
CS211 Lecture: Database Querying and Updating

last revised 10/30/2006
Objectives:
1. To introduce the SQL select statement
2. To introduce the SQL insert, update, and delete statements

 Materials:
1. LIBRARY database and database to be used in lab (CS211) for on-line demos
2. Projectable of LIBRARY database schema diagram
3. Sample LIBRARY query handout
4. Database schema diagram for Database query lab - handout
5. Listing of contents of tables for database query lab
6. SQL Syntax handout
7. SQL documentation linked from course web page

I. Introduction

A. We have seen how entities and relationships can be represented by using
the relational data model, in which information is stored in tables.

1. Each table has a primary key, which is a set of attributes such that no
two rows in the table have the same value.

2. A table may represent either an entity or a relationship.

a) For an entity, the table includes the entity’s primary key and other
attributes.

b) For a relationship, the table includes the primary keys of the entities
being related (called foreign keys) plus any attributes of the
relationship itself. The foreign keys, together, constitute the primary
key of the table.

B. One of the major strengths of the relational data model is that it supports
ad-hoc operations - the ability to access information in the database in a
simple way, without having to write a special program to do so. These
operations are of two general kinds:

1. Queries - access information without altering it

2. Updates - add, delete, or modify information

C. We now have to consider how to actually perform queries and updates.
To do this, we will make use of a query language.

1

1. Over the years, a number of different query languages have been
developed for use with relational databases. They fall into two broad
categories:

a) Formal languages that use mathematical notation, and are most
useful for theoretical study.

b) Commercial languages used in actual systems.

c) We will learn Structured Query Language (SQL) - a commercial
query language that has been standardized by ANSI, which is
supported by many relational DBMS products, and which is used
by Java’s JDBC (Java Database Connectivity) facility.

2. We will also look at SQL facilities for updating a database.

D. For our examples, we will utilize a simple database for a very small library,
realizing the following schema diagram:

Borrower

borrowerID

lastName
firstName

CheckedOut

callNo

borrowerID
dateDue

Book

callNo

title

PROJECT

(Assume the library is so small that it has at most one copy of any book -
hence callNo suffices as the primary key for Book.)

In the case of the CheckedOut relation, the foreign keys of the two tables
being related are borrowerID, callNo. However, because any given book
can only be checked out to one borrower at a time, we use just callNo as
the primary key in this case.

DISTRIBUTE QUERY HANDOUT

DEMO: mysql -h jonah.cs.gordon.edu -p
use LIBRARY;
show tables;

2

II. Querying a Database

A. Some simple examples

1. One possible query is one that asks for a particular row of some table.

Example: "What is the book whose call number is RZ12.905?"

a) SQL formulation .
select *
 from Book

 where callNo = 'RZ12.905';
The keyword select is used for all queries, * specifies all columns of
the selected row(s), and where specifies the condition the row(s)
must meet. Note also that all SQL queries end with a semicolon,
that comparison for equality uses = (not == as in Java) and that
strings are enclosed in single quotes. It is good form to put each
clause on a separate line, indented with respect to the first line - not
required by the language, but facilitates reading.

b) Result (Demo)
21873 Fire Hydrants I Have Known Dog RZ12.905

2. It is also possible to formulate a similar query that produces several
rows as its result.

Example: "What books are written by Dog?"

a) SQL formulation:
select *
 from Book
 where author = 'Dog';

b) Result (Demo):
21873 Fire-hydrants I have known Dog RZ12.905
34938 21 ways to cook a cat Dog LM925.04

3. The above queries produce all columns from a one or more rows from
the table. Sometimes, we want one or more columns from all rows in
a table.
Example: "List the names of all borrowers"

3

a) SQL formulation::
select lastName, firstName
 from Borrower;
the keyword select is still used, but we explicitly list the columns we
want instead of using *, and we don't have a where clause.

