
CPS211 Lecture: Identifying Objects and Classes

last revised July 24, 2008

Objectives:

1. To show how to identify the major objects/classes for a problem

 Materials:

1. ATM System example on the web.
2. AddressBook use cases

I. Introduction

A. Today, we are continuing to to talk about analysis, where the goal is
to understand a problem. Actually, there are two kinds of things
we need to thing about at this point.

1. Application analysis is concerned with understanding the
requirements of a particular problem.

The development of use cases, as we discussed last time, falls
into this category. We seek to understand how someone will use
our software.

The specification of initial functional tests likewise falls into this
category. Spelling out such tests helps us to better understand
what must take place.

2. Domain analysis is concerned with understanding the particular
application domain of which a specific problem is a part.

For example, if you were developing a system involved with
student registration for courses, the domain you would need to
be familiar with includes concepts like students, courses, course
offerings, sections, enrollments etc; as well as the relationships
between them.
To illustrate this, what is the difference between a course
offering and a section?
ASK
Why is this difference important?
ASK

1

When a student registers for a multiple section course, whether
there is room depends on the specific section; each section has
its own roster; and the specific professor is responsible for
assigning the student’s final grade.

a) In an OO approach to problem solving, we use the same

concepts (objects and classes) for analyzing a domain as we
will later use for developing a solution to a problem in that
domain.

b) This stands in sharp contrast with the traditional structured
approach, which uses quite different approaches for
understanding a domain and for developing a solution to a
particular problem in the domain.

B. At the heart of any problem-solving approach is the idea of
decomposition - breaking a large problem up into smaller pieces.

1. An old joke: “How do you eat an elephant?”
ASK
One bite at a time

2. Problems of any significant size require the effort of more than
one person - in fact, major software projects may involve
thousands. One wants to decompose a problem into modules
that are as independent as possible, so that different people can
work on them without getting in each other’s way. The
technical term for this is that we want to minimize coupling - i.e.
the degree to which one module depends on another.

Example: Some books are collections of articles by different
authors - that is, the books are decomposed into chapters, with
each having its own author. This works reasonably well.

Suppose, instead, that the book were decomposed by pages,
with one author responsible for page 1, 5, 9, 13..., a second
responsible for page 2, 6, 10, 14 ... etc. Obviously, this would
result in chaos!

3. While any approach to solving a large problem necessarily
involves decomposition, an object-oriented approach to software
development diverges dramatically from the structured approach
in terms of how it approaches this.

2

a) Any software system can be viewed in two ways - one can
focus on the data that is being manipulated, or the
functionality that manipulates the data.

Example: consider software used for student registration.
The data being manipulated includes information about
individual students, information about individual courses, and
information about enrollment in courses - what students are
in what course. The functionality includes things like
enrolling a student in a course, dropping a student from a
course, printing student schedules, printing course lists, etc.

b) As we saw earlier, the older structured approach decomposes
the system according to its functionality - e.g. major pieces in
the decomposition would be “enroll student”, “drop
student”, “print schedule”, “print course list”, etc. The
object oriented approach decomposes the system according
to its data - e.g. the major pieces in the decomposition would
be “student” and “course”, related by an “enrolled in”
relationship.

We depicted this in terms of a “warp and woof” diagram for
cloth:

Major functions

Major
Types
of
Data

c) Thus, a key part of solving any problem is identifying the
classes that naturally model its domain.

3

II. Class Identification Based on Domain Analysis

A. It is often possible to develop a model of the general domain of which a
particular problem is a part in terms of objects and classes. The objects
and classes thus identifier will necessarily be part of any system that solves
problems in that domain.

B. It is important to consider not only the individual objects, but also how the
objects relate to one another.

1. Quick check question l: “List three types of relationships between
classes. Briefly describe each”
ASK

a) Association: objects of the two classes have some sort of
relationship and can communicate with one another.

b) Aggregation: a stronger relationship in which there is an
“ownership” or whole-part relationship between the objects (as
opposed to association where the two objects can be thought of as
peers).
In describing an aggregation, one will typically use phrases like “has
a” or “is a part of”
(Note: there is a strong form of aggregation called composition or
containment which we will discuss below)

c) Inheritance/generalization: a relationship between CLASSES, not
INDIVIDUAL OBJECTS. In describing generalization, one will
typically use phrases like “is a”.

