
CS211 Lecture: Distributed Systems; Remote Method Invocation;
Deployment Diagrams in UML

Last revised November 19, 2007

Objectives:
1. To introduce the notion of distributed systems, including the use of deployment

diagrams
2. To introduce the client/server and three-layer architecture models
3. To introduce the facilities in java.net.
4. To introduce the facilities in java.rmi

Materials:
1. Projectables from UML User Manual pp. 412, 414, 415
2. Executable code and handout of datagram demo implemented with C++ sender

on jonah (datagramdemo.cc and datagramdemo) and Java receiver
(DatagramDemo.java).

3. Handout of excerpts from code for CS112 Encryption lab.
4. Projectable of “before” and “after” deployment diagrams for converting

registration system to RMI, plus apparent and actual situation.
5. Demonstration of RegistrationLabs reimplemented as a client/server system

using java.rmi facilities (Run server on micah, two copies of client on laptop;
project all three on laptop).

I. Introduction

A. In our discussion of threads, we introduced the idea of breaking up a
computation being done on a single system into multiple concurrent
threads that execute in parallel on the same computer. We now pursue
that idea further to consider distributed systems - systems in which
computation is spread over multiple physical sites.

1. The term “distributed system” is actually used in both a broad and a
narrow sense.

a) In the broad sense, it refers to any system in which computation is
spread out over two or more physically distinct processors. The
processors may be located in the same room, or may be on
opposite sides of the world.

b) In the narrow sense, it refers to what are sometimes called “fully
distributed systems” in which information and computation is
physically distributed in such a way that even if one physical site
fails, the computation can continue - though at reduced speed.

1

2. In this lecture, we will deal with distributed systems in the broad sense
of the term. In particular, we will discuss systems built using the
“Client/Server” model.

B. In the bulk of this lecture, we will focus on mechanisms available in Java
(and other languages) for allowing client software running on one machine
to interact with server software running on another machine.

C. First, however, we want to spend a little bit of time looking at a type of
UML diagram - the Deployment diagram - that can be used to show how
components of any system are physically deployed.

II. UML Deployment Diagrams

A. The major components of a deployment diagram are nodes - symbols
representing either a processor or some significant piece of hardware that
the system utilizes.

1. The standard symbol for a node is a cube:

2. Nodes representing specialized pieces of hardware can be represented
by specialized symbols, as we shall see shortly.

3. Nodes are connected by associations, representing the flow of
information back and forth between them.

4. We may also explicitly show the network which allows the nodes to
communicate, if they communicate via a general-purpose network
rather than via dedicated hard-wired connections.

5. Note that, in contrast to other diagrams we have drawn, in a
Deployment diagram the symbols represent hardware - not software.
(The software is deployed on one or more processors, depicted by
node symbols.)

2

B. Deployment diagrams can be used to depict several different types of
systems:

1. Embedded Systems

2. Client/Server Systems

3. Fully-Distributed Systems

C. Embedded Systems

1. An embedded system is one in which a computer is embedded in some
piece of physical equipment to control it (e.g. a home appliance, a car,
or a chemical plant)

2. The following example appears in the UML User Manual, depicting an
embedded system controlling an autonomous robot
PROJECT: UML User Manual page 412
Note that there is only one processor - the remaining nodes are
specialized hardware controlled by software in the processor. Note
also the used of specialized symbols for these nodes - chosen ad-hoc to
help the reader understand the diagram. (These are not standard UML
symbols!)

3. We could depict our ATM example system using such a diagram to
depict the various specialized pieces of hardware in relationship to the
controlling processor that runs the software we have discussed in
previous lectures. Note that, in this case, we are depicting hardware -
not the software that controls the hardware. (E.g. in previous
discussions, we have used a class CardReader to represent the software
that controls the physical device that reads ATM cards. In this
diagram, that class is part of the software that is deployed on the
processor that controls the system, and the card reader symbol stands
for the physical hardware device it controls.)
ASK FOR A VOLUNTEER TO PRODUCE SUCH A DRAWING ON
THE BOARD.

