
CPS211 Lecture: Design Patterns Last revised November 30, 2009
Objectives
1. To introduce and illustrate the idea of design patterns
2. To introduce some key design patterns students have used or will use:

• Decorator (Wrapper/Filter)
• Abstraction-Occurrence
• Observer
• Iterator
• Factory
• Proxy
• Singleton
• Adapter

3. To demonstrate how several design patterns can be used together to solve a
specific problem

Materials
1. “Gang of Four” Design Patterns book to show
2. Projectable of pp. 6-7 of book (general description of “pattern language”
3. Projectable of p. 127-128 (the Singleton pattern)
4. Projectable of figures 6.1 and 6.2 from Lethbridge/Langaniere
5. Demo and handout of Iterator demo
6. Spreadsheet with multiple charts demo
7. Projectable of abstract sequence diagram for Observer pattern (p. 295)
8. Projectable of simple Observer demo (tic-tac-toe)
9. Demo and handout of Observable demo

10. Demo and handout of swing program with buttons with different looks and feels
11. Projectable of “Gang of Four” book page 175
12. JDBCLab.java getCourseIds() method
13. Demo of my video store showing multiple patterns use in solving a problem

I. Introduction
A. One of the characteristics of an expert in many fields is that the expert has

learned to recognize certain patterns that characterize a particular problem
or call for a particular approach to a solution.
Examples:
1. A civil engineer uses certain structural patterns when designing

bridges, highways, etc.
2. A Medical Doctor recognizes certain patterns of symptoms as

indicative of certain diseases.
B. In the world of OO software in recent years, there has been a growing

recognition of the value of studying design patterns - standard patterns of
relationships between objects in a system (or portion of a system) that
constitute good solutions to recurring problems.

1

1. Much of this was inspired by a lecture by Christopher Alexander - an
architect - given at OOPSLA 1996. Alexander is an architect - and
spoke about patterns in relationship to that field - but software
engineers have recognized that the same principles apply in other fields
like ours.
In one of his books, he gave the following definition of a pattern:
“Each pattern describes a problem which occurs over and over again
in our environment, and then describes the core of the solution to that
problem, in such a way that you can use the same solution a million
times over, without doing it the same way twice.”

2. A key book in this regard is the book Design Patterns by Gamma,
Helm, Johnson, and Vlissides (known in OO circles as “the Gang of
Four”).

a) SHOW

b) This book classifies the patterns it discusses into three broad
categories, which were also discussed as homework exercise m.
What are they?
ASK

3. One important characteristic of the study of patterns is the idea of
giving each pattern a name, so that when people talk they can use the
name of the pattern and others will know what they are talking.
(Unfortunately, some key patterns have more than one name; but at
least we don’t have the issue of the same name referring to different
patterns!)

4. In addition to giving the overall pattern a name, we also give a name to
the various objects that participate in the pattern. Here, the name
given to each object is mean to describe its role and responsibilities.
The object does not have to actually be called by this name - the
purpose of the name in the pattern is simply to help us understand how
responsibilities are apportioned.
EXAMPLE: At the present time, the person who has the role and
responsibilities of President of the United States is Barack Obama. We
may refer to him as “the president” - but his parents did not name him
“President”, they named him Barack!

C. In this lecture, we will try to illustrate the concept of design patterns by
introducing several examples of design patterns - each of which is a good
way to solve a particular kind of problem in a software system.

2

1. Obviously, one only wants to use the pattern if it meets a real need, of
course!

2. Most are patterns you have already used - some in CS112; some in
labs or your project.

D. We will begin with an example you’ve already used, and show how to
describe it using “pattern language”.

In standard discussions of patterns (including the “Gang of Four” book),
it is common to describe patterns in a standard way.
PROJECT: pp. 6-7 of “Gang of Four” book
(Note: we will discuss patterns from other sources as well - but the “style”
of this book is an accepted standard regardless of where the pattern
descriptions come from.)

II. The Singleton Pattern

A. We will begin by talking about a pattern that you are already quite familiar
with. One of our goals will be to use it as an example of how patterns are
described. The singleton pattern is applicable wherever there is a kind of
object where it is necessary that there be one and only one copy of this
object in existence.

