
CS211 Lecture: Detailed Design and Implementation

Last revised October 5, 2007
Objectives:

1. To introduce the use of a complete UML class box to document the name, 
attributes, and methods of a class

2. To show how information flows from an interaction diagram to a class design
3. To review javadoc class documentation
4. To introduce method preconditions, postconditions; class invariants.

 Materials : 

1. Online display of various ATM Example pages
2. Javadoc documentation for Registration system labs classes and projectable of 

source code for class RegistrationModel (class comment+selected methods only).
3. Projectable of source code for video store SimpleDate class
4. Javadoc documentation for java.awt.BorderLayout and projectable of source 

code for constants
5. Gries’ coffee can problem - demo plus handout of code

I. Introduction

A. As we pointed out at the start of the course, there are many 
different processes that can be followed in software development 
(e.g. waterfall life cycle, RUP, etc).

B. Regardless of what process is followed, however, certain tasks will 
need to be done as part of the development process per se - 
whether all at once, iteratively, or incrementally.   In fact, activities 
like these will be part of any situation in which one uses his/her 
professional skills to help solve someone else’s problem - not just 
when creating software or even in a computer field.

1. Establishing Requirements: The goal of this is to spell out what 
constitutes a satisfactory solution to the problem.

2. Analysis.  The goal of this is to understand the problem.  The 
key question is “What?”.

3. Design. The goal of this is to develop the overall structure of a 
solution to the problem in terms of individual, buildable 
components and their relationships to one another.  The key 
question is “How?”.
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4. Implementation.  The goal of this task is to actually build  the 
system as designed.

5. Installation / Maintenance / Retirement
All of these must be done in a context of commitment to  
Quality Assurance - ensuring  that the individual components 
and the system as a whole do what they are supposed to do  
(which may involve identifying their shortcomings and fixing 
them.)

C. We have been focussing our attention on the second and third of 
these tasks: analysis and (overall) design.  To do this, we have 
looked at several tools:

1. Class diagrams - a tool to show the various classes needed for a 
system, and to identify relationships between these classes -  a 
tool to help us document the static structure of a system.

2. CRC cards - a tool to help us identify the responsibilities of each 
class.

3. Interaction diagrams - a tool to help us document what we 
discovered by using CRC cards, by showing how each use case 
is realized by the interaction of cooperating objects - one of 
several tools to help us capture the dynamic behavior of a 
system.  

4. State Diagrams - a tool to help capture the dynamic behavior of 
individual objects (where appropriate).

D. In developing CRC cards and interaction diagrams, we often 
discover the need for additional classes beyond those we initially 
discovered when we were analyzing the domain.

1. These include classes for boundary objects and controller objects.  
In fact, a use case will typically be started by some boundary 
object, and will have some control object responsible for 
carrying it out.

2. One writer has estimated that the total number of classes in an 
application will typically be about 5 times the number initially 
discovered during analysis.
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E. We now turn to implementation phase.  Here, we will focus on 
implementing the individual classes, using the CRC Cards and class 
diagram to identify the classes that need to be built, and the 
interaction and statechart diagrams (and CRC cards) to help us build 
each class.

F. There is a design component to this phase as well - sometimes known as 
detailed design.  We can contrast this sort of design with the overall 
design done earlier, as follows.

1. In overall design, we are concerned with identifying the classes and 
discovering their relationships.  One of the end results of overall 
design is a class diagram, showing the various classes and how they 
relate to one another.

a) In order to keep the drawing manageable, at this stage I usually 
represent each class by a rectangle containing only its name.

b) In fact, if the number of classes is large, we may group classes into 
packages and focus on these larger groupings.

2. In detailed design, we focus on each individual class.  

a) We must develop:

(1) Its interface - what “face” it presents to the rest of the system

(2) Its implementation - how we will actually realize the behavior 
prescribed by the interface.

b) In the process of doing this, we will identify the class’s:

(1) Attributes

(2) Operations

c) To document this, we may draw a more detailed UML 
representation for the class: a rectangle with three compartments:

(1) Class name

(2) Attributes

(3) Methods
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d) A note on notational conventions - UML uses the notations 
variable: type for attributes, parameter: type and method(...): type 
for method signatures, and the symbols + for public, # for 
protected, and - for private.

3. In implementation, we actually build and test the code for each class, 
which means translating the UML design into code in Java or whatever 
programming language we are using.

a) The translation of the attributes into Java code is trivial.

b) In the case of the methods, the signatures given in the UML design 
become the method interfaces.  Of course, we still need to write the 
method bodies.  Here, our interaction diagrams come into play.