D. Client/Server Systems

1. The following example appears in the UML User’s Manual, depicting a
human resource Client/Server system which can be accessed from
PC’s and dedicated information kiosks.
PROJECT: UML User Manual p. 414

3

2. Example: Gordon’s WebAdvisor system

 HOPE

 Deploys
Registration
system

Advisor’s
computer

 Deploys
Web Browser

College LAN

Advisor’s
computer

 Deploys
Web Browser

Note how the network connecting the advisor computers to the
registration system is depicted.

3. Example: Our ATM system (viewed now as a node) connected to the
bank’s computer.

ASK FOR A VOLUNTEER TO PRODUCE SUCH A DRAWING ON
THE BOARD.

E. Fully Distributed Systems

Example: PROJECT - UML User Manual page 415

Note how the Internet is depicted, potentially connecting any console to
any regional server, while direct hard-wired connections between specific
servers are shown as associations.

F. A Deployment diagram is not required for the VideoStore example
system, as specified.

1. The system we have been designing thus far has been designed,
presumably (but perhaps unrealistically), to run on a single computer

4

2. Suppose, however, that we were to design it as a distributed system -
perhaps with several clerk consoles (computers), and perhaps some
kiosks that customers can use to make inquiries. What might such a
system look like?

ASK

DEVELOP A DEPLOYMENT DIAGRAM AS A CLASS.

Some options to consider

a) Server - perhaps a separate system

b) Manager console - perhaps a separate system, or server system
could double in this capacity.

3. Note: for purposes of the project, do not attempt a distributed
implementation!

III. Inter-System Communication

A. We now move from a general consideration of distributed systems to a
specific consideration of how participating systems communicate with
each other. Since we are using Java in this course, we will deal with
mechanisms available to programs written in Java; however, most will be
usable with other languages as well.

B. The specific question we want to explore, then, is “how does a program
running on one computer go about communicating with a program
running on another computer?”

1. We assume that the computers are connected via some sort of network
- either a local area network or the Internet.

2. We assume that information is transmitted over the network using
TCP/IP - the basic protocol used by the Internet and many LAN’s.
(Certainly other networking protocols can be used; but the mechanisms
built into the Java libraries assume TCP/IP)

3. In the Client/Server model, the communication is initiated by a client
program wishing to communicate with a server program. However,
much of what we say here is applicable to other models as well.

C. There is more than one possible answer to this question. Each possible
answer has advantages and disadvantages.

5

1. A low-level approach: using TCP/IP services directly, through facilities
in the package java.net.

a) Advantages - most flexible

b) Disadvantages - makes programmer responsible for managing a lot
of details

c) We will discuss this approach in some detail later, so that you will
be familiar with it

2. Using a technology connected to web pages

a) For example, a technology called CGI is supported by most web
servers.

(1) In brief, the web server recognizes a URL having a certain
format as being a CGI request, rather than an ordinary page
request. (Each type of web server has its own rules for the
format of CGI requests).

(2) When the web server receives such a request, it runs a program
(whose name is typically specified as part of the request). The
request may also specify parameters to be sent to the program.

(3) The program creates a web page “on the fly”, which the server
then sends to the client as the response to its request.

b) There are numerous similar systems such as “servlets” (little Java
programs that can execute inside a server application), Microsoft
ASP, php, etc.

c) Advantage - supported by existing web servers and browsers.

d) Disadvantage - really designed for this specific purpose. Not a
general-purpose mechanism for letting two programs communicate
with each other. (A Java program could “pretend” to be a web
browser and could communicate with another program through a
web server on the server system, but this is a rather roundabout
approach!

e) We will not discuss CGI or similar systems further

6

3. Using an object request broker (ORB).

a) An object request broker is a piece of software that needs to be
running on both machines. It allows a client program running on
one machine to invoke methods of an object in a program running
on a server machine. In effect, once access to a remote object has
been established, a client program can interact with the remote
object the same way it interacts with a local object - the location is
not a factor in how it uses an object. (The remote object looks just
like a local object to the program using it.)