b) Result (Demo):
Aardvark Anthony
Cat Charlene
Dog Donna
Fox Frederick
Gopher Gertrude
Zebra Zelda

4. The operations of selecting both specific columns and specific rows can
be combined in a single query.

Example: "What is the title of the book whose call number is
QA76.093?"

a) SQL formulation
select title
 from Book
 where callNo = 'QA76.093';
Note that both an explicit column list and a where clause are
needed.

b) Result (Demo)
Wenham Zoo Guide

5. The full power of relational database system comes in when we need to
combine information from two or more tables. We will look at a
couple of examples now, but will discuss this extensively in a bit.
Example: When is/are the book(s) Charlene Cat has checked out due?"
What tables do we need information from in order to answer this
question?
ASK
Borrower - since the name only appears there - and CheckedOut -
since the date due appears only there. The two tables are related by
the common key borrowerID, which is the primary key of one and a
foreign key in the other.

4

a) SQL formulation:
select dateDue

 from Borrower
 natural join CheckedOut
 where lastName = 'Cat' and firstName = 'Charlene';
(Note that SQL uses the word and, not && as in Java.)
The "natural join" operation specifies that a new table is to be
constructed by taking the Cartesian product of the two tables and
then keeping only those rows which agree on their common
attribute (called the join attribute): borrowerID. The fact that
borrowerID is the join attribute is implicit in the fact that it has the
same name in both tables.

b) Result (Demo)
2001-2-15

6. Joins can be used to combine information from more than two tables.
Example (admittedly a bit contrived):
"What borrowers have books checked out whose author has the same
last name as they do?"

What tables are required to answer this?
ASK
All three!

a) SQL formulation:
select lastName, firstName
 from Borrower
 natural join CheckedOut
 natural join Book
 where lastName = author;

b) Result (Demo)
Dog Donna
Dog Donna

c) Note that the result is to produce two identical rows.. However,
there is variant of the SQL select command that eliminates
duplicates.

5

select distinct lastName, firstName
 from Borrower
 natural join CheckedOut
 natural join Book
 where lastName = author;

d) Demo

B. Review of basic operations

1. Choosing only those rows meeting some criterion

a) SQL - where clause in select statement

b) In effect, this operation squeezes a table vertically

2. Choosing only certain columns from a table

a) SQL - explicit column list (instead of *)

b) In effect, this operation squeezes a table horizontally. This could
result in duplicate rows if we eliminate the column(s) in which they
differ. To avoid this, we must explicitly specify "distinct".

3. Cartesian product

a) not used in any of the above examples - we will see an example
shortly)

b) SQL - listing multiple tables in from clause

4. Natural join

a) SQL - connecting tables by natural join in from clause

b) In effect, this operation does a cartesian join, and then selects only
those rows in which columns with the same name from different
tables have the same value.

6

C. For our next examples, we will need to use a more complex database - the
same one that you will use in lab.

1. HANDOUT of schema diagram

2. Note that we have course id's in several tables, but we store them as
two or three separate attributes (department, course_number, and
possibly section.) The reason for storing these values is separately is
that the relational model requires attributes to be atomic, but we
sometimes need to use the different components individually (e.g. we
use just department and course_number to link a
CURRENT_TERM_COURSE to its catalog information stored in
COURSE_OFFERED - the section does not appear in the latter.

3. Discuss primary keys

4. HANDOUT of sample database tables - note correspondence to
schema diagram.

D. Additional Query Features

1. Qualified names.

a) Sometimes, if the same column name occurs in two different tables,
it may be necessary to specify from which table you mean for a
column to come.
Example: Suppose we want to print a class schedule for a student
with a given ID (say 1111111), giving the course id, days, time and
room. We need to join the ENROLLED_IN table with the
CURRENT_TERM_COURSES table to get the information we
need. However, the following query will not work:
(switch to CS211 database)
select department, course_number, section, days,
 start_time, room
 from ENROLLED_IN natural join CURRENT_TERM_COURSE
 where id = '1111111';