B. It belongs, therefore, to the category of creational patterns.

C. Project, go over pages 127-128 of the “Gang of Four” book

III. The Abstraction-Occurence Pattern

A. One pattern you have been using in your video store project is a pattern
called the Abstraction-Occurrence pattern. Can anyone describe this
pattern and how it relates to the video store project?

ASK

B. In terms of the three categories of pattern we discussed earlier, to which
category would this pattern belong?

ASK

Structural

3

C. This pattern actually doesn’t appear in the “Gang of Four” book. The
author of one book that does discuss it introduces this pattern this way:
“Often in a domain model you will find a set of related objects that we
will call occurrences; the members of such a set share common
information but also differ from each other in important ways.

Examples: ASK

D. This particular situation is one to which it turns out there are both good
and bad solutions. The idea is to represent the various occurrences in
some way that avoids duplicating the common information.

1. In general, the clean solution is to use two classes - an « abstraction »
class and an « occurrence » class.

PROJECT: Figure 6.1 of Lethbridge/Langaniere

2. The author of this book also notes that there are a number of possible
“antipatterns” (or poor solutions.) Let’s look at several and discuss
why each is not a good way to solve the problem.

PROJECT: Figure 6.2. of Lethbridge/Langaniere

Discuss why each “solution” is not good

a) This example is undesirable because of replication of information. It
would become even worse if some of the common information
were subject to change, since it would have to be updated multiple
times.

b) This example is undesirable because each new instance of the
abstraction (e.g. new book title) would require creation of a new
class - necessitating recompilation of the software and resulting in a
proliferation of classes.

c) This example is undesirable because it involves replication of
information again - even though the occurrence class does not have
attributes for the information, its base class (and therefore every one
of its objects) does.

E. This particular problem illustrates one of the virtues of studying design
patterns - you can find a clean solution to a problem, while avoiding
mistakes that would otherwise be easy to fall into.

4

IV. The Iterator Pattern

A. Another pattern you have used is the Iterator pattern. The Iterator
pattern prescribes three roles: a collection, an iterator over the collection,
and an object that uses the iterator to systematically visit all the items in
the collection.

B. What category of patterns would this belong to?

ASK

Behavioural

C. To see the motivation for the pattern, suppose that we had a collection of
Strings, and we want to perform various operations on all the strings in
the collection at various points in the program. Suppose, further, that the
collection of Strings were stored in an array.
String [] someCollection;

1. Now, we could systematically print all the strings by using a loop with
an index into the array:

for (int i = 0; i < someCollection.length; i ++)
System.out.println(someCollection[i]);

2. Suppose, at some other point in the program, that we want to print out
the shortest string in the collection (and suppose that they are not
necessarily stored in order of length.) The following code would work
(assuming the collection contains at least one string.)

String shortest = someCollection[0];
for (int i = 1; i < someCollection.length; i ++)

if (someCollection[i].length() < shortest.length())
shortest = someCollection[i];

3. In similar fashion, we could write code to find the alphabetically-first
(or last) string, or to print out all the strings that begin with the letter
‘A’, or whatever.

4. Now suppose we decide to use a different collection to store the strings
- perhaps a Set or a List or whatever. All of the code would need to
be modified to change the way it accesses the strings; further, the code
would need to know the details of how the collection is stored.

5

D. A better approach is to separate the notion of “iterating over all the
elements in the collection” from the details of how the collection is stored.
This decoupling is accomplished by an iterator.

1. An iterator is always attached to some collection. Usually, a collection
has some method that creates an iterator for the collection - so the way
that an iterator is constructed is by asking the collection to create one.
At any time, a given collection may have any number of iterators in
existence.

IteratorCollection 1 *

2. Moreover, an iterator always either refers (implicitly) to some element
in the collection, or is at the end of the collection. If a collection has
several iterators, each has its own position relative to the collection.

3. An iterator has three basic responsibilities:

a) Report whether or not it currently refers to an element of the
collection.

b) If it does refer to an element of the collection, provide access to that
element

c) Advance to the next element of the collection

4. An iterator provides access to the elements of the collection is some
order that is defined by the underlying collection - but which always
satisfies certain properties.

a) A newly-constructed iterator always refers to the “first” element of
the collection. (Where “first” is defined by the underlying
collection - e.g. if the collection is a Set, the choice may appear
arbitrary but actually obeys some consistent rule that the user of the
iterator need not be aware of.)

b) If the iterator is used to systematically visit each element of the
collection (by repeatedly accessing the current element and
advancing to the next), every element of the collection will be
visited exactly once in some collection-specified order, and then the
iterator will become past the end of the collection.