(1) There is an industry standard for ORBs called CORBA
(Common Object Request Broker Architecture.)

(2) Thus, when we talk about using an ORB, we usually mean using
an ORB that complies with the CORBA standards.

b) The major advantage of CORBA is that it is a cross-language, cross-
platform industry standard.

(1) Because CORBA is an industry standard, CORBA-compliant
ORBs from different software vendors can inter operate with
each other just as well as ORBs from the same vendor. Thus, a
client and a server do not have to be running the same ORB
software.

(2) CORBA is cross platform - Any CORBA-compliant ORB on
one machine can communicate with any CORBA-compliant
ORB on another machine, regardless of the machine or
operating system.

(3) CORBA is cross language - A CORBA-compliant ORB allows a
program written in (say) Java to access objects in a program
written in (say) Smalltalk on another machine.

(a) This is accomplished by specifying the interface to an object
using a language-neutral Interface Definition Language (IDL).

(b) A CORBA-compliant ORB includes IDL compilers which
translate an IDL specification into appropriate language-
specific interfaces and implementation skeletons.

(c) Note that the Java library includes a package org.omg that
provides the Java side of the link to a CORBA-compliant
ORB on the same computer, which can then be used to link

7

to ORB’s on other computers. (The org.omg package is not
an ORB, it provides facilities for using an ORB.)

c) A major disadvantage of CORBA is that it is complex and CORBA-
compliant ORBs are fairly expensive.

d) We will not discuss CORBA further.

4. Using Microsoft’s .NET framework

a) Microsoft’s .NET framework includes support for distributed
applications that replaces an older - now deprecated - Microsoft
technology known as DCOM (Distributed Component Object
Model)

b) In some respects, .NET was developed to compete with Sun’s
Enterprise Edition java, though it can be used with Microsoft’s
clone of Java.

c) Although the open source community is developing versions of the
.NET framework for non-Microsoft platforms, at this point it is
largely a proprietary technology.

d) We will not discuss .NET further

5. Using Java RMI (Remote method invocation).

a) RMI provides capabilities similar to those provided by an ORB, but
only to Java programs.

b) A major advantage of RMI for us is that it is integrated into the
Java language and libraries

c) A major disadvantage of RMI is that it is integrated into the Java
language and libraries!

d) We will discuss RMI in some detail later in this lecture, because it is
readily available to us. If you understand RMI, you will find it
easier to understand approaches like CORBA, because there are
significant similarities (though obviously there are important
differences as well).

8

IV. Low-Level Networking: Using the java.net Package

A. The java.net package contains classes that allow a Java programs on one
machine to communicate with another program on another machine using
industry-standard TCP/IP protocols. (Note that the other program does
not have to be written in Java.)

B. Our goal is not to cover this package in depth, but rather to give
something of the flavor of what’s involved when programs communicate
at this level - if nothing else, to motivate the more abstract approaches!

C. TCP/IP networking defines several different models of communication, of
which two are particularly important

1. Connectionless communication using datagrams. (This is technically
called UDP - the user datagram protocol).

a) In this model, a machine can send a message to another system
(called a datagram) without first establishing a connection with that
machine.

b) The network makes a good faith effort to deliver the message
correctly, but there is no guarantee that the message will not be lost
in transit, corrupted, or even delivered twice!

c) Further, if one machine sends several datagrams to another
machine, there is no guarantee that the datagrams will arrive in the
same order in which they were sent.

d) If the receiving machine wishes to reply, it may send a message
back to the first machine. But this is treated as a separate message
in its own right.