4. Since implementation of a good design is relatively straight-forward, 
we will spend most of our time on design.

II. Designing the Interface of a class

A. The interface of a class is the “face” that it presents to other classes - i.e. 
its public features.

1. In a UML class diagram, public features are denoted by a “+” symbol.  
In Java, of course, these features will actually be declared as public in 
the code.

2. The interface of a class needs to be designed carefully.  Other classes 
will depend only on the public interface of a given class.  We are free to 
change the implementation without forcing other classes to change; but 
if we change the interface, then any class that depends on it may also 
have to change.  Thus, we want our interface design to be stable and 
complete.

B. An important starting point for designing a class is to write out a brief 
statement of what its basic role is - what does it represent and/or do in the 
overall context of the system.

1. If the class is properly cohesive, this will be a single statement.

2. If we cannot come up with such a statement, it may be that we don’t 
have a properly cohesive class!

3. As we did in CS112. we will document our classes using javadoc. One 
component of the javadoc documentation for the class is a class 
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comment - which spells out the purpose of the class.  (We will discuss 
other javadoc features at the appropriate point later on.)
EXAMPLE:  
a) Show online documentation for Registration Labs classes
b) PROJECT: javadoc class comment in the source code for class 

RegistrationModel.

C. Languages like Java allow the interface of a class to include both attributes 
(fields) and behaviors (methods).  It is almost always the case that fields 
should be private (some writers would argue always, not just almost 
always), so that the interface consists only of:

1. Methods

2. Constants (public static final ...)

3. Note that, while good design dictates that methods and constants may 
be part of the public interface of a given class, good design does not 
require that all methods and constants be part of the public interface.  
If we have some methods and/or constants that are needed for the 
implementation of the class, but are not used by the “outside world”, 
they belong to the private implementation .

4. In general, we will use javadoc to document each feature that is part of 
the public interface of a class - including any protected features that, 
while not publicly accessible, are yet needed by subclasses.

D. A key question in designing an interface, then, is “what methods does this 
class need”?   Here, our interaction diagrams are our primary resource.  
Every message that an object of our class is shown as receiving in an 
interaction diagram must be realized by a corresponding method in our 
class’s interface.

1. As an example of this, consider the class CashDispenser from the 
ATM example. Each interaction diagram in which a CashDispenser 
object appears potentially contributes one or more methods to the 
interface of a CashDispenser object.
PROJECT: Detailed design for CashDispenser.  
Referring to the Operations, observe that each of the methods in the 
design actually shows up a message sent to a CashDispenser object 
in some interaction.  (Must look at every interaction where 
CashDispenser appears to find them all)
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a) setInitialCash() appears as a message sent to the 
CashDispenser from the ATM in the System Startup interaction.
SHOW

b) checkCashOnHand() and dispenseCash() appear as messages 
send to the CashDispenser from a WithdrawalTransaction in 
the Cash Withdrawal interaction.
SHOW

c) No other messages are sent to a CashDispenser object in any 
interaction, and no other ordinary operations (i.e. other than the 
constructor) show up in the detailed design as a result.

2. Notice that we are only interested here in the messages a given class of 
object receives; not in the messages it sends (which are part of its 
implementation).

3. Sometimes, another issue to consider in determining the methods of an 
object is the “common object interface” - methods declared in class 
Object (which is the ultimate base class of all classes) that can be 
overridden where appropriate.  Most of the time, you will not need to 
worry about any of these.  The ones you are most likely to need to 
override are:

a) The boolean equals(Object) method used for comparisons for 
equality of value.

b) The String toString() method used to create a printable 
representation of the object - sometimes useful when debugging.
EXAMPLE: Show overrides in class used SimpleDate for project.

E. An important principle of good design is that our methods should be 
cohesive - i.e. each method should perform a single, well-defined task.

1. A way to check for cohesion is to see if it is possible to write a simple 
statement that describes what the method does.  

2. In fact, this statement will later become part of the documentation for 
the method - so writing it now will save time later.
EXAMPLE: Look at documentation for class java.io.File.  Note 
descriptions of each method.
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3. The method name should clearly reflect the description of what the 
method does.  Often, the name will be a single verb, or a verb and an 
object.   The name may be an imperative verb - if the basic task of the 
method is to do something; or it may be an interrogative verb - if the 
basic task of the method is to answer a question.
EXAMPLE: Note examples of each in methods of File.