6

5. If code is written to access all the elements of a collection through an
iterator, and the kind of collection is changed, the only other code that
may (or may not) need to be changed is the code that asks the
collection to create the iterator.

E. The java.util package defines an Iterator interface, and each of the
collections it supports have an iterator() method that creates a new iterator
and returns it.

1. The Java iterators differ slightly from the responsibilities I have
presented above:

a) The operations of accessing the current element and moving on to
the next element are combined in a single method.

b) An iterator can also support a method for removing the last
element visited from the collection.

c) Thus, the Java Iterator interface contains three methods

(1) hasNext() - true unless past the end of the collection
(2) next() - combines accessing the current element with moving

on to the next
(3) remove() - remove from the collection the last element that was

returned by next(). An iterator for a particular type of collection
is not required to actually support this operation.

2. As you discovered in lab, you cannot create an iterator for a Map
directly. That’s because a Map actually involves two collections - a
collection of keys, and a collection of values - plus an association
between members of the two collections. Thus, to iterate over a Map,
you must use the Map’s keySet() or values() method to get access
to the appropriate set, and then get an iterator from it.

F. We have seen the Iterator pattern used in another place. Where?
ASK
The JDBC ResultSet - a ResultSet has a method called next() which
performs functionality similar to that of both the hasNext() and next()
methods of an Iterator, but in a different way. (It’s a bit confusing that
JDBC didn’t follow the pattern more closely, IMHO)

7

G. An example of implementing the Iterator pattern

1. Handout Discuss Iterator demo code

2. Run it

3. Go over it

4. AN IMPORTANT NOTE: Unless one is building a collections
package, one normally doesn’t have to actually implement iterators -
just use them. The implementation is include here so you can see how
iterators actually work.

H. Next semester, you will be learning how collections are actually
implemented, and will use C++. The C++ standard library also defines
iterators, which work the same way, though the names of the methods are
different:

1. A collection will have a method called begin() to create an iterator
that refers to the start of the collection.

2. A collection will have a method called end() to create an iterator that
is one past the end of the collection. Two iterators to the same
collection can be compared to see if they refer to the same point by
using ==.

3. The element an iterator refers to is accessed by using the * operator.

4. An iterator is advanced to the next element by using the ++ operator.
Thus, C++ code for printing all the strings in a collection of strings
similar to the example we have done in Java would look like this:
for (someCollection::iterator iter =
someCollection.begin();

iter != someCollection.end(); iter ++)
-- code to write out * iter;

(I’ve shown you this C++ code now, because you’ll see a lot of code
like this next semester, and it will be helpful to recognize then what
pattern is being used.)

5. Actually, C++ iterators can be bidirectional - i.e. allowing one to either
move forward or backward within the collection. Some collections
support a reverse iterator that allows you to get an iterator that refers
to the last item in the collection and then work backwards from there.

8

V. The Observer Pattern

A. The Observer pattern is useful when we have two kinds of objects called
an observable (or subject) and an observer, that are connected in such a
way that the observer needs to know about changes in the observable, but
we want to minimize the coupling between these objects.
(The view and model classes in an MVC system are a good example of
this - when the model changes, the view(s) may need to change - but we
don’t want to tightly couple the model and view. Thus far, we have not
used the Observer pattern to implement an MVC system, largely because
our example systems have been very simple.)

B. An example: spreadsheet with chart(s) based on data DEMO

C. In the Observer pattern, we have two kinds of classes: an observable class,
and one or more observer classes, with specific responsibilities.

1. The observable maintains some information that is of interest to the
observer(s), and is responsible to furnish that information to it/them
upon request.

2. Each observer is responsible to register itself with the observable, by
calling some registration method.

3. When the observable changes, it is responsible to notify each of its
registered observers about the change. The notification may include
some indication as to what has changed (though the pattern does not
mandate this.)

