
CS211 Lecture: Persistence; Introduction to Relational Databases

last revised October 30, 2006
Objectives:
1. To understand the need for persistent objects
2. To recognize alternative approaches to providing persistence:

a. Explicit save/restore (perhaps using serialization)
b. The above combined with logging of transactions
c. A database systems

3. To understand the fundamentals of the relational model
4. To understand the concept of “key” (superkey, candidate, primary, foreign)

Materials:

1. Projectable version of simple database + second version of Advises table
2. Projectable version of schema diagram for simple database
3. Projectable version of schema diagram for lab database

I. Introduction

A. Thus far, almost everything we have done has involved objects that reside
in main memory (RAM) on some computer. This means, of course that
those objects "live" only while the program is running, and cease to exist
when the program is terminated, either via normal exit or as a result of a
system crash, power failure, etc.

1. This is a consequence of the fact that the CPU can only directly
manipulate information that is stored in main memory. Information
stored elsewhere (e.g. on disk) must be brought into main memory
before it can be manipulated.

2. Note that access times for current main memory technologies is on the
order of 60-70 ns. Access time for data on disk is on the order of 10
ms. Since 1 ms is 1 million ns, this is over a 100,000 to 1 ratio!

B. Obviously, for many applications this is not sufficient. We need some way
to make certain objects PERSISTENT - to preserve them between runs of
the program.
EXAMPLE:
In the registration database example we have used in several labs, there is
no persistence mechanism - all courses start out empty when we first run
the program, and enroll/drop/grade operations are lost when the program
exits. Though we've used the program to illustrate many interesting
concepts, as it stands right now it's actually useless!

1

EXAMPLE:
Which objects in our Video Store system need to be persistent?
ASK

C. Because this is so important, it turns out there are a number of ways of
meeting this need.

1. The approach taken by many familiar applications, utilizing a File menu
with New, Open, and Save options

a) This approach is well-supported in Java.

(1) If an object is an instance of a serializable class (one that
declares that it implements the marker interface Serializable), it
can be written to a file opened as an ObjectOutputStream using
the stream's writeObject method, and the object can be read
back from the same file using the readObject method of
ObjectInputStream.

(2) You used this approach in the last project in CS112.
(3) Your Video store project also uses this approach - except that

your "Open" and "Save" operations are done automatically at
program startup/shutdown.

b) However, this approach has very serious limitations.
ASK
(1) Data is saved only when the user explicitly uses the Save menu

option, or at system shutdown, or - in some cases - automatically
at regular intervals by an auto-save facility. If the program
crashes or the power is lost, all work done since the last Save is
lost.
This may be acceptable for applications like a word processor,
but is not actually unacceptable for recording transactions in a
bank or a video store. (The way your semester project handles
this would not be the way a real system would be built.)

(2) It the stored database is large, then an “Open” or “Save”
operation can take a great deal of time.

2. A second approach is to combine the Open/Save approach with some
sort of LOGGING of transactions (either to paper or to some
nonvolatile storage medium). If the system crashes, the log is used to
redo transactions done since the crash.

2

However, this still doesn't address the problem of the time needed to
load or store a large file, and redoing a log can be a problem in its own
right.

3. A third approach is to make use of objects that reside on disk, with
some or all of this information replicated in main memory where the
program can use it, and that arrange to update the copy on disk
whenever the copy in main memory is changed.
This is the approach we will pursue in this series of lectures. Persistence
in this sense is typically achieved by making use of some sort of on-
disk database management system.

a) Accessor operations on such an object actually get the requested
information from the on-disk database - (though once it is gotten, a
copy may be kept in main memory to avoid repeated trips to disk.
(Remember the 100,000 : 1 access time ratio!)

b) Mutator operations on such an object actually update the on-disk
database.

II. Introduction to Relational Database Systems

A. At the outset, we should consider the question of what kind of database
system we should use to support an object-oriented program.

1. There are database systems known as object-oriented databases, whose
structure is object oriented. The entities stored in such databases are
objects

2. However, most commercial databases use one of several non OO
models, of which the most prevalent today is the RELATIONAL
model. There are a whole host of good reasons for using a relational
database to provide persistence for an OO program, even though the
two models are different:

a) Wide-scale availability of relational databases.

b) Standardization - the relational model and the language most
commonly used to access it are standardized.

c) Legacy data - many organizations have large quantities of data
already stored in relational databases, which it would be nice to be
able to access from OO programs.