4. Something to watch out for - both in method descriptions and in 
method names - is the need to use conjunctions like “and”.  This is 
often a symptom of a method that is not cohesive.

F. One important consideration in designing a method is the parameters 
needed by the method.

1. Parameters are typically used to pass information into the method.  
Thus, in designing a parameter list, a key question to ask is “what does 
the sender of the message know that this method needs to know?”   
Each such piece of information will need to be a parameter.

2. There is a principle of narrow interfaces which suggests that we should 
try to find the minimal set of parameters necessary to allow the 
method to do its job.
EXAMPLE:  Discuss parameter lists for each message in the Session 
Interaction

G. Another important consideration is the return value of the method.

1. A question to ask: does the sender of this message need to learn 
anything new as a result of sending this message?

2. Typically, information is returned by a message through a return value.  
EXAMPLE: Show examples in Session interaction

3. Sometimes, a parameter must be used - an object which the method is 
allowed to alter, and the caller of the method sees the changes.
EXAMPLE:  
The balances parameter to the sendToBank() method of the various 
types of transaction - SHOW in Withdrawal interaction.  Note that this 
method has to return two pieces of information to its caller:

a) A status
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b) If successful, current balances of the account
SHOW Code for class banking.Balances

H. Just as we use a javadoc class comment to document each class, we use a 
javadoc method comment to document each method.  The documentation 
for a method includes:

1. A statement of the purpose of the method.  (Which should, again, be a 
single statement if the method is cohesive).

2. A description of the parameters of the method.

3. A description of the return value - if any.

SHOW: Documentation for course-related methods of class 
RegistrationModel for Registration labs.

PROJECT: java source code for these methods, showing javadoc 
comment.

I. While the bulk of a class’s interface will typically be methods, it is also 
sometimes useful to define symbolic constants that can serve as 
parameters to these methods

1. EXAMPLE: java.awt.BorderLayout

2. In Java, constants are declared as final static.  A convention in Java is 
to give constants names consisting of all upper-case letters, separated 
by underscores if need be.

3. Public constants should also be documented via javadoc

SHOW  Documentation for constants of class 
java.awt.BorderLayout

PROJECT: source code showing javadoc comments.
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III. Preconditions, Postconditions, and Invariants,

A. As part of designing the interface for a class, it is useful to think about the 
preconditions and postconditions for the various methods, and about class 
invariants.

1. A precondition for a method is a statement of what must be true in 
order for the method to be validly called.
EXAMPLE: 

As you may have discovered in lab, the remove(int) method of a List 
collection can be used to remove a specific element of a List.  
However, the method has a precondition that the specified element 
must exist - e.g. you  can’t remove the element at position 5 from a list 
that contains 3 elements, nor can you remove the element at position 0 
(the first position) from an empty list.

What happens if you fail to observe this precondition?

ASK

2. A postcondition for a method is a statement of what the method will 
guarantee to be true - provided it is called with its precondition 
satisfied.
EXAMPLE: The postcondition for the remove(int) method of a 
List collection is that the specified element is removed and all higher 
numbered elements (if any) are shifted down - e.g. if you remove 
element 2 from a List, then element 3 (if there is one) becomes the 
new element 2, element 4 (if there is one) becomes the new element 3, 
etc.
Note that a method is not required to guarantee its postcondition if it is 
called with its precondition not satisfied.  (In fact, it’s not required to 
guarantee anything!)

3. A class invariant is a statement that is true of any object at any time it 
is visible to other classes.  An invariant satisfies two properties:

a) It is satisfied by any newly-constructed instance of the class.  
Therefore, a primary responsibility of each constructor is to make 
sure that any newly-constructed object satisfies the class invariant.

b) Calling a public method of the class with the invariant true and the 
preconditions of the method satisfied results in the invariant 
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remaining true (though it may temporarily become false during the 
execution of the method)

(1) Therefore, a primary responsibility of any public method is to 
preserve the invariant.

(2) Technically, private methods are not required to preserve the 
invariant - so long as public methods call them in such a way as 
to restore the invariant before the public method completes.

c) That is, the class invariant must be satisfied only in states which are 
visible to other classes.  It may temporarily become false while a 
public method is being executed.

B. An example of method preconditions and postconditions plus class 
invariants: David Gries’ Coffee Can problem

1. Explain the problem

2. DEMO

3. HANDOUT: CoffeeCan.java

a) Note preconditions and postconditions of the various methods

b) Note class invariant

c) It turns out that the question “what is the relationship between the 
initial conditions and the color of the final bean?” can be answered 
by discovering an additional component of the invariant.
ASK CLASS TO THINK ABOUT:

(1) Relationship between initial contents of can and final bean color.