4. Each observer is responsible to have an appropriate method which the
observer can invoke when it changes.

5. Each observer, in turn, is responsible to look at the notification it
received and - if something of interest to it changed - request
appropriate updated information from the observable.
PROJECT - Abstract sequence diagram for this pattern from “Gang of
Four” book p. 295

D. The Java standard library provides support for this pattern

1. The API defines a class called java.util.Observable and an interface
called java.util.Observer.
a) Observable is a class because it implements behaviors that any

observable object needs; but if an observable inherits them, then it
does not need to implement them itself.

9

b) Observer is an interface because all that is required to be an
observer is that one have a method called update() that allows the
observable to inform it of changes. What this method actually does
varies greatly from situation to situation, so there is no benefit to
inheriting any implementation.

2. An observer registers itself as being interested in being notified of
changes to an observable by calling the method addObserver() of the
observable.

3. Any code that changes an observable calls a method of the observable
called setChanged() and then calls notifyObservers() to actually report
changes to its observers. (Usually, these calls are part of the code of a
method of the observable object.)
a) notifyObservers() can be called without the object having changed,

in which case nothing happens. Once notifyObservers() has been
called the observable is considered unchanged until setChanged() is
called.

b) Several changes can be made before observers are notified to
reduce overhead, if desired.

4. When an observable has changed and notifyObservers() is called, the
update() method of each registered observer is called.
a) The first parameter to update() is the observable that has changed.
b) The second parameter is an optional parameter to notifyObservers()

that can specify the nature of the change. It is often null.
5. When an observer’s update() method is called, it is responsible to use

an appropriate method or methods to access the observable to get at
the new information, and then to take appropriate action.

E. A simple example: A program that plays tic-tac-toe might have a model
class called Board and a view class called BoardDisplay
PROJECT Sample code and go over use of pattern

F. Another example: Observer Demo

1. The program consists of an observable object that records a
temperature, and three views that report the temperature using three
different scales (Celsius, Fahrenheit, and Kelvin.) A new temperature
can be typed in any view, and all three views are updated to reflect the
new temperature.

2. DEMO
3. HANDOUT - source code - go over

10

VI. The Proxy Pattern

A. The next pattern is one we used in our distributed systems example.

B. Recall the structure of the student registration system; and the approach
we used to create a distributed version with rmi:

Original version:

RegistrationGUI Controller RegistrationModel

Distributed version:

RegistrationGUI Proxy Controller

RegistrationModelController

Network

1. The proxy controller running on the remote computers has the same
interface (the same set of methods) as the “real” controller running on
the main computer.

2. The GUI code communicates with the proxy controller in just the same
way it would communicate with the only controller if the system were
not distributed. (I.e. it calls the same methods with the same
parameters.)

3. What the proxy controller does, whenever a method is called, is to
convert the name of the method and its parameters into a suitable
message which is sent over the network to the real controller. When
the real controller has processed the request, it sends the results back

11

over the network to the proxy controller, which in turn sends the
appropriate information back to the GUI.

4. From the standpoint of the GUI, it looks like all operations are being
performed locally - though in fact, the two controllers are
communicating over the network. (The only noticeable difference
might be time lag.)

VII. The Factory Pattern

A. The factory pattern is a fairly sophisticated pattern that is a bit hard to get
a hold of. Perhaps the best way to get a handle on it is to show an
example of a place where it is used. The illustration we will use is not one
where the factory pattern is visible on the surface, but it plays a key role
behind the scenes.

B. As you recall, earlier in the course we discussed the Java swing package,
which incorporates the notion of “pluggable look and feel”. In essence,
what this means is that, when a GUI component (e.g. a button) is created,
it displays itself using in the way appropriate to its look and feel. It turns
out that how a component displays itself is determined when it is created.

1. Example - it is possible to create a swing program with several buttons
that have different looks and feels. (Not a good idea in general, but we
do this here for illustration.)

2. Demo program.

3. Handout / discuss code

C. Behind the scenes, this functionality is implemented by using factories.

1. A factory is an object that creates other objects. It is possible to have
different factories that have the same interface - i.e. produce objects of
the same general kind - but each produce their own kind of object.

2. In essence, Swing uses factories to produce the various components
that can displayed, which are different for different looks and feels.
Each factory has methods for producing each of the various kinds of
components. (The explanation given here is vastly simplified.)