3

d) Ad-hoc queries: the relational model allows many operations on a
database to be done interactively from a terminal session, without
needing to write a specialized program. This facilitates extracting
information from such a database as needed, without having to
anticipate all possible queries and write software for them.

e) Solid mathematical underpinnings: the relational model is grounded
in the mathematics of sets and relations, and thus has a sound
theoretical basis which we can use to reason about the behavior of
relational databases.

3. For this reason, we'll devote the rest of this series of lectures to
a) Learning about the relational database model
b) Learning how to access relational databases from Java programs.

4. This is a big topic. (We offer an entire course on DBMS's, and that just
scratches the surface.) We will look at only a small subset of it.

B. We should note, at the outset, that the “OO world” and the “relational
world” are two distinct worlds.

1. They have distinct histories
a) OO: Comes out of the world of discrete simulation; much

subsequent work arose motivated by the development of GUI's in
the PC world - OO is the natural paradigm for designing a GUI.

b) Relational Database systems: comes out of the world of business
data processing; much of the work has been done in the mainframe
world. Database systems historically have had a strong batch
processing flavor.

2. They grew up in different parts of the world.
a) OO originated in Norway, and is very strong in Europe
b) Early work on relational databases was done by IBM and at

Berkeley.
3. In a couple of places, they have very distinct ways of handling certain

key issues - which we will refer to as we get to them.

4. Nonetheless, they also have some striking similarities, in some cases
having discovered fairly similar solutions to certain problems.

4

5. In recent years, the relational database model has been evolving toward
the OO model, with facilities being added that correspond to facilities
present in OO (though still handled in a quite different way). For this
series of lectures, however, we will deal with the “traditional” relational
model.

6. For now, then, we will leave the OO world and enter the relational
database world, with occasional glances back at OO.

C. While an OO model can represent everything about a system, a relational
model focusses on just the entities comprising the system.

1. We can represent the static structure of an OO system by a class
diagram, in which we include:
a) Classes (which give rise to sets of objects). Each object, in turn,

has identity, state, and behavior. A class may be an entity class,
boundary class, or controller class. (Though sometimes we only
deal with the first in class diagrams)

b) Relationship between individual objects.
c) Relationships between classes (generalization, realization,

dependency).

2. The relational data model uses more limited mechanisms to represent:
a) Entity sets - i .e. sets whose elements are (real or abstract) things.

Entities have identity and state, but the basic relational model has no
mechanism for representing behavior. Thus, a relational database
typically does not deal with controller or boundary classes (for
which behavior is the main thing).

b) Relationships between entities.
c) There is no mechanism (in the basic relational model) for

representing relationships between sets of entities.

D. In a relational database, information is represented by relations
(colloquially known as tables).

1. Some relations correspond to sets of entities. Each row in the table
corresponds to one entity, and each column to one attribute.
Example: The following relations (tables) might be used to represent
students and faculty
PROJECT

5

Student
studentID lastName firstName
---------- -------- ---------
1111111 Aardvark Anthony
2222222 Cat Charlene
3333333 Dog Donna
4444444 Fox Frederick
5555555 Gopher Gertrude
6666666 Zebra Zelda

Faculty
facultyID lastName firstName livesIn
-------- -------- --------- -------
1 Bjork Russell Beverly
2 Brinton Stephen Hamilton
3 Crisman Karl Lynn
4 Levy Irvin Hamilton
5 Senning Jonathan Hamilton
6 Stout Richard Ipswich
7 Veatch Michael Danvers

2. A relation (table) can also be used to represent a relationship - that is,
an association between entities.
For example, the following table might represent the relationship
“advises” between Faculty and Students

Advises
studentID facultyID
---------- ----------
1111111 1
2222222 2
3333333 1
3333333 5
...
Each row represents the existence of a relationship (association)
between one student entity and one faculty entity - i.e. the first row
indicates that Bjork advises Anthony Aardvark.