Why?
ASK
DEMO - note problem with ambiguity of department,
course_number, and section since they appear in both tables

7

b) To formulate this query acceptably, we must use:
select ENROLLED_IN.department,
 ENROLLED_IN.course_number,ENROLLED_IN.section,
 days, start_time, room
 from ENROLLED_IN natural join CURRENT_TERM_COURSE
 where id = '1111111';
(Note that we only need to qualify the otherwise ambiguous
columns)
Demo

2. Renaming of tables
a) As the last example illustrated, needing to type the full name of a

table over and over when qualifying a name can be unpleasant. To
avoid this, it is possible to rename a table within a query. This is
illustrated by the following variant of the above:
select E.department, E.course_number, E.section,
 days, start_time, room
 from ENROLLED_IN E natural join CURRENT_TERM_COURSE
 where id = '1111111';

b) In the above example, renaming the table was a convenience.
There are times when it becomes an absolute necessity.
Example: Suppose we had a database that represents the following
structure:

Employee

id

salary
(other
attributes
omitted)

Supervises

supervisee

supervisor

(The names of the attributes of the Supervises table denote roles,
and are similar in meaning to the use of roles when labelling an
association in a UML class diagram. Of course, supervisor and
supervisee are actually employee ids)
Now suppose we want to know what employees make more than
their supervisor. This would require joining the Employee table
with itself (since we need two different salaries) and can be
accomplished like this:

8

select E.id
 from Employee E, Supervises, Employee B
 where E.id = Supervises.supervisee and
 B.id = Supervises.supervisor and
 E.salary > B.salary;
Even if we were willing to type out the full table name every time,
we couldn't do the query this way because we are using the same
table (with the same name) twice, in two different ways - hence the
need to give the table Employee table two different names.

c) (Can't demo)

3. Full Cartesian joins.

a) The above example also illustrates a second point - although the
natural join is often what we need, there are times when we want to
join tables in some way other than based on equality of values in
columns having the same name.
In the above, we needed to join the first usage of Employee with
Supervises based on id = supervisee, while the second usage was
joined based on id = supervisor. In neither case are the column
names the same.

b) The same issue can arise, even when we don't have to use the same
table twice.
Example: in the PROFESSOR table the department attribute is the
department to which the professor belongs, while in the TEACHES
relationship and in the various course tables it is the department that
offers the course. Sometimes, a professor teaches a course in a
department other than his/her own. Since a natural join between
PROFESSOR and TEACHES would require that the department
attribute in both have the same value (since the column has the
same name), a natural join involving these two tables would lose
data we might not want to lose.
Suppose want the names of all professors who teach a course in a
department other than their own. The query must be formulated
using a full cartesian join, with join conditions explicitly specified:
(1) SQL:

select P.professor_name
 from PROFESSOR P, TEACHES T
 where P.professor_name = T.professor_name
 and P.department <> T.department;

9

(2) Result - DEMO. (The large number of listings is because, at the
time this data set was prepared, all core courses had numbers
with 'CR' as the department code!)

4. Union

Recalling that relations are sets, it is natural to ask whether ordinary set
operations are applicable. The answer, of course, is yes. One such
operation is set union.
Example: Suppose we wanted a listing of all the courses a given
student (say the student with id 1111111) either has taken or is taking.
The former are recorded in the COURSE_TAKEN table; the latter in
the ENROLLED_IN table.
The schemes of the two tables are not identical, of course, because the
former records a term, a number of credits, and a grade - which the
latter does not need. (Credits is recorded because the number of
credits for a course can be changed, but you still get the number of
credits in effect when you took it!) Likewise, the latter records a
section code, which the former does not need.
However, appropriate selecting out of column can make the schemes
the same - a requirement for set union to be meaningful.

a) SQL (note that the "where" has to appear inside each select). The
parentheses are not required, but do enhance readability.