3. The setLookAndFeel() method chooses a particular factory, and when
components are subsequently created, their visible representation is
“manufactured” by the current factory

12

VIII. The Decorator Pattern (also known as Wrapper, Filter)

A. PROJECT “Gang of Four Book” page 175.

B. Where have you met this pattern before?

ASK

C. The java.io package makes extensive use of the Decorator pattern.
Basically, this pattern provides a way to enhance the functionality of an
object without changing the code for its class.

1. Example: the java.io package provides many kinds of InputStreams -
objects that can read streams of bytes from a variety of different
sources - e.g.

a) FileInputStream - reads bytes from a disk file

b) ByteArrayInputStream - “reads” bytes from an array

c) PipedInputStream - reads bytes from a pipe (a connection between
two processes running on the same computer such that one process
can “feed” data to another through the pipe).

d) A network socket - reads bytes sent over a network from another
computer.

2. Recall that, in java, characters of text are not represented by single
bytes, but by using Unicode, which represents characters as pairs of
bytes.

a) Therefore,. the java.io package defines a Reader class (and various
subclasses) that supports a read() method that reads a single
character from some source.

b) Many platforms represent characters in their files etc. using an
encoding like ASCII, where a character is represented as a single
byte - but other platforms may use some other encoding (Some
encodings use one byte for common characters, and two bytes (or
even three) for less common ones.) Thus, when a Reader needs to
read a character from some source, it may actually need to read just
one byte and pad it out with 0’s - or it may need to read two or
even three bytes.

13

c) The java.io package also includes a wrapper called
InputStreamReader that allows any input stream to function as a
Reader - i.e. each call to its read() method reads the appropriate
number of bytes from the underlying input stream and returns the
result as a Unicode character.

3. Moreover, when processing text programs often need to work with
complete lines of text - not just individual characters. A line of text is a
sequence of characters terminated by a line terminator.

a) However, the line terminator is platform-specific and environment-
specific

(1) On Unix systems (include Macintosh OSX), it is the single
character newline ('\n' - ASCII code 10)

(2) On Macintosh Classic systems, it is the single character return
('\r' - ASCII code 13).

(3) On Windows systems, it is a sequence of two characters return,
linefeed.

b) Therefore, the java.io package includes a wrapper called
BufferedReader that allows any reader to be used as a source of
complete lines. A BufferedReader has - in addition to the standard
individual character read() method - a readLine() method that keeps
reading characters until it has read a line terminator, and then
returns a String composed of all the characters read except the
terminator (i.e. a platform-independent representation of the
contents of the line.)

4. You may recall a lab last year in which you dealt with encrypting and
decrypting messages. In particular, one copy of the program - running
on a particular computer - could encrypt a message and send it over
the network to another copy of the program running on a different
computer, which would then decrypt and display it. Each message
was a single line - which could, of course, consist of an arbitrary
number of characters.

a) The following code appeared in code that was executed on the
“receiver” side to handle an incoming message, and served to
create an object that could read the message:

14

 BufferedReader input = new BufferedReader(
new InputStreamReader(

connectionSocket.getInputStream()
)

);

This created an object that looks like this:

BufferedReader

InputStreamReader

(network socket)

b) The following code was then used to actually read the message that
was sent over the network from some other computer:

 String message = input.readLine();

When this code was executed, the input object asked its “inner
reader” to read characters repeatedly until a line terminator was
seen. The “inner reader” in turn repeatedly asked the network
socket for individual bytes and converted them into characters.

5. A major advantage of the “wrapper” approach used by the java.io
package is that it avoids a proliferation of classes. - e.g. we don’t need
a special kind of BufferedReader for files, and a different one for pipes,
and a different one for network connections, etc. - instead, a single
BufferedReader wrapper can build the necessary functionality on top
of any kind of Reader; and a single InputStreamReader wrapper can
build the necessary functionality on top of any input stream.

D. In general, this decorator (wrapper) approach is useful whenever we have
a class whose functionality we want to extend, but we have good reason
not to modify the source code for the class itself. We put the added
functionality into a wrapper, that also forwards original requests to the
object within.

15

IX. The Adapter Pattern

A. This pattern is used in a case where you have a class that provides the
desired functionality, but does not have the interface that you need to use.