6

3. Note an important difference between OO systems and relational
systems.
a) In an OO system, entities and relationships are represented in totally

different ways - the one by objects belonging to some class, the
other by either a reference or a collection of references. In a
relational system, entities are relationships are represented in exactly
the same way - by relations (tables).

b) But if the association itself has attributes, then in an OO system, it is
objectified as a relationship class - i.e a very different representation
is used. In a relational system, there is no change to way it is
represented - e.g. if the “Advises” relationship included a
“lengthOfTiime” attribute, it could be represented by a table like
the following (which simply adds a column for the attribute):

Advises
studentID facultyID lengthOfTime
---------- ---------- ------------
1111111 1 4
2222222 2 1
3333333 1 3
3333333 5 1
...

PROJECT

III. The “Key” Concept

A. The example we just looked at illustrates a crucial notion in a database
systems - the concept of a key.
1. This concept is why we chose to use the studentID and facultyID to

represent the fact that Bjork advises Anthony Aardvark, rather than
the two names.

2. We now explore this concept in detail.

B. In the relational model, a relation (table) is a set, in the mathematical sense
- that is, each of its members must be distinct. This implies that the
members of a relation must be DISTINGUISHABLE - there must be
some difference among them whereby we can tell them apart.
Normally, we expect that the value(s) of a single attribute or a group of
attributes will suffice to distinguish one member of a relation from all
others.

7

EXAMPLE: In the relation Student, one of the attributes is studentID.
We ensure (when students are admitted) that each student has a studentID
distinct from all others - though it might be that two students happen to
have the same name.

C. Superkey - We call any set of attribute values which suffices to distinguish
one member of an entity set from all others a superkey for that entity set.

1. In general, there can be many superkeys for a given entity set.
EXAMPLE: For the relation Faculty, the facultyID is a superkey. But
if we insist that no two faculty can have the same name, then so is
lastName + firstName.
EXAMPLE: For the entity set Faculty, livesIn is not a superkey.
EXAMPLE: In the case of Student, studentID is a superkey.
However, in general, we would not expect a student’s name to be a
superkey for the entity set - we can easily have two students with the
same name.

2. Indeed, if a given set of attributes is a superkey, then any superset of
those attributes is also a superkey.
EXAMPLE: Since studentID is a superkey for Students, so is
studentID + lastName.

3. Sometimes a superkey needs to be composite - i.e. to consist of more
than one attribute
EXAMPLE: In a library, books are identified by call number. But a
library might have more than one copy of some book. In this case,
each copy is given a unique copy number (copy 1, copy 2 ...) In this
case, the attributes callNumber + copyNumber together are a
superkey, though neither is by itself - we can’t have books that have
both the same callNumber and the same copyNumber (though we
could have two copies of any one callNumber, or “copy 2” of two
different books).

4. Note that - in almost every case - the complete set of attributes for an
entity is a superkey for the entity set. All of the examples we work
with in this course will have this property.
In many cases, this is uninteresting, though we will encounter entity
sets for which the full set of attributes is the only possible superkey.

5. Finally, note that the notion of superkey is determined by the logic of
the database scheme, not by a particular instance.

8

EXAMPLE: Suppose that, at a certain point in time, a college had no
two students with the same name. That would not make lastName +
firstName a superkey for Student, because there is no inherent reason
why two students couldn’t have the same lastName + firstName.

D. Candidate key - a candidate key is a superkey which has no proper subsets
that are also superkeys - i.e. it is, in some sense minimal.
EXAMPLE: For our college example, for Faculty, both facultyID and
lastName + firstName are candidate keys (assuming we disallow having
two faculty with the same name). However, the combination facultyID +
livesIn, though a superkey, is not a candidate key.

E. Primary key - the primary key of an entity set is a particular candidate key
chosen by the database designer as the basis for uniquely identifying
entities in the entity set.

1. Candidate keys are called that because they are candidates for being
chosen as the primary key.

2. If a given entity set has only one candidate key, then the choice of
primary key is obvious. But if there are multiple candidate keys, the
database designer must choose one to be the primary key.
EXAMPLE: For Faculty, if we disallowed having two faculty with the
same name, we could choose either facultyID or lastName + firstName
as the primary key. (In this case, we would almost certainly choose
facultyID, because it’s simpler and wouldn’t “break” if we did hire
two faculty with the same name.)