(select id, department, course_number
from ENROLLED_IN

 where id ='1111111')
union
(select id, department, course_number

from COURSE_TAKEN
where id = '1111111');

b) DEMO

5. Difference
Another set operation that is useful is set difference. For example,
suppose we had a table listing the requirements for a given major.
Then we couild find out what courses a given student still needs to take
by taking the set difference between the requirements table and the
entries for him/her in the COURSES_TAKEN table.

10

Alas, set difference is not supported in mysql, though many sql
implementations do support it.

6. Summarization
One powerful feature of relational databases is the ability to generate
summary information easily.
Example: Suppose we wanted to know how many credits a given
student (say id '111111') is taken. This information is available by
summing up the credits attribute of the join between the
ENROLLED_IN and COURSE_OFFERED tables for that student. A
SQL query like the following will do this:

select sum(credits)
 from ENROLLED_IN natural join COURSE_OFFERED
 where id = '1111111';

DEMO

7. Grouping

A natural extension of the above is to ask for id and total credits taken
for all students.

a) The following query does not work:

select id, sum(credits)
 from ENROLLED_IN natural join COURSE_OFFERED;

Why? (DON'T DEMO YET)
ASK
We want to sum the credits individually for each student - we don't
want the sum for everybody!

b) The following query will work:

select id, sum(credits)
 from ENROLLED_IN natural join COURSE_OFFERED
 group by id;
DEMO

11

c) Note: our first attempt is not only wrong, it is actually rejected by
SQL.
DEMO

d) We could do a more complicated version of the above, in which we
print out the student's name instead of the id:

select last_name, first_name, sum(credits)
 from STUDENT natural join ENROLLED_IN
 natural join COURSE_OFFERED
 group by last_name, first_name;
DEMO

8. Outer join

a) Did you notice that there's actually one row that did not show up in
the above?

ASK
The row for EMILY ELEPHANT did not show up - since she is
not enrolled in any courses, the natural join between STUDENT
and ENROLLED_IN produces an empty set.

b) Perhaps what we want in this case is a table with a 0 for total
credits for EMILY ELEPHANT. We can get this by using an outer
join.

select last_name, first_name, sum(credits)
 from STUDENT natural left outer join ENROLLED_IN
 natural left outer join COURSE_OFFERED
 group by last_name, first_name;
DEMO

9. Having

One thing we might want to notice in the above query is what students
are taking more than 16 credits. While we could do this by manually
scanning the results, its much better to let the DBMS do this for us.

At first glance, we might think the where clause can be used.
Unfortunately, this doesn't work because the where clause selects rows
before the groups are formed - whereas we are interested in a

12

particular result of the summary after the groups are formed. The
solution is a having clause:

select last_name, first_name, sum(credits)
 from STUDENT natural left outer join ENROLLED_IN
 natural left outer join COURSE_OFFERED
 group by last_name, first_name
 having sum(credits) > 16;
DEMO

10. Order by

a) We have said that the tables in a relational database are sets. One
property of a set is that it has not inherent order. Thus, the order
of the rows in response to a query is arbitrary. (In fact, most
DBMS's produce the results in the order the rows were inserted
into the table - but that's not guaranteed.)

b) If we want to force the DBMS to sort the rows into some order
before presenting them to us, we can use an order by clause.

DEMO

select * from COURSE_OFFERED;

select * from COURSE_OFFERED
order by ctitle;

c) This facility should only be used when we need it, because sorting is
a time-consuming operation.

E. Summary

HANDOUT - SQL Syntax

Go over section on SELECT statements

13

III. Updating a Database

A. The INSERT statement - handout

B. The DELETE statement - handout

C. The UPDATE statement - handout

D. In addition to these statements, SQL also has statements for maintaining
the structure of the database. We will not cover them - you can find them
in the online documentation for mysql.

DEMO: mysql documentation linked from course web page

14

