
CS211 Lecture: Concurrency, Threads; UML Activity Diagrams
last revised October 5, 2009

Objectives

1. To introduce the notion of concurrency
2. To introduce the Java threads facility
3. To introduce UML Activity Diagrams
4. To introduce the use of synchronized
5. To introduce the use of wait() and notify() 

 Materials: 

1. Projectable of internal structure of a typical CPU
2. AWTThreadDemo1.java.- demo and code to project
3. Racer1.java - demo and handout of code
4. AWTThreadDemo2.java - demo and code to project
5. Handout of activity diagram for racers
6. Racer2.java - demo and code to project
7. Racer3.java - demo and code to project
8. Racer4.java - demo and handout of code
9. Racer5.java - demo and code to project

10. ATM Example system statechart for class ATM; code for classes ATM, 
EnvelopeAcceptor

I. Introduction

A. When we mentally visualize the computation being done by a program, 
we tend to do so in terms of a series of steps, with the program doing 
exactly one thing at any given time.

B. This mental model is consistent with the physical structure of most 
computers.

1. Most computers have a single CPU.

2. A CPU has a memory plus special register called the program counter 
(PC).  At any given moment in time, the PC specifies a location in 
memory, which contains the next instruction to be executed.

3. The CPU repeatedly executes the following fetch-execute cycle:
Fetch an instruction from the memory location specified by the PC
Update the PC to point to the next instruction
Execute the instruction just fetched
PROJECT: Internal structure of a typical CPU
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4. At any given time, the state of a computation can be specified by 
knowing the following values:

a) The contents of memory
b) The contents of the PC and other registers

C. Though computers physically do exactly one thing at a time, they often 
give the illusion of doing several different things simultaneously:  We call 
this appearance of doing several things at once concurrency.

1. EXAMPLE: On most computers, it is possible to have several different 
applications open at the same time. Further, it is possible for two 
different applications to appear to be doing computation simultaneously 
- e.g. you may have all of the following going on at the same time:

a) A CD player program playing music
b) A web-browser downloading a large file
c) A game that you are playing while waiting for the download to 

finish.

2. How is this possible, given that physically a computer is doing only one 
thing at any given instant of time?  Note that the PC always points to 
the next instruction to be executed, which is always part of some one 
program.  So how can it appear to be executing several different 
programs at once?

ASK

3. The answer lies in the fact that the computer processes instructions 
very fast (100’s of millions or even billions per second on fast CPU’s).  
A computer can give the illusion of doing several things at once by 
rapidly switching from task to task, giving a small slice of time to each 
before moving on to the next.  

a) If you were able to slow the system way down, you would actually 
observe that at any given instant it is executing just one program.

b) How does switching from program to program take place?  Two 
possibilities:

(1) A program may yield the use of the CPU to another program 
when it is unable to proceed further until some external event 
occurs - e.g.
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(a) A CD player can yield the CPU while it is waiting for the CD 
to to read the next chunk of data (head movement, rotational 
latency, data transfer).

(b) A web browser downloading a page can yield the CPU while 
it is waiting for the next packet of data to arrive

(c) A game program (at least one that doesn’t do ongoing 
animation) can yield the CPU when it is waiting for the 
human player to select a next move.

(2) External devices may be allowed to interrupt the currently 
running program when some operation has completed, causing 
it to yield the CPU to some other program - e.g.

(a) A disk controller may issue an interrupt when a unit of data 
has been read or written.   The CPU may be yielded to the 
program that was waiting for the data.

(b) A network controller may issue an interrupt when a packet 
of data arrives.  The CPU may be yielded to the program 
that was waiting for the packet.

(c) The computer may contain an internal clock that  issues 
interrupts periodically.  The CPU may be yielded to some 
other program that is also ready to use the CPU, in round-
robin fashion.

(3) Older systems did not support forcing a program to yield the 
CPU when their time quantum was up. (This is technically called 
pre-emption) On such computers, a “freeze” was typically a 
manifestation of a program that had gone into an infinite loop 
and was not yielding to other programs.  This is still possible on 
more modern systems, if a program can somehow disable 
interrupts, though it is much less common.