2. We will discuss these concepts in more depth in a later lecture.

a) For now, it is vital to note the difference between
association/aggregation on the one hand, and generalization on the
other. The key distinction is rooted in a concept known as the law
of substitution: we can legitimately say that class A is a
generalization of class B if and only if wherever an A is required, A
B can be used.

b) While there is a very sharp distinction between generalization, on
the one hand, and assocation or aggregation on the other, the
distinction between association and aggregation is not always as
clear; sometimes, a reasonable case can be made for either.

4

c) Examples of relationships: (ASK for each, discuss reasons)

Person, Student: Generalization (satisfies law of substitution -
it is meaningful to say “a Student is a Person”)
Course Roster, Student Aggregation (it is meaningful to say
“a Course Roster is made of Students”)
Course, Student Probably simple Association - maybe
Aggregation.
Book, Chapter Aggregation - it is meaningful to say “A
chapter is part of a book”

3. Quick Check question q: “What is the difference between aggregation
and composition?”
ASK
The essence is that the relationship is exclusive: the part belongs to
exactly one whole, and cannot exist apart from the whole, and the
parts live and die with the whole
Example: Course Roster, Student is an aggregation but cannot be
regarded as a composition, because students are, in general, enrolled in
multiple courses, and a student can exist even if not enrolled in any
courses.
Example: Book, Chapter: Composition is reasonable in this case -
unless one wants to allow a Chapter to have a separate existence (as
might be the case with certain kinds of reprinting)

C. At this point, we are interested in identifying classes which are part of the
problem domain. Later, we will extend this to include classes that are part
of the solution domain for a specific problem.

D. EXAMPLE: Let’s develop an OO model of the domain underlying the
“Wheels” system in the book.

1. What are the key concepts?
ASK

a) An individual bicycle

b) A specialist bicycle (e.g. racer, mountain bike ...)

c) A customer

5

2. How are these concepts related to one another?
ASK

a) A specialist bicycle is a kind of bicycle - Generalization - it is
meaningful to say “a specialist bicycle is a bicycle”

b) A given bicycle can be hired by a given customer.
Association - it is not meaningful to say “a bicycle is a customer or
vice versa; it is not meaningful to say “a bicycle is a part of a
customer or vice versa”.
In the case of association, one can also consider multiplicity

(1) Any given bicycle can only be hired by one customer at a time.

(2) But a given customer can hire multiple bikes at a given time
(e.g. a family)
Thus, this association is 1 : many from customer to bicycle
(more on this later)

c) A customer can have reservations for one or more bicycles at some
time in the future.
Probably association
Note that a bicycle can be reserved for multiple customers (at
different times), so the association is many : many.

E. Another example: the domain underlying the ATM example system

1. What are the key concepts?
ASK

2. How are these concepts related to one another?
ASK

6

III. Class Identification Based on Noun Extraction

Another approach to identifying classes that is sometimes simplistic, but yet
is often useful, is called noun extraction. The basic idea is this: read over the
system requirements/use case flows of events, and note the nouns that appear.

A. Some of the nouns that appear - especially the ones that appear frequently
- will turn out to refer to objects that need to be represented by classes in
the final system.

B. Other nouns will turn out to be other things., including:

1. Attributes of objects, rather than objects in their own right. An
important skill to develop is being able to distinguish the two. Recall
that objects have three essential characteristics:
ASK

a) Identity.

b) State (often complex - i.e. involving more than a simple value).

c) Behavior

Examples: ASK for Wheels examples of attributes that are not
objects in their own right, and why

things like customer name, bicycle rental rate, date due, etc. are
attributes

2. Actors or other objects that are outside the scope of the system.

Example: ASK for Wheels examples

Receptionist

Note that since we don’t have to build models of these, they do not
need to be represented by classes inside the system.

C. Finally, sometimes there may be a generalization-specialization relationship
between nouns - implying an inheritance relationship between the
corresponding classes.

D. Apply noun-extraction to use cases for AddressBook system.

7

IV. Class Identification is not Once-for-All

It is important to recognize that identifying classes is not something we do
once and then never change. As the design process proceeds, we should be
prepared to:

A. Add additional classes that we discover the need for

B. Reconfigure classes identified previously as we develop a clearer sense of
what their responsibilities will be.

8