2. Connection-oriented communication using streams. (This is technically
called TCP - transmission control protocol. Note that, in the acronym
TCP/IP, IP stands for the underlying network protocol and TCP for the
commonly-used stream protocol built on top of it. UDP is actually an
alternative to TCP, also built on IP.)

a) In this model, a client first establishes a connection to a server.

b) While the connection remains open (i.e. until either machine closes
it), either machine may send messages to the other machine.

c) The network guarantees correct, accurate delivery of the messages.

9

d) Further, if one machine sends several messages to another machine,
they are guaranteed to appear to arrive in the same order as they
were sent. (A “later” message that arrives before an “earlier” one
is held by the TCP software at the receiving end until the “earlier”
one arrives.)

e) The receiving machine can reply to a message over the same
connection on which it was sent.

3. There are significant analogies between these two models and more
familiar communication mechanisms:

a) Connectionless networking using datagrams is similar to postal mail.
When you mail a letter to another person, the Postal Service makes
a good-faith effort to deliver it intact. However, there is no
guarantee that the letter will not be lost or damaged in transit, and if
you send several letters to the same destination they may arrive in a
different order than the order in which you sent them. (One thing
that the US Postal Service cannot do that the network can is to
duplicate messages!).

b) Connection-based networking streams is similar to the use of a
telephone. Before you can communicate with someone else via
telephone, you must first establish a connection by placing a call
and having it answered. Absent serious problems with the phone
system, what you say is heard accurately and completely by the
other person, and in the order in which you say it. The other
person can reply to you over the same connection. (The network
improves on the phone system in that, if there are problems with
the network, the message will still get through in the proper
sequence - but maybe after some delay.)

c) At the implementation level, connection-based networking is
actually implemented by using the datagram mechanism to transmit
information and acknowledgments that ensure that message
delivery is done reliably.

D. A fundamental notion in IP networking is the notion of a socket. A socket
is an endpoint for communication between two systems.

1. Datagram sockets are used for UDP communication

a) Rather than go into a lot of detail regarding datagram sockets, we’ll
look at a simple example.

10

b) To illustrate the language-independent nature of IP networking, we
will use a program written in C++ on one machine to send a
message to another program written in Java on another machine,
which will simply display the message, along with information about
where it came from.

(1) DEMO: datagramdemo.cc (client) on moses;
DatagramDemo.java (server) on laptop. (Use port 4242)

• First demo with no one listening - note message is ignored

• Then demo with server listening

(2) HANDOUT: Code excerpts

2. Stream sockets are used for TCP communication

a) In this protocol, a connection is established involving a socket on
one system and a socket on another system. A stream of bytes
written into one socket can be read from the other socket, and vice
versa. (A pair of sockets supports two-way communication).

(1) A “tin can telephone” of the type you may have used as a kid is
a good model for a pair of connected sockets.

(2) Note that sockets support communication at the level of streams
of bytes. More complex data (numbers, objects, etc) must be
reduced down to a stream of bytes in order to be sent, and must
be converted back to the appropriate type of entity at the other
end. This process is known as “marshaling” and
“unmarshaling”.

b) TCP/IP incorporates the notion of a “server socket”, which is a
special kind of socket that waits for connection requests from
another system.

(1) When an appropriate connection request is received, a socket is
created on each system, and the two sockets are connected to
each other.

(2) The only role of the server socket is to initiate the connection;
the same server socket can be used to initiate any number of
connections.)

11

(3) Typically, server programs create a single server socket which is
used to receive incoming connection requests. When a
connection request is received, the resulting socket is given to a
separate thread to carry out the requested service while the
server socket (and its thread) remain available to handle new
requests.)

c) Again, rather than discussing this protocol in detail, we will look at
an example - in this case a lab you did in CS112.

E. Example: The CS112 “Encryption” lab:

1. Deployment diagram

Initiating System

 Deploys

 Lab8

LAN
Responding System

 Deploys

 Lab8

(Note that, in this case, both systems run identical code - any system
can initiate communication with any other system, as you recall from
lab.)