4. We have introduced concurrency in terms of the CPU dividing its time 
between several distinct programs.  It is also possible to have 
concurrency within a single program, where several distinct threads of 
execution are going on apparently simultaneously.
EXAMPLE: a server that is simultaneously servicing several clients 
may use a distinct thread for each.  From the standpoint of the 
software design, it looks like each client has a program dedicated to 
serving it.
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D. Note, then, that concurrency is possible at different levels:

1. You can have distinct programs, each running in its own process.  
Each process has its own memory space, which ideally should be 
protected from other processes.   

a) A consequence of having distinct memory spaces is that processes 
cannot share information directly with one another - though they 
can share information indirectly through the file system.  (A few 
operating systems make it possible for processes to share regions of 
memory as well, but that’s not an issue for us in this discussion.)  

b) Thus, in particular, distinct processes cannot share objects.

c) This is called multitasking.

2. You can have multiple threads within a single process, all sharing the 
same memory space.  The distinct threads can share the same objects.
This called multithreading.

3. A third possibility, which we will not pursue here, is to have more than 
one CPU in a single computer, in which case you can have true 
concurrency, not simulated concurrency.   This is called 
multiprocessing.

Many newer computers use “dual core” CPU’s.  On such a system, it 
is possible for the system to actually be doing two different things at 
the same time.  However, the concepts we will discuss here don’t 
change - the same issues arise, and in any case most systems give the 
appearance of doing even more than two things at once.  Further, true 
multiprocessing involves even more conceptual separation than is the 
case with multicore CPU’s.

4. Of course, different forms of concurrency can be combined - e.g. if 
you have multiple processes, each process can also have multiple 
threads.  If you have multiple CPU’s, each CPU can, in turn, have 
multiple processes and/or multiple threads.
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II. Threads in Java and Similar Languages

A. One important feature of Java is that it incorporates support for threads as 
part of the JVM and the standard library.  
Other new languages incorporate similar mechanisms, and much the same 
effect can be achieved in any language if the underlying operating system 
provides support for threads.   We will disucss the Java approach here, but 
the basic concepts are transferable to other models.

B. It is fairly easy to create Java programs that use multiple threads.  

1. In fact, you’ve already done so without being aware of it, since even 
the simplest Java program uses multiple threads.

a) Every Java program has a main thread that executes the main() 
method of an application or the start() method of an applet.

b) Every Java program has one or more implementation-supplied 
background threads that handle various “behind the scenes” tasks - 
e.g. garbage collection.

c) Java programs that use the awt have one or more implementation-
supplied threads that perform various awt tasks, as well.
EXAMPLE: AWTThreadDemo1.java

(1) Run.  Note how clicking buttons changes direction of counting.

(2) Examine code - show count() and actionPerformed() 
methods.  Note that two methods perform the major tasks: 
count() increments/decrements and displays the count value, 
and actionPerformed responds to clicks on up and down by 
setting the increment value to +1 or -1 as the case may be.

(3) How does execution switch from counting to modifying the 
increment when a button is clicked?  These two methods are 
actually executed by two different threads: count() is executed 
by the main thread, and actionPerformed() by the awt event 
thread.  The awt event thread is a part of the Java 
implementation that waits for a gesture that would cause an 
event to occur, and then calls the handler for that event.

(4) Comment out the time waster loop in the source code, 
recompile and run.  Note that:
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(a) It now counts much faster

(b) Only a small fraction of the values computed are actually 
displayed.  This is because another thread - the awt painting 
thread - is actually responsible for updating the display.  It is 
triggered each time the label contents is changed - however, 
it takes long enough to redraw the label once that the count 
is bumped up/down many times during the same period.

2. Threads in Java are orthogonal to objects: a given thread may access 
many objects, and a given object may have its methods performed by 
many threads.  

Objects

Threads

E.g. in the example just given:

a) The main thread accesses the AWTThreadDemo1 object, the frame,  
and the various components that are part of it - including, in 
particular, the label that displays the count value.

b) The event thread accesses the AWTThreadDemo1 object.

c) The painting thread is given a task to do when the event thread 
modifies the text of the label that displays the count value, and then 
accesses the label to update its visual display on the screen.

C. While all Java programs make implicit use of threads, it is also possible to 
explicitly use threads in a Java program.
Why would one want to do so?
ASK

1. Some applications lend themselves to using multiple threads - the logic 
of the application is cleaner this way.
EXAMPLE:  Racer1 program 
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a) DEMO

b) HANDOUT, DISCUSS code for Racer1.java

2. A server program may use a separate thread for servicing each client.  
This tends to produce cleaner, more modular code.

3. A web browser that is downloading a large movie may start playing it 
before it is completely downloaded, finishing the download while 
earlier portions are playing.  This is typically done by using two 
separate threads: a “producer” thread that carries out the download, 
and a “consumer” thread that plays the file.  (Of course, the speeds 
must be such that the consumer doesn’t catch up with the producer or 
the movie has to stop playing.)