3. Note that it’s often the case that, in establishing the attributes for an
entity, we include some “ID” attribute that is a natural choice for
primary key - e.g. studentID, facultyID.

4. As a matter of good design, we always identify a primary key for each
relation (table) we create in a relational database. Often, the primary
key attribute(s) is/are underlined when describing a relation scheme.
EXAMPLE: The attributes of Faculty could be represented as
facultyID, lastName, firstName, livesIn.

F. What about relations (tables) that represent relationships? Since relations
are always sets, they, too, need a primary key.

1. The primary key of a relation that represents a relationship between
entity sets is generally the union of the primary key attributes of all of
the entity sets it relates.

9

EXAMPLE: If studentID is the primary key for Student, and facultyID
is the primary key for Faculty, then studentID + facultyID is the
primary key for Advises.
Note that there are multiple rows for studentID 3333333 and for
facultyID 1, but there can be only one row for studentID 3333333 and
facultyID 1.

2. The primary key of a relation (table) representing a relationship is thus
typically composite - and may be the whole scheme (if the relationship
has no attributes of its own).

3. An exception to this statement occurs in the case of a relationship that
is 1 to anything (or 0..1 to anything). In this case, the primary key of
the other entity is also, by itself, the primary key for the relationship,
since no two rows could contain the same value.
EXAMPLE: Suppose we represented information about a library by
entities Borrower (primary key borrowerID) and Book (primary key
callNumber + copyNumber), together with a CheckedOut relationship
(with columns borrowerID, callNumber, copyNumber and dateDue).
By the “primary key of a relationship is the union of the primary keys
of the entities” rule, the primary key for CheckedOut should be
borrowerID + callNumber + copyNumber. But since the relationship
is 1 .. many from Borrowers to Books (a book can only be checked
out to one person at a time), callNumber + copyNumber alone is a
candidate key and therefore the primary key.

4. Note that, while we sometimes have a choice to make concerning the
primary key for an entity set (if there are several candidate keys), we
have no such choice to make for a relationship set - once the primary
keys of the participating entities are specified, so is the primary key of
the relationship set.

G. When a relation (table) includes the primary key of another relaton (table),
the included key is called a FOREIGN KEY.

1. Foreign keys necessarily occur in relations (tables) representing
relationships
EXAMPLE: In the Advises table, borrowerID is a foreign key and
facultyID is a foreign key.

2. Foreign keys can occur in other relations (tables) as well.

For example, suppose we have a Departments table, with each
department identified by a department code (e.g. CS). Suppose further

10

that we include a “firstMajor” attribute in our Student table. Of
necessity, the value of this attribute must be a valid department code
(you can’t major in ZZ at Gordon) - so we consider this attribute to be
a foreign key.

H. It is with regard to keys that there is a fundamental distinction between the
OO model and the relational model.

1. In the OO model, objects have identity, state, and behavior. In
particular, we insist that two different objects can have distinct identity,
even if their state happens to be the same.
EXAMPLE: Suppose two different people have bank accounts that
both happen to have a balance of $100. Those are still distinct bank
accounts, even though their state is the same.

2. In the relational model, an entity set is a set. Therefore, two different
entities are not allowed to have identical attributes - they must at least
differ in their primary key.

3. This point of divergence is often moot, because in designing either an
OO system or a relational database we often include an attribute in
each entity precisely for the purpose of serving as a unique identifier -
either a naturally occurring one (e.g. SSN) or one created for that
purpose (e.g. a Gordon College student ID).

4. Actually, in an OO system each object does have an "attribute" that
that is always unique. What is it?
ASK
The location in memory where the object is stored - represented by the
reserved word this
(But we don't really regard this as an attribute or store it persistently.)

IV. Schema Diagrams

A. The structure of a relational database is called its schema.

B. A schema can be depicted graphically using a schema diagram. In some
sense, a schema diagram plays a role similar to that of a class diagram for
an OO system.