2. When the program starts up, it starts a “connection listener thread”
that listens for connection requests from another system. (This
happens on both systems, but our interest is in the one created on the
Responding System.)
HANDOUT: - Encryption lab code excerpts - discuss connection

 listener section

a) A ServerSocket is a socket that can accept connection requests
from another system.

b) Its accept() method blocks until another system attempts to
connect. (This is why we need a separate thread for this - the thread
spends most of its life waiting for a connection request.)

c) When a connection request is received, accept() returns an
ordinary socket that represents one end of the connection that was
established. Communication can take place with the other system
through this socket until one end or the other (or both) closes the
connection.

12

3. Meanwhile, on the Initiating System, clicking the “Send” button
causes a SendDialog box to be created. When the dialog is all filled in
and the user requests that a message be sent, the following code is
executed:
HANDOUT - message send section

a) The form of the Socket constructor used in this code attempts to
establish a connection at the specified address, on the specified
port.)

b) If a connection is established, the Socket thus created becomes one
end of the pair of connecting sockets that can be used for
communication. (If a connection cannot be established, an
exception is thrown.)

c) We now create a PrintWriter object from this socket (using a
wrapper). What is printed into the print writer will be transmitted
over the network to the corresponding socket on the other end.

d) Note that, in this case, we send a single line of data before closing
the socket and terminating the connection shortly after establishing
it. We could just as easily send many lines of data over an extended
period of time if we wished.

4. Back on the Responding System, we have seen that, when a
connection request arrives, a new ordinary socket is created, a
ReceiveDialog box is created to display the message, and a new thread
is created. This thread actually receives the message and displays it in
the dialog. (A separate thread is created for this purpose, so the
listener thread can go back to listening for other connections.)
HANDOUT: Code for receiving message

a) connectionSocket is the socket that was created when the
connection request was accepted.

b) Note how this is “wrapped” in a BufferedReader that allows us
to read line(s) of input sent by the sender.

c) In this case, we know only one line will be sent, so we close the
socket after reading the single line - but we could leave it open and
receive additional lines if that were the protocol.

13

V. Using RMI

A. A significant limitation of low-level networking using the facilities of
java.net is that the communicating programs must assume full
responsibility for managing the details of marshaling and unmarshaling
parameters to requests. RMI provides a much higher level approach. It is
based on an earlier technology developed by Sun called remote procedure
call (RPC) which has been used with many programming languages. In
effect, RMI is the Java version of RPC.

B. When using RMI, the basic idea is that a program is allowed to work with
two kinds of objects: local objects (which exist inside of the memory of the
machine that is running the program) and remote objects (which exist in
the memory of some other machine.) However, this distinction is made
transparent to the program, as follows:

1. If the program executes a method of a local object, that method is
performed by the system running the program.

2. If the program executes a method of a remote object, the rmi system
creates a message which is sent over the network to the system where
the object really “lives”. That system then executes the method and
sends a message back with any results (return value.) The messages
are sent/received automatically, transparently to the program which
references remote objects in the same way it references local objects.

3. The initial setup to use RMI in a program is a bit complex, but once it
is set up, the program author can proceed without further
consciousness of it. We will first consider what needs to be done as
the software is being developed, and then what needs to happen when
it is run.

C. What needs to be done during software development

1. Identify remote classes - i.e. classes whose objects will “live” on the
server side, but whose methods may be invoked on the client side.

2. For each such class, it is necessary to define an interface that spells out
what methods the class makes available remotely. (The class may
define some methods that are only available locally; these are omitted
from the interface.)

a) The interface must be made a sub-interface of java.rmi.Remote

14

b) Each method in the interface must be declared as being capable of
throwing java.rmi.RemoteException. (This class of exception
represents exceptions that can arise as a direct consequence of using
an object remotely - e.g. various sorts of communication problems
that can happen on a network.)

c) On the client side, remote objects will be instances of this interface.

d) When the client calls methods of a remote interface, it must include
appropriate code for dealing with the possibility of a
RemoteException (the one place where the client code needs to
differ for a remote object as opposed to a local object.)