4. In a program that uses the awt (including Swing), any computation 
that is performed by an event handler is, in fact, done by the awt event 
thread.  A consequence of this is that, while one awt event is being 
handled, no other awt events can be responded to.  

a) For this reason, it is good practice to minimize the amount of 
computation done by event handlers or methods they call directly.  

b) If handling an event requires a great deal of processing, or entails 
the risk of going into an infinite loop, it is better to delegate this to a 
separate thread.
EXAMPLE: AWTThreadDemo2.java

(1) DEMO - Note how it is unresponsive to stop button until count 
reaches 100

(2) SHOW CODE - Note that the problem is that both count() and 
stop() are executed by the awt thread - therefore stop() cannot 
be executed while the thread is busy doing count()
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III. Using Threads in Java

A. While we have said that Java threads are conceptually orthogonal to 
objects, the java.lang package includes a class java.lang.Thread, and 
an object of this class is needed for each thread in a given program.   The 
Thread object serves as a mechanism for creating and accessing the 
thread.  However, the thread itself is a flow of control, not an ordinary 
object - i.e. the thread is conceptually distinct from the Thread object that 
provides access to it. 

1. To create a new thread, one must first create an object of class 
java.lang.Thread or a subclass.

2. Then, the associated thread must be started.  This is accomplished by 
activating the start() method of the Thread object. 

3. The code that is to be executed by the new thread must be specified in 
one of two ways.

a)  Create a class that implements the Runnable interface (which 
requires a run() method), and pass an instance of this class to the 
constructor of class java.lang.Thread.  Create and start the new 
thread.  The code that the new thread executes is the run() 
method of this Runnable object.

EXAMPLE: Racer1.java

(1) This class defines a main method that creates four instances 
(racer objects). 
Each racer object is a GUI component that has a color and 
keeps track of a position (tbat goes from 0 to 100) - see instance 
variables on the bottom of page 2.
Each racer object can draw itself as a partially filled in boix on 
the screen.  (See paint() method on page 2.)
Each racer object is added to the GUI just after it is created.

(2) The main program also creates four threads (one for each racer) 
in the main program immediately following creation of the 
racers.  Each thread is associated with a racer that is specified 
when it is created (parameter to constructor).  Thus, each racer 
is actually represented by two objects: a Racer object and a 
Thread object.
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(3) Each thread is started by invoking its start()  method, just 
after the threads are created.

(4) Each thread executes the run() method of the racer object is is 
associated with (page 2).  This run() method sleeps for a 
random amount of time, increments its position, and then 
redraws itself.   The run() method exits when the position 
reaches 100, at which point the corresponding thread terminates 
(this happens automatically).

(5) While the racers are running, there are actually five threads in 
operation - the four racer threads, plus the main thread that 
created them.  The main thread executes the join() method of 
each thread in turn (bottom of page 1).  

This method causes the main thread to wait until the racer 
thread has completed - at which point the two are joined into 
one thread.  Because the main thread waits, in turn, for each 
racer, it does not get out of the loop until all four racers have 
terminated, at which point it prints the message "All racers 
are done".

b) Java allows an alternate method for doing the same thing - one can 
subclass java.lang.Thread by a subclass that has its own run() 
method..  This is somewhat simpler than creating a Runnable 
object and then using that to create a thread (half as many objects 
involved) - but can’t be used in this case  because Java does not 
allow multiple inheritance, so creating a subclass of 
java.lang.Thread means that the object containing the run() 
method cannot subclass any other class.  Creating a separate 
implementation of the Runnable interface allows the object 
containing the run() method to subclass some class as well (e.g. 
class Racer1, which subclasses JPanel)   (However, we will use this 
simpler approach in the lab you will do on threads.)

4. Actually, the Java language recognizes two distinct categories of 
threads:

a) User threads execute user code.  (E.g. the main program is 
executed by a user thread, and threads that it creates are typically 
user threads.)  The five threads in our racer example are all user 
threads.
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b) Daemon threads typically execute system code.  (E.g. the garbage 
collection thread etc. are daemon threads.)

c) The basic distinction is this: when all the user threads for a given 
program have terminated, the program itself terminates.  Daemon 
threads can still be in existence; they are terminated when the last 
user thread terminates.  

d) Note that the awt threads are actually set up as user threads.  This is 
because it is quite common for the main program of a GUI 
application to simply set up the GUI and then terminate.  If the awt 
thread(s) were daemon threads, the program would terminate at 
that point, before the user could do anything!