An example of this arose in the JDBC lab.

1. Recall that we have used several variants of the RegistrationSystem
this semester:

a) In Labs6-7, where you implemented an OO version of this

b) As an example of RMI just before Thanksgiving

c) In the JDBC lab

2. All three examples used the exact same GUI code, but used a different
controller. This was possible because all the versions of the controller
implemented the same interface - RegController.

3. One of the methods required by this interface is

 /** Get the course id's of all courses
 *
 * @return an Iterator that gives access to all the course id's
 */
 public Iterator getCourseIds();

4. This is easily implemented when the data is stored in Java collections,
since Java collections have a method for funishing an iterator. It is
more of a problem when using JDBC, because a JDBC ResultSet,
while providing the needed behavior, does not implement the Iterator
interface per se, but rather has its own interface.

5. As you recall, what you actually did in lab was to create an adapter
object, that encapsulated a ResultSet and provided the Iterator interface
by “forwarding” Iterator operations to the internal ResultSet object:
PROJECT code from lab

B. In general, we use tbe Adapter pattern when we have an object that
provides the basic functionality we need, but doesn’t have the interface we
need. To do this, we encapsulate the object in an adapter object that
provides the needed interface by “forwarding” operations to the
encapsulated object.

16

Object to be adapted -
provides the needed
functionality but not
the needed interface

Adapter object - provides
the desired interface by
“fowarding” operations to
the encapsulated object

X. Putting it all Together - an Illustration of Patterns Use

A. To illustrate how patterns can be used, consider the following practical
problem that could arise if fully implementing your VideoStore.
It would be nice if various panes of the GUI could display lists of
customers and titles, both in alphabetical order.

1. To handle a customer’s late fees, we could go to the customer list,
select the customer, and click a “Late Fees” button.

2. To add copies of a title, we could go to the title list, select the title, and
click an “Add Copy” button.

3. To deal with reservations, we could go to the title list and click a
“Reservations” button to deal with the reservations for that title.
DEMO in my version

4. To keep our subsequent discussion simple, we will focus on dealing
with the display of the customer list.

B. It actually turns out that this is much more easily said than done! Here’s
why.

1. A JList is backed by an object called the list model that keeps track of
the items displayed in the list. A list model must implement the
ListModel interface.
SHOW javax.swing.ListModel documentation.
Note that the key functionality is the ability to access an element by
position - which is needed to support operations like scrolling the list.
(The getElementAt(int) method).

17

2. However, we want to store the customer lists in the video store using
some form of Map - and maps do not provide the ability to access
items by position, but only by key.

3. Further, a sorted map (TreeMap) keeps items in key order (e.g.
customer id); but we would prefer to have the list be displayed in
alphabetical order of name.

C. We can begin to solve the problem by creating an adapter that allows a
map to be used as the ListModel for a JList. To do this, it can

1. Mainatain an internal vector of elements

2. At creation, get the list of elements from the appropriate map, sort
them into the order they will be displayed in, and store them in the
internal vector.

3. Provide access to the vector through the getElementAt(int) method
required by the ListModel interface - since a Vector does support
accessing elements by position.

D. However, this is not a complete solution. What if the list changes? (E.g. if
we add or delete a customer?) Here, we could use the Observer pattern -
i.e.the ListModel adapter is made an observer of the map - so that
whenever the map is changed, the ListModel adapter updates its list.

1. Unfortunately, this is not easily possible, because maps are not
observable!

2. So we make use of a third pattern - the Wrapper pattern. We wrap a
TreeMap in an observable class that:

a) Implements the same interface as a TreeMap (java.util.SortedMap)

b) Forwards SortedMap operations that don’t change the map to the
encapsulated map

c) Forwards any operation that changes the map to the the
encapsulated map and then notifies its observers that the map has
changed.

E. We then get the following:

18

F. DEMO

1. Add a new customer

2. Edit a customer, changing the name

3. Delete a customer

G. Show Code

1. ObservableTreeMap - constructor, containsKey(), get(), put(), remove()

2. ObservableTreeMapListModelAdapter - all methods

19

java.util.TreeMap

ObservableTreeMap

java.util.Vector

ObservableTreeMap
ListModelAdapter

« observer »