C. The following is a schema diagram for the very simple database we have
been using for examples:

11

Student Advises Faculty

studentID

lastName
firstName

facultyID

lastName
firstName
livesIn

studentID
facultyID

lengthOfTime

PROJECT

1. Each box represents a relation (table). Each relation (table) has a
name.

2. Each name inside the box represents an attribute (column in the table).

3. The box is divided by a horizontal line. The attributes above the line
(in the shaded section of the box) constitute the primary key. (If there
are two or more attributes, then the primary key is composite). Those
below the line are not part of the primary key.

If a relation is “all key” (i.e. every attribute is part of the primary key),
the box is not divided at all - hence a box without a horizontal line
represents an “all key” relation.

4. Each foreign key is connected by an arrow to the place where the key
is defined, typically as (part of) the primary key of some other relation.

D. The following is a more complicated schema diagram - for the database
we will be using in lab.

Note: This schema assumes that “professor_name” is a superkey - which
is, in fact, the way Gordon’s current system works. (A professor_name
may be something like DWEES-BOYD, I or DWEES-BOYD, M to
distinguish Ian DeWeese-Body from Margie DeWeese-Boyd.

PROJECT; GO OVER

12

TEXT_BOOK

isbn

author
btitle
price

COURSE_TEXT

department
course_number
isbn

COURSE_OFFERED

department
course_number

ctitle
credits

CURRENT_TERM_COURSE

department
course_number
section

days
start_time
room

STUDENT

id

last_name
first_name
major

ENROLLED_IN

id
department
course_number
section

COURSE_TAKEN

id
department
course_number

term
credits
grade

PROFESSOR

professor_name

department

TEACHES

department
course_number
section
professor_name

13

V. Some other Differences between OO and Relational Systems

A. We have already seen some key differences between OO and relational
systems.

1. The representation of both entities and relationships using the same
basic approach: tables.

2. The “key” concept.
3. The related notion that identity is established by values of attributes.
4. We now consider a few more.

B. The relational model requires attributes to be simple, atomic, single
values. This is not a requirement in some other database models, nor is it
a requirement in OO, and represents one place where some work may
need to be done when using a relational database with an OO system.

1. EXAMPLE: If an address is stored as street address, city, state, and
zip, then a table cannot have an “address” column. Instead, it must
have streetAddress, city, state, and zip columns. (Attributes cannot be
composite).

2. EXAMPLE: if one of the pieces of information we store about a
person is the cities in which they have lived, we cannot have a “cities”
column in a table describing the person. Instead, we must use a
separate table representing the relationship between the person and the
various cities the person has lived in - e.g.
not:

ID

...
hasLivedIn
...

Person

but rather:

ID

...

ID
city

Person HasLivedIn

14

C. Sometimes, we will not know the value of a particular attribute for a
particular entity, or it somehow does not apply in a particular case - in
which case the value of that attribute is said to be NULL.
EXAMPLE:
Course grades are assigned at the end of a semester. Thus, while a course
is in progress, there will be a row in the EnrolledIn table for each Student
in the course, but the grade attribute in each row will be NULL.

1. Note that this appears similar to the concept of a null reference in a
language such as Java. But it is not the same.

2. One property of NULL is that it is never treated as any value during a
query - the principle being that, since NULL means we don't know a
value, it should never participate in any query.
EXAMPLE:
Suppose we are calculating the GPA for a student. The NULL grades
for courses the student is taking now don’t count. (Notice that this
gives quite a different result than what we would get if we took the
grade to be 0!)
(Contrast this with the null pointer exception you might get in Java if
you tried to access an attribute whose value is null!)

3. If two different entities have the value NULL for some attribute, the
two attributes are not considered equal - i.e. NULL never equals
anything - even NULL.

D. Sometimes, a given attribute can be calculated from other information in
the database - in which case, instead of storing it we may compute it upon
demand. Such an attribute is called a DERIVED attribute.
EXAMPLE:
In a registration system, we may have tables Student, Course, and
EnrolledIn. We may wish to include a “total enrolled” attribute for the
Course table. This does not need to be an ordinary stored attribute; it can
be a derived attribute that is calculated when needed by counting the
number of EnrolledIn rows having that course’s ID in them. (In a case
like this, use of a derived attribute is not only a convenience, but also a
good design practice - since it prevents the possibility of having
inconsistent stored results if a row is inserted into/deleted from the
EnrolledIn table but the enrollment count for the course is not updated.)

15