B. Each thread has a number of properties - though only sophisticated 
programs typically make use of these.

1. A name

2. A priority: At any given time, there is one current thread - the one that 
is currently using the CPU.

a) There may be other runnable threads - threads the could use the 
CPU.

b) The relative priorities of the runnable threads control how CPU 
time is allocated between them.

c) However, the details of how the priority is used in scheduling 
threads is implementation-dependent; therefore, the ability to 
control execution using priorities is limited for software designed to 
run on multiple platforms.

3. A ThreadGroup.  Threads belong to groups - we won’t discuss this 
further.

C. In addition to allowing for the creation and starting of threads, the class 
java.lang.Thread also provides some mechanisms to allow for 
controlling the execution of threads.  We will only look at a few of these.

1. It is important to note that these methods are of two general kinds.
a) Some of these methods are instance methods, and must be applied 

to a particular Thread object.  They affect the thread that the 
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Thread object controls, and thus allow one thread (the one that 
calls the method) to affect another (the thread controlled by the 
Thread object whose method is called.)

b) Others are class (static) methods, and affect the thread that calls 
them.

2.  public static native void sleep(long millis)
throws InterruptedException

causes the current thread to sleep for a specified period of time

3. public void interrupt()
allows one thread to send a signal (an interrupt) to another thread.  If 
the destination thread is sleeping or waiting, it gets an immediate 
InterruptedException that awakens it.

4. public static boolean interrupted()
public boolean isInterrupted()
allows a thread to find out if it has been interrupted.  The first form of 
the method tests the current thread; the second tests the thread 
controlled by the Thread object to which it is applied. 

5.  public final void join(long millis, int nanos)
throws InterruptedException

public final void join(long millis)
throws InterruptedException

public final void join()
throws InterruptedException

cause the current thread to wait for the specified thread to terminate, 
before continuing execution.  The first two methods put an upper 
bound on the waiting time, after which the thread that was waiting 
continues whether or not the other thread has terminated.  (Not 
needed in most cases - but sometimes necessary as in the Racer 
example - we’ll see more of a need for this in the next version.)

6.  public static Thread currentThread()
returns the Thread object representing the current thread.
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IV. UML Activity Diagrams

A. The chapter in the book that you read for today discussed a type of UML 
Diagram called an Activity Diagram.  Such a diagram can be constructed 
for a simple program, but it is particularly useful for showing processes in 
which there is concurrent processing.

EXAMPLE: HANDOUT: Activity Diagram for Racer Problem

B. Features:

1. Rounded rectangles represent activities.

2. Arrows represent flow from one activity to the next.   Each activity is 
assumed to start as soon as its predecessor completes.

3. Where there is concurrency, the diagram shows “forking” of one 
thread into two or more, and joining of two or more threads into one.  
(Forks and joins should match.)

4. The diagram uses “swim lanes” to show the various parts of the 
system that are performing a task concurrently.

C.  ANOTHER EXAMPLE: Figure 8.10 on page 209 of the book.  In this 
case the diagram is showing concurrency between three humans and the 
computer.
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V. The Critical Section Problem

A. As soon as we allow for the possibility of a program containing two or 
more distinct threads, we raise the question of how they can coordinate 
their activities and avoid interfering with one another.

EXAMPLE: 

1. Consider the racer program again.  As it stands, each racer keeps 
running until it completes, so we have no way of knowing who won 
except by careful observation.

2. Suppose, instead, we add a StringBuffer that allows the winning 
thread to report its name.  

a) We will pass this as a parameter to the constructor of each racer, 
and keep a reference to it as an instance variable in each racer.

b)  Note that all four racers share the same StringBuffer. 

c) We set the initial contents of the StringBuffer to empty.

d) When a thread finishes, it checks to see if the StringBuffer is 
empty.  If it is, it writes its name into the StringBuffer.  (We have 
to check first, else threads that finish later will overwrite the name 
of the winner).  At the end of the race, the main program writes the 
results.  The code to do this can be added to the end of the run() 
method of the racers.