(2) A clause that could legitimately be added to the invariant which 
makes this behavior obvious. 

10



IV. Designing the Implementation of a class

A. Once we have designed the interface for a class, including its invariant and 
the preconditions and postconditions of its methods, it is time to design the 
implementation.  This involves two major tasks:

1. Identifying the attributes

2. Implementing the methods

B. Identifying attributes

1. One task we must perform is listing the attributes each object of a 
given class must have.  To do this, we can ask two basic questions:

a) What must each object of the class know about itself?  (What must it 
know?)

b) What objects must each object of the class relate to?  (Who must it 
know?)

We will illustrate both of these from class CashDispenser.

PROJECT design again - note attributes

2. The first question (what must it know) involves thinking about the 
responsibilities of the class and what it needs to know to fulfill them.

a) EXAMPLE: cashOnHand represents something a CashDispenser 
must know to do its job.  This is is implicit in the responsibilities 
given to the class.
SHOW   CRC Card

b) In other cases, a needed attribute may explicitly appear in a 
sequence diagram.  However, not every variable appearing in a 
sequence diagram should be an attribute!
EXAMPLE:   SHOW  interaction diagram for class Session.  What 
variables appear in this diagram?
ASK - list on board
Now show detailed design for class Session.  Note that only some 
show up as attributes.   Why?
ASK
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Only those pieces of information that are part of the permanent 
state of the object (and which are typically accessed by more than 
one method) show up as attributes - the rest can be local variables 
of a particular method.  (Sometimes this will be apparent when 
doing the design; sometimes, the need to make some variable an 
instance variable rather than a simple local variable will only be 
discovered while writing the code.  A design can be altered as 
needed.)

c) In the case of entity objects, we may need think about the kind of 
information the entity represents.

EXAMPLE: In the video store system, what must a Customer 
object know?  (Note: we’re asking about what the object must 
know, not about what the human being must know!)

ASK

d) In the case of class hierarchies, we need to think about what level in 
the hierarchy each attribute belongs on.

(1) EXAMPLE: What must any Transaction object know?  
(Information common to all transactions, not just one type)

ASK
SHOW : design for Transaction class

(2) EXAMPLE: What additional information must a Withdrawal 
object know?
ASK
SHOW design for Withdrawal class.  Note that, in addition to 
the attributes just listed, a Withdrawal also inherits all the 
attributes of a Transaction.  

(3) An important consideration in class design when generalization is 
involved is that attributes need to be put at the appropriate level 
in the class hierarchy.  Basically, any attribute that is common to 
all the subclasses belongs in the base class; any attribute that is 
unique to a single subclass, or a subset of subclasses, belongs in 
the individual subclasses.  (However, if there are is an identifiable 
subset that has several attributes in common not shared by the 
other subclasses, we may need a new level in the hierarchy.  This 
needs to be considered with caution, however.  E.g. we might 
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add a level for transactions that have an amount (everything but 
Inquiry), but this probably introduces more complexity than it 
removes!

3. The second question (who must it know) can be answered directly 
from the associations in the class diagram.  

a) An object needs an attribute for each relationship it knows about.

EXAMPLE:
A B C

Each “A” object needs an attribute to record the B object(s) to 
which it is related.  Each “B” object needs an attribute to record 
the “A”  object(s) to which it is related and another attribute to 
record the “C” objects to which it is related.  A “C” object does 
not need an attribute to record the “B” objects to which it is 
related, because the navigability on this association is from B to C 
only.  (A “C” object does not know about its “B” object(s)).

Example: SHOW  detailed design for class CashDispenser.  One 
attribute represents an association the CashDispenser is part of

(1) Which one?

ASK

(2) SHOW: Class diagram - note that a CashDispenser is part of 
two associations.  Why does just one show up as an attribute in 
the class?

ASK

Both associations happen to be unidirectional. But 
CashDispenser is only on the “knowing” end of one of them.  
The CashDispenser does need to know about the Log, but not 
about the ATM.
(Of course, in general, a class can have any number of attributes 
representing associations.)
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b) Normally, an attribute representing an association will be either a  
reference or a collection.

(1) It will be a reference it he multiplicity at the other end of the 
association is either 1 or 0..1 - i.e. it must know at most one 
other object in this particular association.  (The reference will be 
null if the multiplicity is 0..1 and there is currently no object with 
which it is associated.)

