
CS211 Lecture: State Diagrams in UML

last revised September 18, 2007
Objectives:
1. To show how to create and read State Diagrams

 Materials:
1. Executable of Video Store project initial software to be given students
2. Handout: code for Session class performSession() method

I. Introduction

A. We have drawn a distinction between the static aspects of a system and its
dynamic aspects. The static aspects of a system have to do with its
component parts and how they are related to one another; the dynamic
aspects of a system have to do with how the components interact with one
another and/or change state internally over time.

B. We have been looking at one aspect of the dynamic behavior of a system -
the way various objects interact to carry out the various use cases. We
have looked at two ways of describing this:

1. Sequence diagrams

2. Communication diagrams

C. We now want to look at another aspect of dynamic behavior - how an
individual object changes state internally over time.

1. Example: As part of doing the domain analysis of a traffic light
system, it is important to note that individual signals go through a
series of states in a prescribed order - modeled by the following state
diagram:

Displaying
Green

Displaying
Yellow

Displaying
Red

(Note: this is correct for the US but not for all countries in the world!)

1

An important “business rule” that any traffic light system must obey is
that the light must be yellow for a certain minimum period of time
(related to vehicle speed in the intersection) between displaying green
and displaying red. Ensuring that a system exhibits this behavior is
essential for safety.

2. Note the difference between an interaction diagram and a state diagram
- the former deals with how several objects work together to
accomplish one use case; the latter deals with the internal state of one
object, which may be affected by multiple use cases.

Compare with a person’s internal state versus interactions with others.
The “class session” use case involves several “Student” objects and a
“Professor” object. Something that happens in class may affect the
internal state of a student (e.g. getting back a test with a good (or for
that matter bad) grade). The internal state of a “Student” object (e.g.
sleepy) affects not only this use case, but also others like “chapel”.

D. We will now consider a tool that can be used to model this aspect of the
behavior of an object: The State Diagram. It can be used either for
analysis (if our goal is to record how behavior actually transpires in a
system we are modeling) or for design (if our goal is to describe a
behavior we want to produce.)

Note: UML 1 referred to these as statechart diagrams; UML 2 calls them
State Machine Diagrams - sometimes shortened to State Diagrams.

II. State Diagrams

A. Often, while we analyze a system, we discover that some objects in a
system undergo defined state transitions over time, which is an important
part of the dynamic behavior of the system.

1. Example: we just looked at an example of this in the domain of traffic
lights.

2. What about our ATM example?

ASK

a) The ATM itself (represented by an ATM object in our case) goes
through a series of states (off, on, serving a customer, etc.)

b) Individual sessions pass through a series of states

2

c) Individual transactions also pass through a series of states.

(Note that the objects that have this characteristic are often
controller objects.)

B. In such cases, it may prove helpful to develop a State Diagram, showing
the states it passes through - especially if there is any complexity to the
state transitions.

1. Example: We will develop a state diagram for a session.

a) Referring to the use case for a session, what distinct states can we
identify?
ASK

(1) Reading card
(2) Asking for PIN
(3) Asking for transaction choice
(4) Performing transaction
(5) Ejecting card at the end of the session
(6) Session finished

b) Further, the transitions between states for a session follow a fairly
complex pattern - e.g.

(1) After reading a card, we go either to asking for PIN or to
ejecting card, depending on whether the card was readable.

(2) After asking for PIN, we normally go to asking for a transaction
choice; but we go to ejecting card if the customer presses cancel.

(3) After asking for a transaction choice, we normally go to
performing the transaction, but we go to ejecting card if the
customer presses cancel.

(4) After performing a transaction, we can go one of three ways:

(a) To choosing transaction, if customer says he/she wants to do
another.

(b) To ejecting card, if customer says he/she doesn’t want to do
another.

(c) To session finished, if the card was retained due to too many
invalid PINs.

3

c) PROJECT STATE DIAGRAM FOR SESSION FROM WEB

d) We have already noted that there are other objects for which such a
diagram would prove useful.

ASK

SHOW REMAINING STATE DIAGRAMS ON WEB

2. In general, a state diagram is a useful analysis tool for:

a) An object that is responsible for a use case, provided that the use
case has enough internal complexity to warrant doing a state
diagram. (If the use case consists of just a few steps, with no
complex variation in sequencing, then a state diagram may not be
warranted.)

b) An object has complex internal states, even though it is not directly
responsible for a use case

Example: In the case of the ATM simulation, the object
representing the network connection to the bank would likely
warrant a state diagram, because network connections typically pass
through a series of states as they dialog with a peer on the other
end. We have omitted that from the example, because we’ve
avoided getting into the details of how the network connection
works. A real system would, of course, have to deal with this.