SHOW CODE - run() method in Racer2.java

DEMO

3. Is this code correct?

ASK

Surprisingly, the answer is no!  Although it will work correctly most of 
the time, it can sometimes produce the wrong result.  Consider the 
following scenario: suppose Red finishes with Green close behind it.  
Suppose, further, that due to the way the threads are scheduled, the 
following series of events occurs:

a) Red finishes, and checks to see if the StringBuffer is empty - it is.
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b) Green finishes, and checks to see if the StringBuffer is empty - it 
still is.

c) Red writes its name into the StringBuffer

d) Green writes its name into the StringBuffer.

e) Although Red won, Green is reported as the winner!

f) It may be argued that this scenario depends on the race being very 
close, and even then is improbable.  Try telling that to runners in 
the Olympics!  The fact that a scenario like this is rare does not 
mean its impossible, and the insidious thing is that finding such an 
error during testing, or making it repeat itself during debugging, is 
virtually impossible.  Thus, the only way to produce correct 
concurrent software is to make sure such a scenario cannot occur.

4. To see that this is really a problem, we will run a version of the 
program that has been modified to insert some extra delay into the 
finishing code, between the time that the thread checks the contents of 
the StringBuffer (and sees that it’s empty) and the time that the 
thread writes new content into it.
DEMO: Racer3
SHOW CODE at end of run() method - note that the logic is the 
same, but that delay loops and println’s have been added.

B. The problem we have just encountered is an example of a common issue 
in concurrent systems called the critical section problem.  

1. A critical section exists with regard to some piece of shared data if 
there is a section of code such that we must not allow some other 
thread to access the object while one thread is executing this code.  In 
this case, the critical section for the StringBuffer is the code that 
extends from the if to the write - once one thread has started to 
execute the if, no other thread can be allowed access to the 
StringBuffer’s contents until the first thread has finished its write, or 
incorrect results can occur.

2. In Java, critical sections are protected by locking what is called the 
monitor of an object.  (The term comes from theoretical work on 
critical sections done in early 1970’s).   This is accomplished by using 
the keyword synchronized.
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HANDOUT, DISCUSS  code for Racer4.java - a correct solution to 
this problem.

a) In brief, once one thread reaches the synchronized statement, it 
locks the StringBuffer object, excluding all other threads from 
proceeding past the synchronized statement until the first thread 
has finished writing it - at which point, future threads will see the 
StringBuffer as non-empty, and will not try to declare themselves 
the winners.  (Any subsequent thread that reaches the 
synchronized statement while the first thread has the object 
locked will be forced to wait until the first thread releases the lock.  
Moreover, only one thread at a time will be allowed to lock the 
object - subsequent objects will have to wait their turn, one at a 
time.)

b) DEMO this program.

DEMO Racer5 - this program with additional delay and printing 
code used in Racer3.  Note that it now works correctly.

c) In this case, the synchronized statement explicitly specified the 
object to lock.  Often, it turns out that when a method is invoked, 
the object that needs to be locked is the “this” object of the 
method.  In such cases, the method itself can be declared 
synchronized, as follows:

someMethod()
{

synchronized (this)
{

--- method body
}

}

is equivalent to

synchronized someMethod()
{

--- method body
}
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The latter form is preferable, both because it is shorter, and because 
declaring the method to be synchronized makes it clearer to the 
reader what is happening.  In fact, this form of the synchronized 
statement is probably the most common.

d) Note that synchronization allows a thread to lock a particular object 
- not a particular body of code.  Thus :

(1) If two threads encounter the same synchronized statement but 
referring to distinct objects, they can both proceed at the same 
time.

(2) If two threads encounter two different synchronized 
statements referring to the same object, only one can proceed at 
a time.
EXAMPLE: One place this may be used is in software accessing 
bank accounts.  Suppose we had two methods belonging to class 
BankCustomer, defined as follows.   (Assume that money 
amounts are represented in cents)

/** Return total of balances in all of a customer’s 
accounts. */
synchronized long totalBalance()
{

long total = 0;
Iterator it = accounts.iterator();
while (it.hasNext())

total += ((Account)
it.next()).balance();

return total;
}
synchronized long transfer(long amount,

AccountType from, AccountType to)
throws InsufficientBalanceException

{ 
((Account) accounts.get(from)).

withdraw(amount);
((Account) accounts.get(to)).

deposit(amount);
}
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It is important that these methods be synchronized.  This ensures 
that if one thread starts one of these methods and a second 
thread tries to start the other (or the same method, for that 
matter), the second thread will have to wait until the first thread 
is finished.  
Absent this, we could report a balance that is too low if we got 
the balance of the from account after it was reduced by the 
transfer amount, and the balance of the to account before it was 
increased by the transfer amount.

