith object”. (Provided the collection is non-empty, in the
first two cases - or has at least i+1 elements, in the last
case.)

b) Sets are collections in which a given object may appear at
most once, and there is no ordering.

(1) If a collection is a set, it is legitimate to ask the question
“is this particular object in the collection?” (yes or no).

4

(2) It is also legitimate to make the request “add this object to
the collection”. (Provided it’s not already there.)

(3) Finally, it is legitimate to make the request “remove this
object from the collection”. (Provided it is in the collection
to begin with.)

c) Maps are collections of key-value pairs. (Actually, Java Maps
are not technically Collections due to some implementation
issues, but it is common to speak of them as “small c”
collections.

(1) Maps are often used for qualified associations, with the
qualifier serving as the key, and the associated object the
value
EXAMPLE: The qualified association between a college
and its students could be represented by a map (stored in
the college object) consisting of pairs where the student id
is the key and the corresponding student object is the
value.

(2) If a collection is a map, it is legitimate to ask questions like
“what value - if any - is associated with the following
key?” or “does this map contain the following key?”.

(3) It is also legitimate to make the request “put the following
key-value pair in the map”. This can have one of two
effects:

(a) If the key was not in the map to begin with, it is added
with the specified value.

(b) If it was in the map, but with a different value, the old
value is removed and the new value is associated with
the key.

(4) Finally, it is legitimate to make the request “remove the
following key from the map”. If the key was in the map,
it and its associated value are removed; if not, nothing
happens.

d) For all types of Collections, it is possible to create an Iterator
object that makes it possible to access each item in the
collection once.

5

(1) For sequences, the order in which items are accessed by
an Iterator is the sequential order first, second ...

(2) For sets and maps, the order is implementation-
determined.

(3) In the case of maps, the Iterator is actually obtained from
either its set of keys or its set of values.

3. The Java Collections library contains two or more
implementations for each of the different types of collection.
The different implementations of a given type of Collection have
the same behavior, but have different performance
characteristics.

a) For List (Sequence), the Java library supplies:

(1) LinkedList - good if the list changes size (grows or
shrinks) frequently), good for accessing either end of the
list, but slower when accessing items in the middle of the
list

(2) ArrayList - good if accessing elements by specific position,
but slower for adds and removes.

b) For Set, the Java library supplies:

(1) HashSet - more efficient in most cases
(2) TreeSet - an iterator will access the elements of the set in

a specific order based on their value (e.g. Strings would be
kept in alphabetical order.)

c) For Map, the Java library supplies:

(1) HashMap - more efficient in most cases
(2) TreeMap - an iterator obtained from the key set will

access the elements of the map in key order.

4. We will devote a lab to working with Java Collections

6

B. We noted earlier that if an association has attributes associated with
the association itself (not just the participating objects), an
association class can be used. In this case:

1. Each participating object contains a reference to the association
class object.

2. The association class object contains references to each of the
related objects.
EXAMPLE:

Course Student
* *

EnrolledIn

grade: Grade

class Course {
...
(Some sort of collection of references

to
 EnrolledIn objects) enrolledIn;

 ...
 }

class Student {
...
(Some sort of collection of references

to
 EnrolledIn objects) enrolledIn;

 ...
 }

class EnrolledIn {
...
Course course;
Student student;
Grade grade;
...

 }

7

C. Now, let’s think about the various associations in the Video Store
problem and how they might be represented by Java collections:
For now, let’s restrict ourselves to a subset of the requirements,
assuming only movies (not games) are being rented. It will also
prove helpful to assume that there is a singleton object (perhaps of a
class called Store) which represents the Store and “owns” all the
other objects.

1. First though, we need to consider an interesting (and actually
quite tricky) issue that arises in connection with rentable items.

a) Typically, a video store owns multiple copies of popular
movies.

(1) Presumably, we need a separate object for each copy,
since each can be rented to a different customer, be due
on a different day, etc..

(2) At the same time, we want to associate all kinds of
information with a copy - its title, its actors, its director ...
etc - but storing all this information multiple times (once
for each copy) is problematic

(a) Wasteful of space

(b) Makes extra work when a new copy comes in

(c) Suppose we needed to correct a piece of information -
e.g. maybe we had recorded a wrong actor. We would
need to make this change in each copy.

(3) Moreover, when we accept a reservation for a particular
movie, we don’t want to associate the reservation with a
specific copy - we want to associate it with the movie
itself. Why?

ASK

b) There is a very problematic way to handle a case like this:

(1) Create a separate class for each title. Thus, we would
have a class Shrek3, a class BourneUltimatum ...

(a) The various items of information we would want to
record about a movie could be represented as static

8

fields of the appropriate class - e.g. we would have
something like
class BourneUltimatum {

static String leadActor="Matt Damon";
...

(b) A copy would be represented by an object of the
appropriate class. Thus, if we had 10 copies of The
Bourne Ulitimatum, each would be represented by an
object of class BourneUltimatum - 10 in all.

(2) Why is this very problematic?

ASK

(a) A serious problem is that we have to create a new
class every time a new movie comes out. This means
that the software would have to be revised and
recompiled about once a week!