3. It is also necessary to define a concrete class that implements the
interface.

a) On the server side, objects that can be accessed remotely will be
instances of this class.

b) Typically, the implementation class is made a subclass of
java.rmi.server.UnicastRemoteObject. This class provides some
facilities needed by remote objects which they inherit by being a
subclass of it.

4. EXAMPLE: Suppose we wanted to use rmi to convert the registration
system you used in earlier labs into a client/server version.

a) The following deployment diagrams show the structure of the
original version and the new distributed version.

b) Original:

 Registration System

 Deploys

controller.Controller

gui.RegistrationGUI
gui.RegController

model.RegistrationModel
model.Course
model.Student
model.EnrolledIn

PROJECT

15

Distributed: PROJECT

c) What class shows up on both the client and the server sides?
ASK
gui.RegController - the interface that defines the behavior of the
controller.

5. After compiling the client and server software in the normal way, we
need an additional step of running a program called rmic - rmi
compiler - on each of the implementation class files.

a) This creates two additional class files for each implementation class:

(1) A stub - name implementation classname_Stub

(2) A skeleton - name implementation classname_Skel
EXAMPLE: In the above case, we would run the rmic compiler
on Controller.class to create two new classes:
Controller_Stub.class and Controller_Skel.class.
(Note that rmic compiles from class file to class file - there is no
java source code involved.)

b) The skeleton file is used by the server, and the stub file is used by
the client. (The stub is downloaded to the client automatically the
first time it uses a remote object of the class.)

c) The roles of the stub and skeleton can be pictured as follows:

16

LAN Registration Client

 Deploys

gui.RegistrationGUI
gui.RegController

 Registration Server

 Deploys

controller.Controller

gui.RegController

model.RegistrationModel
model.Course
model.Student
model.EnrolledIn

PROJECT

D. What needs to happen when the program is run.
1. Before running any rmi server program, it is necessary to run a

program on the server called rmiregistry. This program manages
the task of establishing initial access to a remote object.

2. When the server program starts up, it must include a call to a method
called Naming.bind(name, object) or Naming.rebind(name,
object) which places a reference to a remote object in the registry.

3. When a client program starts up, it must include a call to a method
called Naming.lookup(url), which accesses the remote object by
invoking the registry on the server where it resides.

17

Local client
object(s)

Local server
object(s)

CLIENT SYSTEM SERVER SYSTEM

Remote
object

result :=
 operation()

Local client
object(s)

Local server
object(s)

Remote
object

result :=
 operation()

Stub object Skeleton
 object

APPARENT SITUATION

ACTUAL SITUATION

E. DEMO: The RMI version of the registration system

1. The Server will run on a workstation
a) login to micah

b) cd cs211/RMIExample/RMIExampleServer/build/classes

c) rmiregistry &

d) cd ../..

e) java -cp build/classes controller.Controller

2. The client will run on laptop: DEMO
a) cd /PROJECTION/cs211/RMIExample/RMIExampleClient

b) java -cp build/classes gui.RegistrationLabsGUI
micah.cs.gordon.edu

c) Repeat the above to run a second copy - hence a second window.
d) Observe how changes made in one window are visible in the other -

two copies of the client both accessing the same server
e) Observe how reports are printed on the server, not the client!

F. One thing that is missing from the our discussion thus far is (and is not
present in the version of the code we are using) is synchronization.

1. Each time the rmi registry is contacted by a client, it creates a separate
thread.

2. Thus, if our GUI is running on two or more different systems accessing
the same server, two different threads could perform conflicting
operations at the same time.

3. This should be handled by explicit synchronization in the server code.
How should this be done, and where should it go?
ASK
Each of the methods that alters the database (doEnroll(),
doDrop(), doGrade()) needs to be synchronized. Since they all
share the same controller object, this will ensure that two threads don’t
perform an operation that alters the database at the same time.

18