C. Another place where state diagrams are often useful is in the design of
graphical user interfaces, as we noted in the previous series of lectures.

1. The states correspond to the different visible states of the GUI - i.e.
what screen etc. is being displayed and what buttons/menus are active.

2. The transitions correspond to the various user gestures - i.e. options the
user may choose.

3. For your project, you will be creating a state diagram for the overall
GUI for the video store software. Let’s spend a few moments now
constructing a portion of it - the portion that pertains to checking out
videos.

DEMONSTRATION: Video Store GUI - Rent Tab

4

a) No ID typed - clicking “OK” ignored

b) Bad ID (type “bad”) entered - error message

c) Valid ID entered - goes to details screen.

(1) Provision for maintaining a list of items to rent
(a) ID field blank - clicking “Add item” ignored
(b) Bad ID (type “bad”) entered - error message
(c) Can add a valid item
(d) Remove item affects selected item; ignored if one selected
(e) Clear all items has no effect if list is empty

(2) Two possible states to screen

(a) No items listed - Only “Cancel” can be clicked
(b) Items listed - “OK” is also enabled

4. Develop state diagram for this portion as a class with three states -
Rent tab displayed; rent details card with no items listed; rent details
card with items listed

D. A State diagram makes use of several symbols:

1. A rounded rectangle denotes a state.

2. Arrows connecting states denote state transitions. A transition is
labeled with one or two pieces of information

a) The situation under which the transition occurs (always)

(1) This may take the form of a label on the transition itself.

(2) There may also be a guard associated with the label.

Example: If we were modeling a ChargeAccount object
(representing a credit card account), we might have states
“current” and “overdue”, with a payment transition from
overdue to current guarded by the condition “amount ≥
minimum”

5

Current Overdue
payment [amount ≥ minimum]

b) Action that takes place on the transition (optional)

(in our examples, actions appear on the transitions for the ATM
itself, but not for Session and Transaction.)

3. A filled in dot denotes the initial start - where the system starts.

4. A filled in dot in a circle denotes a final state. When a system reaches
the final state, no further state transitions are possible.

(Note that the diagrams for Session and Transaction have final states;
but the ATM state diagram does not - turned off is one of its states, but
there is no final state per se because it can always be turned back on.)

5. Additional notation is possible, but this is more advanced than what we
want to talk about now.

E. It is also possible to incorporate information about specific actions to be
performed during a state, or when entering or leaving it.

1. The state diagram for the Overall ATM includes entry actions for 2 of
the three states. These are performed as soon as the state is entered.

2. A state can also have an exit action, to be performed just before
leaving the state.

3. A state can have a “do” action, to be performed continuously while in
the state.

Figure 7.12 on page 193 illustrates all of these - though the illustration
is a bit forced. Actually, just the “do” action is all that’s needed!

F. Finally, it is sometimes helpful to incorporate a state diagram within
another state diagram, describing a complex internal structure for a single
state.

1. This can be done by physically incorporating the nested state diagram
into the larger state on the diagram.

EXAMPLE: Text Fig. 7.13 p. 194

6

2. Alternately, the sub diagram can be drawn separately and referenced
by an include in the containing state

EXAMPLE: The overall ATM diagram’s SERVING CUSTOMER
state explicitly includes the entire Session state diagram; its
PERFORMING TRANSACTiON state explicitly includes the
Transaction state diagram.

3. Physical inclusion is necessary, when the sub diagram can be entered at
more than one place. Inclusion by the use of include makes an easier
to read diagram if the included state diagram has only a single entry
point.

G. A state diagram can often be translated into code in a very straightforward
way that preserves the clarity of the statechart

HANDOUT: Code for performSession () method of Session - compare to
State Diagram on the web.

H. Class Exercise: Develop a state diagram for a single video in a video store.

1. What states can it be in?

ASK

On shelf (in the store)
Checked out to a customer
On hold (at the desk, waiting for a customer to pick it up)
On rack to be sold.

2. Draw states, fill in transitions.- including initial state, and possibility of
discarding or selling - each leading to final state.

7