(b) A similar problem is that any change to information
stored about a movie would necessitate revising and
recompiling the software. While this may seem
relatively improbable in this case, it could be a serious
problem in other, similar cases.

c) A much better way is to make use of a design pattern, which
is, in essence, a good solution to a commonly-occurring
tricky problem. (We will talk about design patterns later in
the course.) In this case, we want to use a pattern known as
the Abstraction-Occurrence pattern.

(1) In essence, what we want to do is to use two classes to
represent movies.

(a) One class - which we might call something like Movie -
represents the abstraction.

i) There would be, then one object of class Movie for
Shrek 3, another for the Bourne Ultimatum

ii) This one object holds all the information that
pertains to all copies of the movie - its actors,
director ...

9

iii) When a new movie comes out, we create a new
object of this class to represent it.

(b) A second class - which we might call RentableItem -
represents the occurrence.

i) There would be one object of this class for each
physical copy of a movie that we own - thus, if we
had 10 copies of the Bourne Ultimatum, there
would be 10 objects of class RentableItem
representing them.

ii) Each object of class RentableItem would be
associated with the object of class Movie to which it
pertains.

(c) If the store owned 10,000 DVD's in all, representing
3000 different movies, there would, in total, be 10,000
objects of class RentableItem, and 3000 objects of
class Movie.

(d) We might show this in UML as follows:

«abstraction»
 Movie

«occurrence»
 RentableItem

*

i) Composition is appropriate here, because,

(1) At least as far as the store is concerned, a movie
is composed of its copies

(2) Each copy is associated with one and only one
movie

10

(3) A copy of one movie can never be associated
with a different movie

ii) A multiplicity of * is appropriate on the
RentableItem end, because a given Movie can have
an arbitrary number of copies. (We might even
have 0 for a short time, if our only copy is lost and
we’re waiting for a reorder to come in)

iii) Bidirectional navigability is appropriate, because me
want to be able to answer both of the following
kinds of question:

(1) What copies of “The Bourne Ultimatum” do we
own?

(2) What is the title of the Movie that rentable item
1234 is a copy of?

2. Given this, we want to have an association between the store
and the movies it owns. Clearly this is 1..*.

a) What navigability is appropriate here?

ASK

b) What type of collection is appropriate in the Store object to
hold references to Movie objects for this case?

ASK

Map, keyed on something like title of the movie. The Store
object would have a declaration like

Map < Movie > movies;

But nothing would be needed in the Movie object, since we
have no need to navigate from a Movie to the (one and only)
Store

3. Again, we need an association between the store and the
rentable items it owns as well. Clearly, this is also 1..* When a
customer wants to rent an item, the ID number on the item is

11

used to find the appropriate object to associate with the
customer.

a) What navigability is appropriate here?

ASK

b) What type of collection is appropriate in the Store object to
hold references to RentableItem objects for this case?

ASK

Map, keyed on the item’s ID. The Store object would have
a declaration like

Map < RentableItem > items;

But nothing would be needed in the object, since we have no
need to navigate from an item to the (one and only) Store

4. The association between the store and its customers is clearly
1:*. When a customer wants to rent one or more items, he/she
presents a card, and the ID number on the card is used to access
the stored information on the customer.

a) What navigability is appropriate here?
ASK

b) What type of collection is appropriate in the Store object to
hold references to Customer objects for this case?
ASK
Map, keyed on the customer’s ID. The Store object would
have a declaration like
Map < Customer > customers;

But nothing would be needed in the Customer object, since
we have no need to navigate from a Customer to the (one
and only) Store

5. We have already said that we need an association between a
customer and the specific items the customer has out.

12

a) What is the multiplicity here?

0..1 : * - an item is either out to 1 customer, or it’s on the
shelf; but a customer can have any number of items out

b) In this case, we probably want bidirectional navigability, so
we can answer questions like

(1) What items does customer 1234 have out?

(2) What customer rented item 5678 (that was just returned)

c) Observe that the act of checking out an item involves
attributes - e.g. date due. We can represent this either by
using an association class object, or by recording the date due
as an attribute of the copy (since it can only be checked out
to one person at a time)

ASK class for how each approach would be set up in terms
of Java collections

6. We also need an association between a customer and the movies
he/she has reservations for.

a) What is the multiplicity here?

ASK

It must be * .. * - any number of customers can have a
reservation for a given movie, and a customer can have
reservations for multiple movies.

b) In this case, we probably want bidirectional navigability, so
we can answer questions like

(1) Who has reservations for “The Bourne Ultimatum”?

(2) What reservations does customer 1234 have?

c) Presumably, we want to keep track of reservations on a first-
come first-served basis. This being the case, what sort of
collection is needed in a Movie object to keep track of the
customers who have a reservation for the Movie?

ASK

13

7. What would we need to do to this structure to also handle
games?

ASK

a) Create a new base class (Title?) with subclasses Movie and
Game.

b) Copies and reservations are now associated with a Title - the
mechanics are the same for either Movies or Games. That’s
all we need to do!

14