(3) Note further that a given thread may lock the same object more 
than once - i.e. one synchronized method can call another 
method that synchronizes on the same object.  This is permitted, 
and does not cause deadlock.

e)  A weakness in the Java solution to the critical section problem is 
that while one thread has locked an object, other threads can still 
access it through code that is not specified as synchronized.
(1) Java is defined this way because locking an object involves a fair 

amount of overhead, so we don’t want to do it unless we have 
too.

(2) However, this leaves open the possibility that a programmer 
might forget to specify that a given section of code is 
synchronized when it should be, negating the protection 
afforded by declaring some other section of code for the same 
object to be synchronized.
(Sort of like the possibility that one roommate might lock the 
door of the room and the other roommate might forget to lock 
it, leaving the first roommates’ stuff vulnerable.)

C. This solution to the critical section problem is not without its risks, 
however.  If synchronization is not done carefully, it is possible to create a 
situation known as deadlock.  This happens if something like the following 
occurs:

Thread 1 locks some object A
Thread 2 locks some object B
Thread 1 now tries to lock B while it still holds the lock on A
Thread 2 now tries to lock A while it still holds the lock on B

D. Critical sections and deadlock will be discussed in much greater detail in 
the operating systems section of the Computer Systems course.  Tune in 
then for further details!
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VI. Explicit wait() and notify()

A. Sometimes, it is necessary for some thread to wait until some other thread 
has done something.  In this case, it is possible to make use of the methods 
wait(), notify(), and notifyAll() that are defined in class Object, 
and therefore available for all objects.

1. A thread that holds a lock on some object can execute the wait() 
method of that object.  When this occurs:

a) The thread’s lock on the object is released, so other threads can 
access it.

b) The thread that executed the wait() is rendered unable to proceed 
- it is said to be blocked on that particular object.

2. Some other thread (which must now hold the lock on this object) may 
subsequently execute the locked object’s notify() method.

a) When this occurs, one thread that was blocked on the object is 
unblocked.  (If several threads are blocked on the same object, there 
is no guarantee as to which is unblocked.)

b) The thread that was unblocked may proceed after re–obtaining the 
lock on the object.

3. It is also possible to use the notifyAll() method of an object to 
unblock all threads that are blocked on that object - though they will, 
of course, have to proceed one at a time since a thread that was 
blocked must re-obtain the lock on the object before it can proceed.

4. The wait() method can optionally specify a timeout value.   If it is not 
notified within this time period, the thread is unblocked anyway.

B. One place where the wait/notify mechanism is useful is if a thread can only 
proceed if some condition is true concerning a synchronized object.  This 
often occurs in producer-consumer problems.

EXAMPLE: Consider the problem we discussed earlier where one thread 
is downloading a large movie file and another thread is playing it.  Clearly, 
the second thread cannot be allowed to get ahead of the first - i.e. it can’t 
play a frame that has not yet been downloaded.  This might be handled as 
follows.  Assume we have an object that represents the movie being 
downloaded, with methods as follows:
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/** Add a newly downloaded frame to end of movie */
synchronized void putFrame(Frame f)
{

-- store f appropriately
notify()

}

/** Get the next frame to be shown */
synchronized Frame getFrame()
{

while there is no frame available
wait();

return the next frame
}

This simple mechanism allows the consumer thread to wait just long 
enough for the next frame to arrive, if necessary.

C. Another place where wait() and notify() is useful is in cases where we 
want to avoid having the awt event thread do extensive computation.  In 
this case, we use a separate thread to do the computation, which waits 
until the awt thread notifies it that an appropriate event has occurred.

There are several examples of this in the ATM Example system.

1. EXAMPLE:  SHOW  Statechart for class ATM, then

SHOW CODE  for class ATM

a) Note that ATM implements Runnable, and has a run() method.  
When the simulation starts up, a Thread is created to execute this 
(i.e. there is a special thread for actually running the simulation.)

b) The run() method uses wait()/notify() in two places:

(1) When in the OFF_STATE, the thread waits.  It will be notified 
by a call of switchOn() by the awt thread.

(2) When in the IDLE_STATE, it waits.  It will be notified either by 
a call to cardInserted() or by a call to switchOff() from the 
awt thread

19



2. Threads with wait/notify are also used for the simulation of the 
Keyboard and the EnvelopeAcceptor.  

a) In the former case, the main thread waits until the user clicks a 
button simulating one of the keys on the keyboard.

b) In the latter case, the main thread waits until the user clicks the 
button to insert the envelope - or until a timeout occurs.

SHOW CODE  for acceptEnvelope() method in class 
SimEnvelopeAcceptor.
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