(2) It will be a collection of some sort if the range of the multiplicity 
at the other end of the association is greater than 1.   In this case, 
we must choose what kind of collection is most appropriate.

(a) Often, we will use one of the standard Java collections, based 
on how we will be accessing the elements:

i) A HashSet, if there is no inherent order to the collection.

ii) A TreeSet, if there is some natural basis for organizing 
the associated objects in “alphabetical” order.  (Note that 
a TreeSet constructor takes as a parameter a Comparator 
object that knows how to figure out this order.)

iii) An ArrayList or LinkedList if we need to control the 
sequence of the associated objects (e.g. “first-come first-
served”).

iv) A HashMap or TreeMap if we need to be able to access 
the associated object by some key - e.g. a name or an id 
number - i.e. if it is a qualified association.

(b) If the number of objects at the other end is fixed, or has a 
small fixed upper bound, an array or even distinct variables 
may be appropriate.

EXAMPLE: Consider developing a “dungeon” sort of game 
in which we have Rooms linked together.  Suppose each 
Room is allowed to potentially have neighbors in each of the 
four directions (north, east, south, west).  We could 
implement this in a number of different ways:
ASK

i) We could use four variables called northNeighbor, 
eastNeighbor , southNeighbor, and westNeighbor. 
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ii) We could use an ordinary array, with element 0 being, say 
the north neighbor (null if none), element 1 being the east 
neighbor, etc.

iii) We could use a list, with the list elements being stored in 
the order north, east, south, west (and a null being stored 
in a position if there is no neighbor this way.)  (Note that 
this is quite similar to the array representation, since we 
will use indices 0, 1 etc. to access the neighbor in a 
specific direction.)

iv) We could use a map, with the strings “North”, “East”, 
“South” and “West” serving as keys and the 
corresponding rooms being the values.

v) We could not use a set.  Why?

ASK

A set is inherently unordered.  In this case, it is vital to 
know whether a given room is the north neighbor or the 
south neighbor.

vi) In this case, the simple array may be the best choice, 
assuming a run time variable (the direction in which the 
player wants to move) will be used to select a Room.  The 
various collections introduce additional overhead that 
doesn’t really do anything for us here. 

(c) What do we do if we have an association that requires an 
association class?

i) The association class object will have a simple reference to 
each of the objects it is associating.

ii) Each of the objects participating in the association will 
have some sort of collection of association class objects.

EXAMPLE: The EnrolledIn association from the 
Registration system labs
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This association involves attributes in three classes: 
Course, Student, and EnrolledIn:

// In Course: map keyed on student name; value is
// an EnrolledIn object
private TreeMap enrollments = new TreeMap();

// In Student: map keyed on course id; value is
// an EnrolledIn object
private TreeMap enrollments = new TreeMap();

// In EnrolledIn.  Note that each EnrolledIn object
// relates to one Course and one Student:
Course course;
Student student;

(d) Note that this part of the design is driven by the class 
diagram - if the class diagram is done well, then identifying 
association variables is straightforward.  The only tricky part 
may be deciding what type of collection to use.

4. Ordinarily, attributes should be declared as private (“-” in UML).  
However, if a class is the base of a class hierarchy, and subclasses have 
legitimate need to access the attribute, then it may need to be declared 
as protected (“#” in UML).

C. Once we have designed the implementation of a class, of course, we then 
need to implement its methods.  

1. If the class has been designed correctly, and each method has been 
specified via preconditions and postconditions, this is usually 
straightforward.  (Title of talk at OOPSLA Educator’s symposium in 
1999 - “Teach design - everything else is SMOP (a simple matter of 
programming)”).
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2. Sometimes, in implementing methods, we discover that it would be 
useful to introduce one or more private methods that facilitate the tasks 
of the public methods by performing well-defined subtasks.

D. A final consideration is the physical arrangement of the source code for a 
class.  A reasonable way to order the various methods and variables of a 
class is as follows:

1. Immediately precede the class declaration with a class comment that 
states the purpose of the class.

2. Put public members (which are part of the interface) first - then private 
members.  That way a reader of the class who is interested in its 
interface can stop reading when he/she gets to the implementation 
details in the private part.

3. Organize the public interface members in the following order:

a) Class constants (if any)

b) Constructor(s)

c) Mutators

d) Accessors

4. In the private section, put method first, then variables.

5. If the class contains any test driver code, put this last.
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